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Abstract—Nominal time series classification has been widely
developed over the last years. However, to the best of our
knowledge, ordinal classification of time series is an unexplored
field, and this paper proposes a first approach in the context of
the shapelet transform (ST). For those time series dataset where
there is a natural order between the labels and the number
of classes is higher than 2, nominal classifiers are not capable
of achieving the best results, because the models impose the
same cost of misclassification to all the errors, regardless the
difference between the predicted and the ground-truth. In this
sense, we consider four different evaluation metrics to do so,
three of them of an ordinal nature. The first one is the widely
known Information Gain (IG), proved to be very competitive
for ST methods, whereas the remaining three measures try to
boost the order information by refining the quality measure.
These three measures are a reformulation of the Fisher score, the
Spearman’s correlation coefficient (ρ), and finally, the Pearson’s
correlation coefficient (R2). An empirical evaluation is carried
out, considering 7 ordinal datasets from the UEA & UCR
time series classification repository, 4 classifiers (2 of them of
nominal nature, whereas the other 2 are of ordinal nature) and
2 performance measures (correct classification rate, CCR, and
average mean absolute error, AMAE). The results show that,
for both performance metrics, the ST quality metric based on
R2 is able to obtain the best results, specially for AMAE, for
which the differences are statistically significant in favour of R2.

Index Terms—Time Series, Ordinal Classification, Ordinal
regression, Shapelet Quality Measures

I. INTRODUCTION

Time series are a widely used sort of temporal data in
which objects are collected over time. In the last years, time
series have been a hot topic in machine learning and data
mining, and can be found in a vast number of fields such
as: fog prediction [1], stock indices [2] or forged-alcohol
detection [3]. Time series classification is a task in which a
label is given to a set of chronologically ordered points. We
focus on a specific case, those problems in which there are
three or more possible categories and they follow an order
relationship.

This kind of classification is known as ordinal classifica-
tion or ordinal regression, being a field of machine learning
tackling problems in which the target variables are discrete
and present a natural order between their labels [4]. An

example is the prediction of the stage of a disease state, in
which a patient could be labelled as none, mild, moderate,
severe or extreme. Obviously, misclassifying a mild patient
as severe, should be far more penalised than misclassifying
that patient as none or moderate. This problem can be
tackled in several ways: 1) as a nominal classification problem,
which ignores the natural order between the labels, 2) as
a regression problem, which implies assigning each label a
numerical value (which requires assuming a distance between
values that can hinder the performance of the regressor), or 3)
as an ordinal classification problem, which is the approach we
consider. This special kind of classification can be found in
several fields, such as meteorological prediction [5], medical
research [6], [7] and wave height prediction [8]. The datasets
used in these projects include an ordered target variable,
and thus, specialised ordinal classifiers are able to achieve
higher performances than nominal classifiers or regressors, by
constructing more accurate models.

Traditionally, nominal time series have been classified using
a similarity measure in conjunction with a standard classifier,
such as k-Nearest Neighbours [9]. This similarity can be
assessed from several points of view: by considering time,
change or shape. We focus on shape based similarity, in which
time series are compared by using phase independent sub-
sequences generally much shorter than the original time series.
These sub-sequences, known as shapelets,were first proposed
as a time series primitive by Ye and Keogh [10]. The original
proposal embedded the shapelet extraction into a decision
tree that used Information Gain (IG) to assess the candidates.
Moreover, this time series primitive has been used in some
other ways in the literature: Hills et al. [11] proposed the
Shapelet Transformation (ST), in which the k best shapelets
are used to convert the original time series dataset into a new
transformed dataset. In this new representation, the attributes
are the distances between the shapelets and the time series
being evaluated. The reason for this is that the transformation
allows the application of any classifiers and avoids the sequen-
tial search for shapelets at each node of the tree. Grabocka
et al. [12] proposed a new perspective in which shapelets are
learned. This method enables the learning of shapelets without
the need of searching for a vast number of candidates.
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In this paper, the perspective of Hills et al. [11] has been
considered. We study two different elements in which the
ordinal information can be included in the ST time series
classification process: the quality measure and the final clas-
sifier. One key point is the selection of the best k shapelets,
performed by assessing the shapelet quality. Therefore, we
evaluate different ordinal shapelet quality measures and com-
pare them against the state-of-the-art IG metric, which has
proved to be very competitive for nominal classification [11].
To further exploit the ordinal nature of the data, after the
ST, we consider specifically designed classifiers for ordinal
classification. Our principal hypothesis is that the ST using
IG would not be able to achieve the best results just by the
application of ordinal classifiers. However, when these ordinal
classifiers are applied to the transformed data performed by
“ordinal” shapelets (those shapelets assessed by a quality
measure favouring the ordinal information), the results should
take advantage of both mechanisms. Specifically, for this
work, the well-known Proportional Odds Model (POM) and
Support Vector for Ordinal Regression with IMplicit constrains
(SVORIM) are compared against two nominal classifiers also
based on Support Vector Classifiers (SVC1V1 and SVC1VA).

The main objectives of this paper are: 1) To firstly draw
attention to the problem of ordinal classification of time series,
selecting different ordinal datasets from the popular UEA &
UCR Time Series Classification Repository1. 2) To adapt one
of the most popular method in the literature, the ST, to the
ordinal classification field, by introducing new ordinal quality
metrics that could take advantage of the ordinal nature of the
dataset (i.e. to make preferable those shapelets maximising
the amount of ordinal information) and by replacing nominal
classifiers by ordinal ones.

The remainder of this paper is organized as follows: In
Section II, the concepts of time series and shapelets are briefly
described, along with the details of the different shapelet
quality measures proposed (Section II-A). Ordinal classifiers
and their performance evaluation metrics are detailed in Sec-
tion II-B. The experimental results and discussion are exposed
in Section III, including the datasets (Section III-A) and
the experimental settings used (Section III-B), as well as,
the results and the statistical test (Section III-C). Finally,
Section IV concludes the paper with some final remarks.

II. BACKGROUND

Time series is a special kind of data in which values
are collected chronologically. More formally, a time series
classification dataset, T = {T1,T2, . . . ,TN}, is composed of
N time series Ti = {t1, t2, . . . , tn}, i ∈ {1, . . . , N}, each of
them including in turn n real values and a class value Ci ∈ Y .
In this paper, all the datasets considered only include equal-
length time series (i.e. n is constant). Furthermore, given the
nature of the datasets used, they are considered as ordinal
datasets, this is, a natural order exists among the labels, i.e.
Y = {C1, C2, . . . , CQ}, where Q is the number of categories

1http://www.timeseriesclassification.com/

and {C1, C2, . . . , CQ} are the ordinal labels, satisfying the
constraint C1 ≺ C2 ≺ . . . ≺ CQ.

A. Time Series Shapelets

Time series nominal classification is a well-known field, in
which a huge variety of approaches to classify time series have
been proposed [13]. Currently, the best approach to standard
classification is HIVE-COTE [14], a meta-ensemble including
five different modules with several algorithms in each one.
Some of these modules rely on the idea of transforming the
original dataset prior to classification. As a first approach, in
this paper, we decided to focus on the Shapelet Transform
(ST), in which the transformed attributes represent the shape-
similarity between the original time series and the shapelets,
phase independent subsequences of the time series forming
a new primitive for time series classification. It was firstly
proposed by Ye and Keogh [10], [15], yet improved versions
and new perspectives have been presented in the literature [11],
[12], [16], [17], among others.

A shapelet s = {s1, s2, . . . , sl} is a subsequence of a time
series Ti, where l ≤ n. The shapelet extraction procedure is
divided into three main separate steps [11] (see Algorithm 1):
1) candidate generation, i.e. generation of a subsequence
satisfying the previous length constraint, 2) measuring sim-
ilarity between the candidate and the time series, and 3)
measuring quality of the candidate. Once the best k shapelets
are extracted, ST creates a new representation of the original
dataset, where each attribute represents a shapelet, and its
values are the distances between the shapelet and the original
time series. It is worthy of mention that we have used the most
recent version of ST [17]: the Euclidean distance is used to
measure the distance between the shapelets and the time series
(this distance is computed as the minimum of the distances
between the shapelet and all possible subsequences of the
time series with the same length of the shapelet). Furthermore,
this method balances the number of shapelets extracted per
class, and evaluates each shapelet using the binary Information
Gain [18] (IG).

This paper proposes to consider different shapelet quality
measures in order to incorporate the ordinal nature of the
labels into the ST extraction. As a baseline, we will compare
the results against the use of the most popular metric, the IG,
which measures how well the shapelet class is discriminated
from the rest according to the set of distances between the
shapelet and the time series. First, we obtain the set of
distances, ds,Ti , i ∈ {1, . . . , N}, from the evaluated shapelet
s to all the time series Ti. Once this set is sorted, all the
possible split points (being the split point, the average point
between two consecutive distances) are evaluated, storing the
best IG split point. The IG is defined as:

IG(s) = max
sp∈ds,Ti

IG(sp), (1)

where IG(sp) is the information gain for an specific split point
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Algorithm 1 Main steps of the Shapelet Transform (ST).
Input: Time series dataset

1: S ← ∅ // Shapelet set
2: for Each time series Ti do
3: STi

← ∅
4: bestQuality ← 0
5: for l← min to max do
6: Pl ← Generate candidates(Ti, l)
7: for Candidate s in Pl do
8: ds,Ti

← Calculate distances(s, Ti)
9: quality ← Evaluate candidate (s, ds,Ti

)
10: if quality > bestQuality then
11: STi ← s
12: bestQuality ← quality
13: end if
14: end for
15: end for
16: S ← STi

17: Sort S by quality
18: Remove similar shapelets in S
19: end for
20: return Best shapelet set S

(sp), and it is expressed as:

IG(sp) = H(ds,Ti
)−

( |s−p |
|ds,Ti |

H(|s−p |) +
|s+p |
|ds,Ti |

H(|s+p |)
)
,

(2)
where s−p are the elements of the sorted distance set located
at the left of the split point, sp, whereas s+p are the remaining
elements. Moreover, |ds,Ti

| and H(ds,Ti
) are the cardinality

and the entropy of the set ds,Ti
, respectively, being the entropy

defined as:

H(ds,Ti) = −
∑
c∈Y

pc log pc, (3)

where pc is the a priori probability of class c.
Note that this version of ST using IG takes advantage

of early abandon of the shapelet evaluated, when the most
optimistic IG obtained is worse than that obtained by the best
shapelet found so far. This takes place after obtaining every
value of ds,Ti

, where the most optimistic situation is supposed
for the rest of time series, i.e. the one giving the highest value
for IG. Hence, if this is worse than the best shapelet found so
far, the distances from shapelet s to the remaining time series
Ti do not need to be calculated.

As the main objective of the paper is the ordinal classifica-
tion of time series, three different shapelet quality measures
are proposed in order to obtain shapelets minimising the most
severe errors in the ordinal scale. The first of these measures
is based on the Fisher score [19], commonly used for feature
selection. A reformulation of this score has been made in order
to adapt it to ordinal classification, known as Ordinal Fisher
(OF) [20] score. This reformulation is based on the inclusion
of higher costs for distant classes, i.e. the cost depends on
the distance between the shapelet class and the class of the

time series being compared. The reason behind this proposal
is that distant classes should be associated higher distances.
The reformulation is defined as follows:

OF (s) =

∑Q
k=1

∑Q
j=1 |k − j|(x̄k − x̄j)2

(Q− 1)
∑Q

k=1(Sk)2
, (4)

where x̄k and Sk are the mean and standard deviation of the
distances according to the shapelet s when considering time
series of the class Ck, and |k− j| is the number of categories
between Ck and Cj , penalising farther classes.

A different approach to measure the quality of the shapelets,
maximising the ordinal information, is a modified version of
the Pearson’s correlation coefficient (R2), that calculates the
correlation between the distances obtained from the shapelet,
ds,Ti

, and the difference of their class indices. First of all, we
define the difference between the class of the shapelet s and
the time series i as:

cs,Ti = |O(Cj)−O(Ci)|, (5)

where Cj is the class of shapelet s, and O(Cq) = q, q ∈
{1, . . . , Q}, i.e. O(Cq) is the position of the category in the
ordinal scale.

From these values, the Pearson’s correlation coefficient (R2)
can be expressed as:

R2(s) =

N∑
i=1

S(ds,Ti
, cs,Ti

)

Sds,Ti
Scs,Ti

, (6)

where ds,Ti is the distance between the shapelet s and the i-th
time series, Ti, and S(ds,Ti , cs,Ti) is the covariance between
ds,Ti

and cs,Ti
.

Finally, the last shapelet quality measure proposed is the
Spearman’s correlation coefficient (ρ), which calculates the
correlation between two variables that could be either categor-
ical or continuous. As in the previous case, a reformulation of
this score is performed so as to introduce ordinal information.
The equation is the following:

ρ(s) = 1−
6
∑N

i=1D(s,Ti)
2

N(N2 − 1)
, (7)

where D(s, Ti)
2 is the squared difference between ranks, being

expressed as:

D(s,Ti)
2 = (R(ds,Ti)−R(cs,Ti))

2, (8)

where R(x) is the rank of x in the set of all values obtained.
When comparing the different metrics analysed in this

subsection, it should be highlighted that OF is the only metric
which does not take into account the category of the shapelet
being evaluated (s), only evaluating the separability obtained
in accordance to the ordinal scale.

In order to ease the readability of the paper, from now on,
the ST version that assess the shapelet quality using the R2

measure will be simply referred to as R2 (and the same will
be done for the rest of quality metrics).



B. Ordinal classification

Once the datasets are constructed according to the ST,
classifiers are learned on this new data. We include both
nominal and ordinal classifiers to demonstrate that a better
performance can be achieved taking advantage of the nature
order between the labels [21]2:

• The Proportional Odds Model (POM) [22] is a general-
ized linear model that is based on cumulative probabilities
according to the ordered labels. The cumulative probabili-
ties are obtained using the logit as link function (although
other functions can be considered), considering the same
linear one-dimensional projection but different ordered
thresholds. In this sense, the model is a generalisation of
binary logistic regression.

• The Support Vector for Ordinal Regression (SVOR)
methodology is the adaptation of support vector machines
to ordinal regression [23]. Specifically, the SVOR version
considering IMplicit constrains (SVORIM) [24] consists
in computing the discriminant parallel hyperplanes for the
data, assuring the constraints of the thresholds implicitly,
by considering patterns from all the categories to compute
the error of the hyperplane of one category.

• The method Support Vector Classifier (SVC) [25] using
the one versus one formulation (SVC1V1) and the one
vs all paradigm (SVC1VA) are also considered. These
methods have been widely used in the literature as
very competitive for both binary and nominal multiclass
problems. We include them to check whether ordinal
classifiers are able to further exploit order information.

Finally, given that we are considering ordinal classification
problems, we can not only rely on the accuracy as evaluation
metric, because it simply ignore order information (all the mis-
classification errors are equally penalised). There are several
metrics to measure the performance of ordinal classifiers [26].
In this paper, we have focus on:

• Correct Classification Rate (CCR) or accuracy, which is
the global performance of the classifier. It is measured as
follows:

CCR =
100

N

N∑
j=1

I(Cj , ŷj), (9)

where N is the total number of examples, I(·) is the
zero-one loss function, and Cj and ŷj are the true and
the predicted label for the time series Tj .

• Average Mean Absolute Error (AMAE) [27] measures
the ordinal classification errors made for every class. It
is obtained as:

AMAE =
1

Q

Q∑
q=1

MAEq, (10)

2These classifiers are available in the repository https://github.com/ayrna/
orca.

where MAEq is the Mean Absolute Error of class q,
defined as:

MAEq =
1

Nq

Nq∑
j=1

|O(Cj)−O(ŷj)|, (11)

where Nq is the number of patterns belonging to class q.

CCR is a performance metric that varies between 0 and
100 and should be maximised, whereas AMAE is an er-
ror measure varying between 0 and Q − 1 and should be
minimised. Note that standard performance metrics, such as
CCR, are not able to give different cost for different errors
(i.e. the cost of misclassifying a pattern is the same regardless
the predicted class),. Thus, when dealing with ordinal datasets,
more attention should be given to ordinal performance metrics,
such as AMAE.

III. EXPERIMENTAL RESULTS AND DISCUSSION

This section includes a description of the ordinal time
series datasets used and the experimental settings for the four
different classifiers chosen for this experiment, as well as a
discussion of the results obtained 3.

A. Ordinal time series considered

TABLE I shows the datasets used. Given that this is the first
time that time series ordinal classification is studied, a subset
of 7 time series datasets has been appropriately chosen from
the original UCR data repository [28]. Most of the datasets
selected come from the field of bone age prediction, presented
in [29]. Specifically, those named “AgeGroup” include patterns
(bones) labelled as infant, junior or teen, depending on the
age group to which the bone belongs. For those named “TW”,
patterns are labelled by a human expert using the Tanner-
Whitehouse score (6 different stages). On the other hand, the
EthanolLevel dataset is part of a project to detect forged spirits
using non-intrusive methods [3]. In this case, the labels of the
dataset are the most common ethanol content (35%, 38%, 40%
and 45%).

The imbalanced ratio (IR) is included in TABLE I in order
to check if the distribution of the patterns of a dataset leads to
rare classes (high IR value). In these datasets, focusing only in
the CCR can lead to trivial classifiers, while AMAE is better
suited, because, apart from considering order information, it
averages the individual performance of each class. According
to [30], the Imbalance Ratio (IR) is defined as:

IR =
1

Q

Q∑
q=1

IRq, IRq =

∑
j 6=q Nj

Q ·Nq
, (12)

where IRj is the IR for the class j, and Nq is the number of
patterns belonging to class Cj .

3All the code used in this paper is available from the repositoryhttps://
github.com/dguijo/TSOC.

https://github.com/ayrna/orca
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TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE EXPERIMENTS. Q:

NUMBER OF CLASSES, #TR: NUMBER OF TRAIN ELEMENTS, #TE:
NUMBER OF TEST ELEMENTS, LEN: TIME SERIES LENGTH, %IR:

IMBALANCED RATIO.

Dataset Q #TR #TE LEN %IR

DistalPhalanxOutlineAgeGr 3 400 139 80 1.532
DistalPhalanxTW 6 400 139 80 1.577
EthanolLevel 4 504 500 1751 0.750
MiddlePhalanxOutlineAgeGr 3 400 154 80 0.881
MiddlePhalanxTW 6 399 154 80 1.276
ProximalPhalanxOutlineAgeGr 3 400 205 80 0.951
ProximalPhalanxTW 6 400 205 80 2.203

B. Experimental settings

The main shapelet transformation code as well as the IG
shapelet quality measure have been obtained from the sktime
toolkit [31] 4.

The ST method, regardless of the shapelet quality measure,
is run for a one hour shapelet search. The results achieved
are on the standard train and test splits given in the time
series classification repository. Furthermore, it must be said
that the test sets are only used to assess the learned models
(adjusted on the training data). The ST using Information Gain
(IG) as quality measure is usually set an inferior limit of 0.05
to avoid keeping lowest-quality shapelets (this is the default
value considered in sktime toolkit). In order to obtain a
similar behaviour for the ordinal shapelet quality measures, the
worst 10% of shapelets are removed, according to the metric
evaluated.

Regarding the four ordinal classifiers, they have been run
once, since all of them are deterministic. Note that previous
to the application of these models, the transformed datasets
are standardized and, in order to cross-validate their sensitive
hyper-parameters, a nested 10-fold cross-validation procedure
has been run on the training set with AMAE as the parameter
selection criteria. Three of the ordinal classifiers are SVM-
based (SVORIM, SVC1V1 and SVC1VA), hence, the range
{10−3, 10−2, . . . , 103} is used to adjust the cost parameter
and the kernel width. On the other hand, POM does not have
hyper-parameters to be optimized.

C. Results

TABLE II presents the results obtained for the four shapelet
quality measures and the different classifiers compared. More-
over, we obtain the average rankings of each shapelet quality
measure, considering all datasets and all classifiers. As shown
in the TABLE II, the R2 measure generally leads to the best
results in AMAE (which is the metric that better represents
the ordinal classification task) and CCR (the one representing
the global performance). The rest of the methods lead to
worse results in AMAE, reflecting that the misclassification
errors involve more categories of the ordinal scale. In accuracy

4Code is available in the website https://github.com/alan-turing-institute/
sktime.

(CCR), ST using IG, ρ and R2 leads to more similar results
(although the final average rank is still better for R2). In both
metrics, OF method generally leads to worse results, which is
probably due to the fact that the OF metric does not consider
the class of the shapelet being evaluated.

Quantitative results show that, in terms of CCR, IG is able
to achieve the best or the second best results for 16 cases, OF
in 11 cases, ρ in 21 occasions, and, finally, R2, 23 times. R2

leads to a CCR rank of 2.09, whereas the ST versions using
the remaining shapelet quality measures, ρ, IG and OF, obtain
a rank of 2.30, 2.52 and 3.09, respectively. On the other hand,
in terms of AMAE, R2 is also the one that achieves the best
or the second best results more times, concretely, 24 times,
whereas the other versions of ST are less accurate, 15, 15 and
9 times for ρ, IG and OF, respectively. These results lead to
an AMAE ranks of 1.87 for R2 and 2.48, 2.57 and 3.07 for
IG, ρ and OF, respectively.

Furthermore, Fig. 1 and Fig. 2 show the results exposed in
TABLE II graphically as scatter plots. R2 has been chosen
as the reference method, given that is the one achieving
the best rankings for both CCR and AMAE (2.09 and
1.87, respectively). In these scatter plots, points represent the
comparison (in terms of CCR and AMAE) between the
performance achieved by the ST using R2 as shapelet quality
measure against one of the alternative measure on a single
dataset. Note that the x-axis of the scatter plot represents
the performance obtained by the R2 method, whereas y-axis
represents the performance achieved by the compared method,
depending on its symbol and colour, shown in the legends.
In this way, regarding Fig. 1 where the CCR is considered,
points below the straight black line, represent those datasets
for which R2 is able to obtain a higher performance, as CCR
needs to be maximised. On the other hand, regarding Fig. 2,
R2 wins are those points above the straight black line, since
AMAE should be minimised.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

CCR

vs IG

vs OF

vs ρ

Fig. 1. CCR results comparing R2 (x-axis) against the rest of the methods
(y-axis).
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TABLE II
CCR AND AMAE RESULTS OBTAINED BY THE FOUR SHAPELET EXTRACTION METHODS COMPARED FOR THE SEVEN DATASETS AND THE FOUR

ORDINAL CLASSIFIERS.

CCR AMAE

Classifier Dataset IG OF ρ R2 IG OF ρ R2

POM

DistalPhalanxOutlineAgeGr 33.09 10.79 19 .42 10.79 0.7345 1 .0000 1.3897 1 .0000
DistalPhalanxTW 4.32 12 .95 12 .95 43.17 3.2274 2 .5000 2 .5000 1.4792

EthanolLevel 66.40 49.20 74.00 70 .20 0.3477 0.6294 0.2660 0 .3179
MiddlePhalanxOutlineAgeGr 22.08 13.64 24.03 24.03 1.0292 1.1839 1.0000 1.0000

MiddlePhalanxTW 16.23 28.57 27 .92 16.23 2.5000 2.0370 2 .4667 2.5000
ProximalPhalanxOutlineAgeGr 45.85 8 .29 8 .29 8 .29 0.6558 1 .0000 1 .0000 1 .0000

ProximalPhalanxTW 0 .98 36.10 0 .98 0 .98 2.5746 1.3095 2 .5000 2 .5000

SVORIM

DistalPhalanxOutlineAgeGr 75.54 74.82 75.54 75.54 0.2277 0.2665 0.2443 0.2277
DistalPhalanxTW 68.35 69 .06 65.47 69.78 0.4671 0.5045 0.5264 0 .4822

EthanolLevel 71.40 46.00 62.00 62 .40 0.2938 0.6067 0.3988 0 .3973
MiddlePhalanxOutlineAgeGr 62.99 62.99 63.64 63.64 0.5484 0 .5521 0.5791 0.5676

MiddlePhalanxTW 56.49 54.55 53.90 56.49 1.0137 1.0308 1 .0039 0.9851
ProximalPhalanxOutlineAgeGr 86 .34 84.88 86 .34 87.32 0 .1824 0.2254 0.1978 0.1744

ProximalPhalanxTW 74.63 76 .10 79.02 76 .10 0.5371 0.4989 0 .4521 0.4198

SVC1V1

DistalPhalanxOutlineAgeGr 75.54 74.82 75.54 74.82 0.2277 0.2334 0.2277 0.2334
DistalPhalanxTW 69 .06 69 .06 66.91 70.50 0.5600 0 .5046 0.5440 0.4614

EthanolLevel 69.00 48.80 58.20 61 .00 0.3301 0.6795 0.4632 0 .4294
MiddlePhalanxOutlineAgeGr 61.04 61.04 61 .69 62.34 0.5827 0.5775 0 .5737 0.5636

MiddlePhalanxTW 59.09 56.49 59.09 59.09 0 .8785 0.8962 0.8963 0.8541
ProximalPhalanxOutlineAgeGr 85 .85 86.34 85 .85 85 .85 0 .1858 0.1820 0.2016 0 .1858

ProximalPhalanxTW 76.59 78 .54 80.98 72.68 0.5104 0.4836 0.4536 0 .4569

SVC1VA

DistalPhalanxOutlineAgeGr 75.54 74.10 74 .82 74.10 0.2277 0.2572 0 .2546 0.2778
DistalPhalanxTW 66.19 68 .35 67.63 69.06 0.5972 0 .5158 0.5702 0.4893

EthanolLevel 67.60 47.20 56.40 58 .80 0.3444 0.7630 0.5178 0 .4794
MiddlePhalanxOutlineAgeGr 62 .34 61.04 62 .34 63.64 0 .5636 0.5723 0.5699 0.5561

MiddlePhalanxTW 55.19 49.35 57.79 56 .49 1.0677 1.1290 0 .9689 0.9541
ProximalPhalanxOutlineAgeGr 85 .85 85.37 85 .85 86.34 0 .1858 0.1896 0 .1858 0.1820

ProximalPhalanxTW 75.61 76 .59 80.98 76 .59 0.5362 0.4852 0.3825 0 .4446

Average ranking 2.52 3.09 2 .30 2.09 2 .48 3.07 2.57 1.87
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Fig. 2. AMAE results comparing R2 (x-axis) against the rest of the methods
(y-axis).

Regarding the classifiers, the average CCR ranks of each
classifier (considering all the datasets and all the ST methods)
are 3.68, 1.95, 1.91 and 2.46, for POM, SVORIM, SVC1V1

and SVC1VA, respectively (i.e. SVC1V1 is slightly better
than SVORIM, which is natural as CCR does not consider
the ordering). However, when average AMAE ranks are
considered, the values are 3.71 1.91 1.96 2.41, for POM,
SVORIM, SVC1V1 and SVC1VA, respectively, which means
that, in AMAE, SVORIM is slightly better. What is clear is
that, from the classifiers compared, the POM is clearly the
worst. Two main reasons can be found for this: POM is a
linear method, and the implementation considered does not
include a regularization term, which seems to be necessary,
given the high number of shapelets extracted.

Fig. 1 and Fig. 2 show that the differences between the pro-
posed methods are observable, specially for AMAE, highly
affected by those cases where the predicted label is far, in the
ordinal scale, from the ground truth. On the other hand, for
CCR, the points are more dispersed due to this measure is pre-
ferred for nominal classification. However, in order to check
the existence of statistically significant differences in these
results, we follow the procedure recommended by Demšar
[32]. Specifically, after applying the non-parametric statistical
Friedman’s test [33] to the CCR and AMAE rankings (see
TABLE III), we reject the null-hypothesis stating that there
are no differences in the results (for a significance level of
α = 0.05). Once, these differences are assessed, we continue



the study by considering the post-hoc Holm’s test [34], which
compares the different methods against a control method (in
our case, R2 method as it leads to the best CCR and AMAE
rankings). This test performs the comparisons sequentially in
accordance to the ranking order, adjusting the significance
level to compensate for multiple comparisons. As can be
checked in TABLE III, the difference favouring the R2 metric
is statistically significant for AMAE when compared against
the other three metrics (OF with significance level α = 0.05,
and ρ and IG with significance level α = 0.10), while the
CCR differences are only significant when it is compared
against OF (significance level α = 0.05).

IV. CONCLUSIONS

This paper presents the first approach to ordinal classi-
fication of time series, up to the authors’ knowledge. For
this purpose, the Shapelet Transform (ST) is applied. Once
the best k shapelets (assessed by a quality measure) are
extracted, a transformation of the dataset is obtained, in
which the attributes represent the shapelets, and the values
of the attribute are the distances between the shapelet and
the original time series. In this sense, three versions of the
ST using different shapelet quality measures are proposed,
in order to select those shapelets that maximise the ordinal
information implicitly exposed in the datasets: Ordinal Fisher
(OF), Pearson’s correlation coefficient (R2) and Spearman’s
correlation coefficient (ρ). Finally, these proposals are then
compared against the standard ST using the information gain
(IG).

An experimental comparison of these 4 versions of ST
is performed using 7 ordinal datasets (from the time series
classification repository [35]) and 4 ordinal classifiers. The
results are reported using the CCR and AMAE performance
metrics. The results achieved show that a ST combined with
R2 is able to achieve the best results, specially in terms of
AMAE, where the difference against the other approaches
is statistically significant. In terms of accuracy (CCR), this
approach obtained a better rank, meaning that the results are
better than the obtained for the rest of the methods, yet they
are not statistically significant, except when compared against
OF. Given that standard accuracy does not take into account
the ordinal scale, it is natural that the differences are lower.

As future work, three interesting avenues for research would
be: 1) the consideration of an early abandon procedure for
ordinal quality metrics to avoid unnecessary distance calculus
in the shapelet extraction step; 2) the development of a distance
metric, different from the euclidean, able to introduce different
costs depending on the difference of the class of the shapelet
and the class of the time series (in the ordinal scale); 3) and,
finally, the adaptation of other modules of the HIVE-COTE
meta-ensemble to ordinal classification.
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