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Abstract—In this paper, we investigate the task of quality of
service (QoS) routing in software defined networks (SDN). We
consider delay, bandwidth, loss, and cost as QoS parameters.
We propose a new deep reinforcement learning solution for
greedy online QoS routing in SDN and call it Deep Q-Routing
(DQR). DQR utilises a dueling deep Q-network with prioritised
experience replay to compute a path for any source-destination
pair request in the presence of multiple QoS metrics. In contrast
to existing DRL-based routing methods, the proposed DQR
method regards the task of routing as a discrete control problem
and uses a reward function comprising weighted QoS parameters.
Our simulation results show that DQR substantially improves
end-to-end throughput compared to other existing learning based
methods.

Index Terms—Quality-of-service Routing, Deep-Q Learning,
Software defined network.

I. INTRODUCTION

Software-defined network (SDN) is an emerging networking
paradigm that provides features, such as on-demand resource
allocation, easy reconfiguration, and programmable network
management, which significantly improves network perfor-
mance. In SDN, network functionalities are logically separated
into a control plane and data plane. This is one of the key
features that differentiates SDN from traditional networks. The
control plane includes the SDN controller which is responsi-
ble for implementing all control functionalities required for
operational decision making. While the data plane includes
hardware devices (such as switches) responsible for the exe-
cution of the instructions received from SDN controller. The
logically centralised SDN controller has a global view of the
network that enables network administrators to dynamically
optimise network resources and provide flow-level quality of
service (QoS) provisioning.

The SDN controller provides application-oriented services
by running different modules inside the controller for various
tasks such as QoS routing, resource reservation, network mon-
itoring, and queue management. The QoS routing module is
responsible for providing flow-level QoS in terms of different
parameters such as delay, loss, and bandwidth. It collects
network statistics in real-time and determines the routes for
different source-destination pairs which satisfy QoS require-
ments. Broadly speaking, QoS routing can be divided into
two types: greedy online and global offline [1]. Greedy online
QoS routing considers individual traffic flows, i.e., it tries to
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add a new traffic flow in the network while maintaining the
QoS requirements of ongoing flows. On the other hand, global
offline QoS routing considers a set of ongoing traffic flows and
tries to determine the routes which fulfil the QoS requirements
for the selected set of flows. For QoS routing, extensive
research efforts have been made for different network settings
such as presented in the following surveys [1], [2]. Most of this
work is model-based where the underlying assumption is that
user demand and network environment can be well modelled.
Also, it requires high computational resources to deal with
multiple QoS parameters. On the other hand, communication
networks have evolved into highly dynamic and complicated
networks which makes them hard to model and control.

Since the proposal of deep Q-network (DQN) by DeepMind
[3], deep reinforcement learning (DRL) methods have become
very popular to be used for complex problems where their
ability to learn from experience allows to avoid the develop-
ment of large accurate mathematical models. DRL combines
reinforcement learning (RL) and deep learning to overcome the
limitations faced by RL methods such as dealing with large-
scale systems. Specifically, DRL uses deep neural networks
(DNN) in combination with reinforcement learning methods
to improve the learning process. DRL has attracted researchers
from various disciplines due to its ability to solve large-scale
complex problems, for example, in the field of communication
and networking [4].

In the context of RL based routing, Boyan and Littman
proposed in their 1994 paper [5] a Q-learning based packet
routing approach called Q-routing. A more recent study by
Lin et al. [6] uses RL in a software-defined network and pro-
posed a QoS-aware adaptive greedy online routing algorithm.
However, due to the use of Q-learning, these approaches do
not perform well when the routing complexity increases, i.e.,
when a larger number of QoS metrics has to be optimised
in large-scale problems. Some recent studies used DRL for
routing in communication networks, e.g., [7]–[9]. These stud-
ies considered global offline routing. They take an ongoing
traffic flow traffic matrix (TM) and find the solution for TM
using shortest paths. Specifically, they optimise TM using the
deep deterministic policy gradient (DDPG) algorithm which is
widely used for continuous control problems. However, these
DRL methods for global offline routing are limited in their
performance because they only consider k-shortest paths for
each source destination pair, whereas there can be other paths
which can provide better performance.

Instead of formulating the routing problem as continuous
control problem and using k-shortest paths, we formulate it
as discrete control problem. Specifically, we propose a DQN
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based greedy online QoS routing method. Our formulation
enables the DRL agent to find a path for each source-
destination pair request while optimising QoS metrics. We
do not restrict the DRL agent to k-shortest paths rather it
constructs the routing path considering the current state of the
network along with an optimisation of the QoS metrics. Thus,
our agent learns the network topology and simultaneously
optimises the QoS metrics.

The organisation of the paper is as follows: Section II
provides related work. In Section III we present a brief
overview of DRL. Section IV describes the system model
and the problem formulation. In Section V, we present design
details of DQR. Simulation results are presented and discussed
in Section VI and finally Section VII concludes the paper.

II. RELATED WORK

Recently various methods related to DRL based routing
have been proposed. The study [10] proposed supervised
learning and DRL based routing methods to optimise demand
matrix. One of the earlier studies that utilised DDPG algorithm
for routing optimisation was by Stampa et al. [7]. The goal of
their DRL agent was to reduce the mean network delay. They
trained their DRL agent on a 14-node topology for 10 different
traffic intensity levels and demonstrated its performance im-
provements. Various later approaches using the DDPG algo-
rithm addressed different applications and different objectives.
For instance, Huang et al. [11] proposed a DDPG based quality
of experience optimisation method for multimedia traffic. Xu
et al. [8] proposed experience driven routing. They proposed
traffic engineering (TE) aware exploration and actor-critic
based prioritised experience replay in conjunction with DDPG
algorithm for optimising delay. Later they proposed another
DRL method for multi-path TCP congestion control [12].
Xiao et al. [13] proposed Deep-Q in which they used deep
generative networks to infer QoS metrics from real traffic data.
Chen et al. [14] proposed DeepRSMA which is a DRL routing
framework for optical networks. In [15], an intelligent and
scalable framework for routing optimisation, named SINET,
has been proposed. SINET optimises routing policies using
TM to reduce flow completion time. For SDN-IoT, Guo et
al. [16] proposed DQSP which is a DDPG based secure and
QoS aware routing method. In the domain of knowledge de-
fined networking, a convolutional neural network (CNN) based
QoS aware routing was proposed by [9]. They considered
loss and delay as QoS metrics and presented a performance
comparison of the proposed DDPG with CNN with dense
neural networks for different network settings. Suarez-Varela
et al. [17] proposed feature engineering for DRL-based routing
in the context of optical transport networks and IP networks.
However, the drawback of their proposed method is that their
action space consists of predefined k-shortest paths and the
problem complexity increases exponentially when they use all
valid paths between every source-destination pair.

Despite many research efforts, DRL methods are only used
for global offline routing. This is due to the fact that greedy
online QoS routing poses several challenges such as learning
end-to-end paths for different source-destination pair requests,

dealing with invalid actions, avoiding network loops, and
optimising different QoS metrics together. To deal with these
challenges, we propose DQR which is a dueling DQN with
PER based greedy online QoS routing method. DQR not only
cope with these challenges but also has a flexible design that
makes it topology and network state independent.

III. DEEP REINFORCEMENT LEARNING

In this section, we present a brief overview of deep rein-
forcement learning. Reinforcement learning (RL) is a field of
machine learning in which an agent interacts with the system
(environment) and tries to learn its behaviour [18]. Particularly,
at each iteration t, the agent senses the current state st of
the system, takes an action at based on its past experience
and receives a reward rt. The goal of the agent is to learn
the policy π(s) which maximise the longterm reward, i.e.,
highest accumulated reward over time R0 =

∑
T
t=0γ

tr(st, at)
where γ ∈ [0, 1] and r(·) represent discount factor and reward
function respectively.

Q-learning is one of the most popular RL algorithms that
aims at finding an optimal policy [19]. It can be implemented
using a Q-table which is updated using
Qt+(st, at) := Qt(st, at)

+ α[Rt + γmax
a

Qt(st+1, a)−Qt(st, at)]
(1)

where α is the learning rate and γ ∈ [0, 1] represents
the discount factor which is used to control the effect of
immediate and later rewards. The main idea is to find the
temporal difference between predicted and current Q-values.
In a state s, the true value of an action a under policy π is
Qπ(s, a) ≡ E[R1+γR2+...|S0 = s,A0 = a, π]. In each state,
optimal value is calculated by selecting the highest valued
action, i.e., Q∗(s, a) = maxπ Qπ(s, a), and therefore, these
optimal values are used to derive the optimal policy. However,
Q-learning is only effective when the state and action space is
small. To overcome the scalability issue, DeepMind presented
groundbreaking work [3] in which deep neural network (DNN)
was used to approximate Q∗(s, a) value instead of using Q-
table, called deep Q-network (DQN).

A DQN is a multi-layered neural network which takes state
space vector as input and gives a vector of action values
Q(s, ·;θ) as output, where θ represents the parameters of the
network. DQN learns an optimal policy based on the received
reward from the environment. This means that the policy can
become affected even with a minor change in Q-values which
results in varied correlations and data distributions between
target values and Q-values.

To solve this issue, [3] proposed two methods. Firstly, the
use of an experience replay buffer that enables the DRL agent
to store past experiences and update DNN by using mini-
batches randomly sampled from replay memory. The use of
the experience replay mechanism allows the agent to learn
from both new and old experiences. Also, these experiences
are independent and identically distributed which removes
correlations between observations. Secondly, DQN is trained
through a separate target Q-network, with parameters θ−,
which estimates target values. But this network is trained after



every τ steps from the primary network such that θ−
t = θt.

Therefore, parameters are updated as follows

θt+1 = θt+α(y
DQN
t −Q(st, at;θt))5θt Q(st, at;θt), (2)

where α represents a scalar step size and the target yDQNt is
defined as:

yDQNt = rt+1 + γmax
a

Q(st+1, a;θ
−
t ) (3)

DQN was able to achieve super human-level performance
on Atari games. In the sequel several extensions of DQN have
been proposed that led to further enhanced performance. For
instance, to converge faster and with better stability, authors in
[20] proposed a dueling architecture for DQN. In the dueling
architecture, a state value function V (s) and an associated
advantage function A(s, a) are estimated separately and then
combined to estimate an action value function Q(s, a). In
DQN, Q(s, a) is obtained by:

Q(s, a;θ, η, ζ) := V (s;θ, ζ)

+
(
A(s, a;θ, η)−max

a′
A(s, a′;θ, η)

) (4)

where η and ζ are parameters of two streams of fully con-
nected layers. In the dueling architecture, Q(s, a) is obtained
by:

Q(s, a;θ, η, ζ) := V (s;θ, ζ)

+
(
A(s, a;θ, η)− a

|A|
A(s, a′;θ, η)

) (5)

Another improvement to the performance of DQN was made
by using prioritised experience replay (PER) [21] instead of
simple ER. The use of ER plays a vital role in the learning
of DQN. In ER, experience transitions are uniformly sampled
without considering their importance. The idea behind the PER
is to sample experience transitions based on their significance.
Temporal difference errors are used to measure the importance
of transitions. The use of PER enabled DQN to learn efficiently
by frequently replaying important experience transitions. We
used dueling DQN along with PER as a core algorithm
for DQR.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a SDN which consists of three layers as
shown in Fig. 1. The data layer also referred to as the
infrastructure layer, consists of hardware equipment such as
switches. The main responsibility of the data layer is to
perform data forwarding among network clusters. The control
layer provides a logically centralised controller which enables
the communication between the application and the data layer.
The control layer provides functionalities like dynamically up-
dating forwarding rules and programming network resources.
The communication between the control and the data layer
is achieved through southbound interfaces (SBIs) whereas,
communication between the control and the application layer
is achieved through northbound interfaces (NBIs). The appli-
cation layer is the highest level layer of SDN which includes
storage, servers, data centres, and applications. The concept of
application-oriented services is achieved in this layer. Network
state information is collected through the data layer and used
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Fig. 1: A software defined network framework consists of data,
control and application layer. Various applications, such as
routing, are running inside the application layer. The proposed
DQR runs inside the routing module where it takes network
state as input and gives path as output which is then installed
into the switches by SDN controller.

by various network applications such as network monitoring,
network security, and routing.

Routing application is responsible for determining the paths
for source-destination pair requests. It collects network statis-
tics periodically such that the path found for each source-
destination pair request is based on the current state of the
network. The proposed DQR method runs inside the routing
application where it takes the current state of the network
as input and provides a path as the output (more details in
Sec. V).

The network is represented as a directed graph G(V, E),
where V denotes the set of all switches and E denotes the
set of links between them such that E = {(i, j)|(i, j) ∈ V ×
V, i 6= j}. For any link (i, j) ∈ E , the delay, loss, bandwidth,
and cost (also referred as metrics) values are represented by
{dij , lij , bij , ci,j} ∈ R+, respectively. Here, cost is a general
metric which can be used for any QoS parameter such as
jitter [2]. Given a source node x with flow f for destination
node y, we want to find a path that minimises delay, loss, and
cost while maximising the bandwidth.

V. DEEP-Q ROUTING (DQR)

In this section, we present deep-Q routing (DQR) for finding
a path from x to y while optimising QoS parameters. DQR is
a deep reinforcement learning mechanism that utilises dueling
deep Q learning with PER as its core algorithm to find QoS
optimised paths. In the following, we present design and
implementation details of DQR.



A. State Space

We design the state space in such a way that it captures
the current state of the network without including any un-
necessary information. For each QoS metric, we define a two-
dimensional matrix of size |V|×|V|. Since we have real values
for each metric and their range varies depending upon the
current state of the network, we use a rescaling function that
rescales the values of each metric to [0, 1]. This not only helps
the agent to converge faster but it also enables the agent to deal
with a variable range of values for each metric in real-time.
For any metric, we define the rescaling function as

urescaledij =
uij −min(~u)

max(~u)−min(~u)
, (6)

where ~u is a vector that consists of selected metric link values.
The rescaled values of delay, loss, bandwidth, and cost are
denoted as drescaledij , lrescaledij , brescaledij , crescaledi,j respectively.
The delay matrix is constructed as

D = [D(G)]ij =



−drescaledij (i, j) ∈ E
2 i = j = y

−2 i = j = x

0 i = j, x 6= i = j 6= y

−1 otherwise

(7)

The loss matrix L and the cost matrix C are constructed in
the same way. Since bandwidth needs to be maximised, the
bandwidth matrix B is constructed as follows:

B = [B(G)]ij =



brescaledij − 1 (i, j) ∈ E
2 i = j = y

−2 i = j = x

0 i = j, x 6= i = j 6= y

−1 otherwise

(8)

B. Action Space

The action space consists of all edges of the network.
Specifically, the action space vector is defined as A =
[a1, a2, . . . , a|E|] where each action corresponds to a link in
the network (i, j) ∈ E .

C. Reward Function

The reward function directly affects the learning of the DRL
algorithm and should be designed carefully. In our case, reward
function incorporates signals to cope with invalid actions, net-
work loops, and the optimisation of multiple metrics. Invalid
actions or network loops can occur because the agent is free
to choose any action (edge) at any timestep.

In an episode of T timesteps, the DRL agent has to find
a path from the source node x to the destination node y. At
any node z, the agent selects action at at timestep t which
corresponds to link (i, j) and receives the reward rt by the
reward function f

(
(i, j)

)
as follows:

rt = f
(
(i, j)

)
, (9)

where,

f
(
(i, j)

)
=

{
g
(
(i, j)

)
(i, j) ∈ Ezvalid

− |V|2 otherwise

where Ezvalid represents the set of valid actions from node z,
i.e., only outgoing links from node z are valid. If the selected
action is invalid then the agent receives a reward of − |V|2 ,
i.e., a penalty. Otherwise, reward is obtained by the function
g((i, j)) which is defined as follows:

g
(
(i, j)

)
=



− |V|3 (i, j) ∈ Evisited
|V| j = y

−|V| t = |E|
(−drescaledij · φ1)
+((brescaledij − 1) · φ2)
+(−lrescaledij · φ3)
+(−crescaledij · φ4) otherwise

where Evisited represents a set that is defined as empty at
the start of each episode and then becomes populated with
the visited links. If the selected link was already visited then
the agent receives a reward of − |V|3 . This ensures that agent
does not get stuck in network loops by repeatedly selecting
the same links in an episode. If the selected link includes the
destination node y then this is a terminal state and the agent
receives |V| as reward, i.e., the agent has found the path for
this source-destination pair request. We limit each episode to
T timesteps to avoid that the agent gets stuck in infinite loops
while exploring the action space. If the current timestep is
greater than the total number of edges then the agent is lost and
the episode is ended with a high penalty of −|V|. Otherwise,
the agent receives a reward based on the weighted current
rescaled values of the network. Here, φ1, φ2, φ3, φ4 ∈ (0, 1]
are tuneable weights which can be used to prioritise any metric
during link selection.

The goal of the agent is to accumulate maximum positive
reward in each episode. This is supported by the design
of the reward function. It penalises the agent most strongly
if the agent selects an invalid action because this can lead
to divergence. Since agent can select actions from a large
action space where only a handful actions are valid at each
timestep, the agent should first learn to choose valid actions.
Using this knowledge, valid actions are selected and network
loops are avoided due to high penalty compared to first time
selected actions. The agent further optimises selected actions
by minimising negative reward (finding a path that optimises
the QoS parameters). Lastly, if the agent is stuck between
invalid actions and network loops then the episode is ended
by a large penalty of −|V|. The reward function has been
designed to encourage the agent to reach the destination node
quickly while optimising the QoS parameters.

D. DRL-agent and Environment Implementation
We used the above-defined state space, action space, and

reward function for DQR. RLlib1 was used for the implemen-
tation of DQR. The input layer was of dimension |V|×|V|×4.

1https://ray.readthedocs.io/en/latest/rllib.html



Algorithm 1: DQR training algorithm
Initialise Environment
Initialise replay memory
Initialise main deep-Q network with weights θ
Initialise target deep-Q network with weights θ− = θ
for episode = 1 to N do

Reset edge’s metrics value
Normalise each metric value according to eqn. (6)
Select a random source-destination pair (x, y)
Create state space st according to Sec. V-A
Create an empty set Evisited
for t = 1 to T do

With probability ε select random action at
Otherwise select at = {argmaxQ(s, a;θ)}
Get valid actions set Exvalid
if at ∈ Exvalid then

Execute action at in the environment
Obtain reward rt according to eqn. (9)
Update Evisited
x = z (where z is the new selected node)
Update state space st+1

else
Obtain reward rt according to eqn. (9)
st+1 = st

end
Store transition (st, at, rt, st+1) in PER with max

priority
Sample random mini-batch of transitions
(sj , aj , rj , sj+1) from PER according to their
priority

Set yDQNj using eqn. (3)
Perform gradient descent step
(yDQNj −Q(sj , aj ;θt, ηt, ζt))

2 w.r.t. θ
Update target network weights every τ time-steps
if x == y then

break
end

end

Two hidden layers with 512 neurons and rectified linear units
as activation functions were used. The output layer was of size
|A|, where at each timestep maximum Q-value was selected as
action. In addition, we used the following hyper-parameters in
the training process of our DRL-agent: batch size 64, learning
rate = 0.001, epsilon = 0.9, epsilon decay = 0.99, and buffer
size = 50000.

We developed a custom environment using the NetworkX
library [22] to train the DRL agents. Using a custom envi-
ronment not only gave us the flexibility to use it for any
size of the network graph but it also sped up the training
process. We defined a range of values for each QoS metric
(delay, bandwidth, loss and cost) from which edge values were
selected uniformly. Note that once the agent is trained with a
custom environment, the saved neural network model can be
used with any network simulator.
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Fig. 2: DQR training performance

E. Training Algorithm

The training process of DQR (utilising DQN as DRL
algorithm) is given in the above listing Algorithm 1. At
the start of the algorithm, an instance of the environment is
created by specifying the number of nodes and edges of the
graph. Then, the replay buffer, main Q-network, and target Q-
network are initialised. The algorithm runs for a total of N
episodes. At the start of each episode, the edges’ metric values
(delay, bandwidth, loss, and cost) are reset and normalised
according to equation (6). Then, a random source-destination
pair is selected and a state space vector is created as described
in Section V-A. An empty set Evisited is created that later
is used to inform the reward function about already visited
edges. Each episode has a duration of T time-steps (where
T = |E|). At each time-step t, an action at is selected using
an epsilon-greedy approach. If the selected action is a valid
action, then it is executed in the environment and reward rt
is obtained using equation (9), at is included in Evisited, and
the state space vector is updated. Otherwise, if the selected
action is not a valid action, rt is obtained using equation (9)
and the same state space is used unchanged for the next
iteration. After obtaining st, at, rt, st+1, the transition is stored
in the experience replay buffer. Then, a random mini-batch of
transitions is sampled from the replay buffer and the weights of
the deep neural network are optimised using gradient descent
with respect to θ to minimise the loss. The target Q-network
is updated after every τ steps. The iteration of episodes ends
when the destination node has been found or if t > |E|.

Figure 2 shows the training performance of DQR in
our experiments on a widely used 14-node 21-bidirectional
NSFNET communication topology [17]. The y-axis presents
the discounted reward while the x-axis shows the number of
episodes. It can be observed that, at the start of training, the
agent spends most of its time on exploring the environment
while it receives penalties for invalid or already selected
actions. Once the agent starts exploiting its knowledge, it
tries to maximise the reward by avoiding invalid actions and
network loops. As the discounted reward gets closer to 0, the



agent has already learnt the topology. Now it tries to optimise
QoS metrics for different network states. It can be seen in
Figure 2 that the discounted reward becomes positive after
this stage after about 120 episodes. At this stage the agent
has successfully learnt the communication topology and is
also optimising the QoS parameters while selecting paths for
different source-destination pair requests.
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Fig. 3: 10-node communication topology adopted from [1]

VI. PERFORMANCE EVALUATION

In this section, we present our simulation results that
show how well the proposed DQR method performs. The
experiments benchmark DQR against two other greedy online
routing methods. The first method is a shortest path (SP)
approach where the path length is measured by delay. The
second method is QAR which is an on-policy reinforcement
learning based QoS-aware adaptive algorithm [6]. It uses
softmax for action selection and its Q-values are updated using
SARSA [18].

Our simulation experiments utilised two different commu-
nication topologies. The first topology is a 10-node topology
which is adopted from [1] and is shown in Figure 3. The
second topology is a widely used 14-node NSFNET topology
[17]. Link delay, bandwidth, loss rate, and cost values were
uniformly selected in the following ranges (1, 100) ms, (50,
100) Mbps, (0.01, 1), and (1, 100), respectively. For the cost
metric, lower values are better. The reason for selecting link
values from the above mentioned ranges is that it allowed
us to verify the effectiveness of the proposed method for
different network conditions (varying network states). We ran
simulations for the three different settings presented in the
following paragraphs.

In the first case, we run extensive numerical simulations
using the 10-node communication topology. Figure 4 pro-
vides an overview of the analysis of the QoS metrics at
each communication node in our simulation experiments. For
each source node we selected a destination node 1000-times
randomly, where every source-destination pair selection was
associated with a different network state (link metric values
were uniformly selected from the ranges listed above).

Figure 4a depicts the average end-to-end delay for each ap-
proach. QAR has the worst performance in terms of delay. This
is due to the use of Q-tables for the optimisation of multiple
QoS metrics simultaneously. The performance limitation of Q-
tables did not allow QAR to optimise delay. However, QAR
showed better performance for the remaining QoS metrics.
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Fig. 4: Simulation results for 10-node topology
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Fig. 5: Simulation results for NSFNET topology

DQR performed better compared to QAR. SP was the best
performer in terms of delay which is plausible because SP
only considers delay while selecting a path. Figure 4b shows
the average minimum bandwidth of a link in selected paths.
It can be seen that DQR has a higher bandwidth than QAR
and SP. Figures 4c and 4d present the average end-to-end
loss and the cost of the selected paths. For both metrics, SP
shows the worst performance, followed by QAR, while DQR
significantly outperforms SP and QAR. Finally, Figure 4e
shows the average number of links activated in selected paths
for each source node. DQR has the least number of link
activations when compared to QAR and SP. This shows that
DQR can achieve better performance in comparison to QAR
and SP even if it selects a lower number of links.

As the results of Figure 4 show, SP only performs well
in the case of end-to-end delay. The reason is that SP only
considers the delay metric while selecting a path and ignores
other QoS metrics. Thus, SP should be used for those network
applications which only have delay requirements. This also
applies to global offline DRL based routing methods where
only SP paths are considered. The performance of QAR in
Figure 4 shows that it is able to optimise QoS parameters
while selecting paths. QAR does not select paths based on a
single parameter like SP but it tries to optimise multiple QoS
metrics. Compared to SP, QAR showed far better performance
with respect to all QoS metrics except delay. However, when
compared to DQR, QAR only achieved limited performance.
The reason is that QAR uses Q-tables for learning the complex
task of QoS routing. As the problem complexity increases (in
this case it depends on the number of QoS metrics), Q-table
based Q-learning suffers performance issues.

In our experiments DQR performed better than SP and
QAR. One of the reasons is that DQR uses a dueling DQN
network at its core. However, using a dueling DQN alone is
not sufficient to solve the complex task of greedy online QoS
routing. There are multiple factors that can lead to divergence
such as learning the communication topology, dealing with
invalid actions, avoiding network loops, and optimising QoS
parameters. The proposed design of the state space, action
space, and, most importantly, the design of the reward function
made sure that the DRL agent was able to overcome these
challenges. It should be emphasised that the design of DQR
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Fig. 6: End-to-end throughput of DQR vs DQR

is not topology dependent and the number of QoS metrics can
be varied.

In the second case of the 14-node NSFNET [17] com-
munication topology, we ran numerical simulations for dif-
ferent numbers of communicating source-destination pairs.
Figure 5 presents our results using the NSFNET topology
network simulation for delay, bandwidth, and cost. The x-axis
represents the number of communicating source-destination
pairs while the y-axis represents the QoS metrics. It can be
seen that with an increasing number of source-destination pair
requests, the overall network usage also increases in each
case. In this second case that uses a different communica-
tion topology (14-node) and different network settings, we
obtained similar results as in the first case (10-node) that was
discussed above. Figure 5a shows the average delay achieved
by DQR, QAR and SP for different numbers of communicating
source-destination pairs. As explained earlier, again QAR
has maximum average delay for all communicating source-
destination pairs. While DQR performs better than QAR, it
is outperformed by SP in terms of delay. Again SP can only
perform better in the case of delay and it suffers for other QoS
metrics. Figures 5b and 5c show the results for the bandwidth
and cost metrics and that DQR performs better than QAR
and SP.



Finally, we ran simulations for varying traffic demands using
the 10-node communication topology (Figure 3). We used
Mininet [23] and Ryu [24] as SDN emulator and controller,
respectively. We generated network traffic using iPerf3 [25].
The link metric values were selected uniformly within given
ranges, specifically: delay (50, 100) ms, bandwidth (100, 150)
Mbps, loss rate (0.001, 0.1), and cost (50, 100). We selected
9 random source-destination pairs that started communicating
with 5Mbps traffic demand. During simulation, the traffic
demand for each pair was increased in steps of 5Mbps until
it reached 30Mbps. We used end-to-end throughput as the
performance metric for comparison. The corresponding simu-
lation results for DQR and QAR are shown in Figure 6 where
the x-axis shows the traffic demand of each communication
session and the y-axis presents the total end-to-end throughput
for each traffic demand. It can be seen that DQR is able
to achieve higher end-to-end throughput than QAR for each
traffic demand level.

The above presented results show that DQR can be used
for greedy online QoS routing and that it achieves better
performance than QAR and SP with respect to different QoS
metrics by efficiently utilising network resources. The design
of DQR is flexible enough that it can be used for any network
topology and it can be used for different number of QoS
metrics. The normalisation of the QoS metrics while training
enables DQR to be applicable in any real world scenario. In
summary, our results indicate that DQR can be used for a
variety of real world network applications, while efficiently
utilising network resources.

VII. CONCLUSION

In this paper, we proposed DQR for greedy online QoS
routing in SDN. DQR uses a dueling deep Q-network with
prioritised experience replay to learn the network topology
in the presence of multiple QoS metrics (delay, bandwidth,
loss, and cost). Different from existing DRL-based routing
methods which use shortest paths, DQR learns the network
topology. The flexible design of the reward function allows
DQR to optimise QoS metrics while routing and to avoid
invalid actions and network loops. Our simulation results
demonstrated that DQR can significantly reduce delay, cost,
and loss, while maximising bandwidth when compared to other
existing learning methods for greedy online routing.
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