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Abstract—Many cooperative multi-agent problems require
agents to learn individual tasks while contributing to the collec-
tive success of the group. This is a challenging task for current
state-of-the-art multi-agent reinforcement algorithms that are
designed to maximize either the global reward of the team or the
individual local rewards. The problem is exacerbated when either
of the rewards is sparse leading to unstable learning. To address
this problem, we present Decomposed Multi-Agent Deep Determin-
istic Policy Gradient (DE-MADDPG): a novel cooperative multi-
agent reinforcement learning framework that simultaneously
learns to maximize the global and local rewards. We evaluate
our solution on the defensive escort team problem and show that
our solution achieves better and more stable performance than
the direct adaptation of the MADDPG algorithm.

Index Terms—Multi-Agent Reinforcement Learning; Coordi-
nation and Collaboration; Dual-Reward Learning

I. INTRODUCTION

Cooperative multi-agent problems are prevalent in real-
world settings such as strategic conflict resolution [1] and
collaboration of agents in defensive escort teams [2]. Such
problems can be modelled as dual-interest: each agent is simul-
taneously working towards maximizing its own payoff (local
reward) as well as the collective success of the team (global
reward). For example, autonomous vehicles in double-lane
merge conflicts must perform cooperative maneuvers without
diverging from their destination-bound nominal trajectories.
Similarly, in the case of a defensive escort team, each agent
has to maintain a specific distance from the payload to avoid
disrupting any social norms without sacrificing the security
of the payload. Despite the recent success of multi-agent
reinforcement learning (MARL) in multiplayer games like
Dota 2 [3], Quake III Capture-the-Flag [4] and Starcraft II [5]
or learning to use tools [6], learning multi-agent cooperation
while simultaneously maximizing local rewards is still an open
challenge. In this learning problem, to which we will refer
as “dual-reward MARL”, the agents are explicitly receiving
two reward signals: the global team reward and the agent’s
individual local reward.

Current state-of-the-art MARL algorithms can be catego-
rized in two types. For algorithms such as COMA [7] and
QMIX [8], the goal is to maximize the global reward for the
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success of the group while algorithms such MADDPG [9] and
M3DDPG [10] focus on optimizing local rewards without any
explicit notion of coordination. As shown in [11] and in our
findings in Section V, a direct adaptation of these algorithms
to dual-reward problems often leads to poor performance and
unstable learning. Generally, these adaptations happen in the
reward function space where the local and the global reward
signals are combined to form an entangled multi-objective
reward function [12]. This coupling of reward functions leads
to two problems. First, the entangled reward function becomes
unfactorizable during training, causing the learning to oscillate
between optimizing either the global or the local reward
leading to a sub-optimal and unstable solution. This problem
is exacerbated when one of the rewards is sparse, which leads
to a bias in favor of the other. The second problem is that
maximizing the entangled reward function does not correspond
to maximizing the objective function.

To address these issues, we present Decomposed Multi-
Agent Deep Deterministic Policy Gradient (DE-MADDPG):
a novel cooperative multi-agent reinforcement learning frame-
work built on top of deterministic policy gradients that simul-
taneously learns to maximize the global and the local rewards
without the need of creating an entangled multi-objective
reward function. The core idea behind DE-MADDPG is to
train two critics. The global critic, shared between all the
cooperating agents takes as input the observations and actions
of these agents and estimates the sum of the global expected
rewards. The local critic receives as input only the observation
and action of the particular agent and estimates the sum of
local expected rewards.

To summarize, our contributions are following:
• We develop a dual-critic framework for multi-agent re-

inforcement learning that learns to simultaneously maxi-
mize the decomposed global and local rewards.

• Taking advantage of the decomposition, we treat the
global critic as a single-agent critic. This allows us to
apply performance enhancement techniques such as Pri-
oritized Experience Replay (PER) [13] and Twin Delayed
Deep Deterministic Policy Gradients (TD3) [14] to tackle
the overestimation bias problem in Q-functions. This was
not previously feasible in the multi-agent RL setting.

• We evaluate our proposed solution on the defensive

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



escort team problem [2], [15] (see Figure 2) and show
that it achieves a significantly better and more stable
performance than the direct adaptation of the MADDPG
algorithm.

II. RELATED WORK

Early theoretical work in MARL was limited to discrete
state and action spaces [16], [17], [18]. Recent works adopted
techniques from single-agent deep RL to develop general al-
gorithms for high-dimensional continuous space environments
requiring agent interactions [1], [19], [9].

Cooperative multi-agent learning is important since many
real-world problems can be formulated as distributed systems
with decentralized agents that must coordinate to achieve
shared objectives [20]. Similar to our work, [21] have shown
that agents whose rewards depend on all agents’ success
perform better than agents that optimize for their own success.
In the special case when all agents have a single goal and share
a global reward, COMA [7] uses a counterfactual baseline.
However, the centralized critic in these methods only focuses
on optimizing the collective success of the group. When
a global objective is the sum of agents’ individual objec-
tives, value-decomposition methods optimize a centralized Q-
function while preserving scalable decentralized execution [8],
but do not address credit assignment. While MADDPG [9] and
M3DDPG [10] apply to agents with different reward functions,
they do not specifically address the need for cooperation;
in fact, they do not distinguish between the problems of
cooperation and competition.

To the best of our knowledge, dual-reward MARL was not
explicitly addressed in the existing literature. Among papers
exploring related topics, [22] explored the multi-goal problem
and analyzed its convergence in a special networked setting
restricted to fully-decentralized training. In contrast, we are
conducting centralized training with decentralized execution.
In contrast to multi-task MARL, which aims for generaliza-
tion among non-simultaneous tasks [23], and in contrast to
hierarchical methods with top-level managers that sequentially
select subtasks [24], our decentralized agents must cooperate
in parallel to achieve the global and their local objectives.

III. BACKGROUND

A. Policy Gradients

Policy gradient methods have been shown to learn the
optimal policy in a variety of reinforcement learning tasks.
The main idea behind policy gradient methods is to directly
parameterize the policy using the parameters θ to maximize
the objective represented as J (θ) = E [Rt] by taking a step
in the direction

∇J(θ) = E [∇θ log πθ (a|s)Qπ (s, a)]

Policy gradient methods are prone to the high variance prob-
lem. Several methods such as [25], [26] have been shown to
reduce the variability by introducing a critic, a Q-function
that tells about the goodness of a reward by working as a
baseline. [27] has shown that it is possible to extend the policy

Fig. 1: An overview of the Decomposed Multi-Agent Deep
Deterministic Policy Gradient architecture. In contrast to
MADDPG which uses a single centralized critic, DE-
MADDPG has a global centralized critic shared between all
cooperating agents and a local critic specific to the agent.

gradient framework to deterministic policies i.e. πθ : S → A.
In particular we can write ∇J (θ) as

∇J(θ) = E
[
∇θπ (a|s)∇aQπ (s, a) |a=π(s)

]
A variation of this model, Deep Deterministic Policy Gradients
(DDPG) [28] is an off-policy algorithm that approximates the
policy π and the critic Qπ with deep neural networks. DDPG
uses an experience replay buffer alongside a target network to
stabilize the training. Twin Delayed Deep Deterministic Policy
Gradients (TD3) [14] improves on DDPG by addressing the
overestimation bias of the Q-function, similarly to Double Q-
learning [29]. They find that approximation errors of the neural
network, combined with gradient descent make DDPG tend to
overestimate the Q-values, leading to a slower convergence.
TD3 addresses this by using two Q-networks Qψ1

, Qψ2
, along

with two target networks. The Q-functions are updated with
the target y = rt + γmin1,2Qψ′

i
(s′, a′), while updating the

policy with Qψ1
. Additionally, they introduce target policy

smoothing by adding noise in the determination of the next
action for the critic target a′ = µθ′π (s

′)+ε, with ε being clipped
Gaussian noise ε = clip(N (0, σ),−c, c), where c is a tunable
parameter. Additionally, they use delayed policy updates and
only update the policy π and target network parameters once
every d critic updates.

Multi-agent deep deterministic policy gradients (MAD-
DPG) [9] extends DDPG for the multi-agent setting where
each agent has it’s own policy. The gradient of each policy is
written as

∇J(θi) = E
[
∇θiπi (ai|oi)∇aiQπi (s, a1, . . . , aN ) |ai=πi(oi)

]
where s = (o1, . . . , oN ) and Qπi (s, a1, . . . , aN ) is a central-
ized action-value function that takes the actions of all the
agents in addition to the state of the environment to estimate
the Q-value for agent i. Since every agent has its own Q-
function, the model allows the agents to have different action
space and reward functions. The insight behind MADDPG
is that knowing all the actions of other agents makes the
environment stationary, even though their policy changes.



IV. DECOMPOSED MULTI-AGENT DEEP DETERMINISTIC
POLICY GRADIENT

We propose Decomposed Multi-Agent Deep Deterministic
Policy Gradient: a multi-agent deep reinforcement learning
algorithm that learns to simultaneously maximize the group’s
global reward and the agent’s local rewards. Our approach uses
a two critic approach to train policies and value functions that
are optimal to maximize the global and local rewards.

The main idea is to combine MADDPG (or MATD3) for
maximizing global rewards with a standard single agent DDPG
(or TD3). Intuitively, the goal is to move the policy in the
direction that maximizes both the global and the local critic.
The resulting learning paradigm is similar to the central-
ized training with decentralized execution during testing used
by [9]. In this setting, additional information is provided for
the agents during training that is not available during test time.

Concretely, we consider an environment with N agents
with policies π = {π1, . . . , πN} parameterized by θ =
{θ1, . . . , θN}. The multi-agent deep deterministic policy gra-
dient for agent i can written as

∇J(θi) = E
[
∇θiπi (ai|oi)∇aiQπi (s, a1, . . . , aN ) |ai=πi(oi)

]
where s = (o1, . . . , oN ) and Qπi (s, a1, . . . , aN ) is a cen-
tralized action-value function parameterized by φi that takes
the actions of all the agents in addition to the state of the
environment to estimate the Q-value for agent i. We extend
the idea of MADDPG by introducing a local critic. Now the
modified policy gradient for each agent i can be written as

∇J(θi) =

MADDPG︷ ︸︸ ︷
Es,a∼D

[
∇θiπi (ai|oi)∇aiQ

g
ψ (s, a1, . . . , aN )

]

+ Eoi,ai∼D

[
∇θiπi (ai|oi)∇aiQπi (oi, ai)

]}
DDPG

(1)

where ai = πi (oi) is action from agent i following policy πi
and D is the experience replay buffer. The global critic is Qgψ
is updated as:

L (ψ) = Es,a,r,s′
[(
Qgψ (s, a1, . . . , aN )− yg

)2]
where yg is defined as:

yg = rg + γQgψ′ (s
′, a′1, . . . , a

′
N ) |a′i=π′

i(o′i)

where π′ = {π′1, . . . , π′N} are target policies parameterized by
θ′ = {θ′1, . . . , θ′N}. Similarly, The local critic is Qπi is updated
as:

L (φi) = Eo,a,r,o′
[
(Qπi (oi, ai)− yl)

2
]

where yl is defined as:

yl = ril + γQπ
′

φ′
i
(o′i, a

′
i) |a′i=π′

i(o′i)

Overestimation bias in Q-functions have been thoroughly stud-
ied in [14], [30]. This overestimation bias can be problemsome

in multi-agent settings especially in real time autonomous
systems. For example, in resolving the double lane merge
conflict in autonomous vehicles, the vehicles might consider
the current state to be near conflict resolution thus taking a
dangerous turn. To solve this problem [14] have proposed a
double critic approach to minimize the overestimation bias.
Motivated from the results in [14], we replace the Multi-Agent
Deterministic Policy Gradient of the global critic in Equa-
tion (1) with Twin Delayed Deterministic Policy Gradient.
Therefore our updated policy gradient becomes

∇J(θi) = Es,a∼D

[
∇θiπi (ai|oi)∇aiQ

g1
ψ1

(s, a1, . . . , aN )

]

+ Eoi,ai∼D

[
∇θiπi (ai|oi)∇aiQπi (oi, ai)

]
(2)

The twin global critics are updated as

L (ψi) = Es,a,r,s′
[(
Qgiψi (s, a1, . . . , aN )− yg

)2]
where yg is defined as:

yg = rg + γ min
i=1,2

Qgiψ′
i
(s′, a′1, . . . , a

′
N ) |a′i=π′

i(o′i)

Similarly, the local critics can be updated using TD3 update
style but for simplicity, we will use the standard DDPG
to update the local critics. The overall algorithm to which
we refer as Decomposed Multi-Agent Deterministic Policy
Gradient (DE-MADDPG) is described in Algorithm 1. The
overview of the architecture can be seen in Figure 1.

V. EXPERIMENTS

A. Environments

We perform our experiments using the defensive escort
problem on four VIP protection environments [15], [2]. This is
a medium-size collaborative problem where a defensive escort
team of agents is learning to maintain an optimal formation
around the VIP (payload). The objective of the defenders is to
minimize the potential physical attacks as the VIP is moving in
a variety of different real world scenarios and are implemented
in the Multi-Agent Particle Environment [19]. An illustration
of the environments can be seen in Figure 2.

The state of the environment is given by the locations of
the landmarks, bystanders, VIP and the defensive team. To
closely represent a real world bodyguard that has a limited
range of perception, the observation of each agent is the
relative physical state of the nearest M bystanders, the VIP
and the remaining members of the defensive escort team
and represented as oi = [xj,...N+M ] ∈ Oi where xj is the
observation of the entity j from the perspective of agent i. In
our experiments, we used M = 5.



(a) Random Landmarks (b) Shopping Mall (c) Street (d) Pie-in-the-Face

Fig. 2: Four environments for the defensive escort team problem [15]. The team of bodyguards (blue) need to protect the VIP
(brown) in the environments, from left to right: ”Random Landmarks”, ”Shopping Mall”, ”Street” and ”Pie-in-the-Face”.

Decomposing the Reward Function

In this section, we review the entangled multi-objective
reward function defined in [12], [2], explain the problems with
it and decompose it to be used by DE-MADDPG.

As mentioned in the the previous section that the goal of the
defensive escort team is to learn an optimal formation around
the VIP to minimize the physical threat while simultaneously
maintain a certain distance from the VIP to follow the social
norms. To achieve both of these objectives, the multi-objective
reward function for each agent i is defined as:

rtotal =α

rglobal︷ ︸︸ ︷(
−1 +

M∏
k=1

(1− RT (VIP , bk, R))

)
+ (1− α) (D (VIP , xi))︸ ︷︷ ︸

rlocal

(3)

where rglobal represents the reward that each agent receives
given the formation of the team around the VIP at time-step t,
therefore, represents the main objective of the team and rlocal
represents the reward that the agent receives for maintaining
a certain distance from the VIP and is defined as

D (VIP , xi) =

{
0 m ≤ ‖xi −VIP‖2 ≤ d
−1 otherwise

(4)

where m is the minimum distance the agent has to maintain
from VIP and d is the safe distance. This formulation of
rtotal raises two problems. The first problem is the stability
issue since the policy oscillates between optimizing the global
reward and the local reward. This stability problem exacerbates
when either of the rewards are sparse and the other reward is
dense. The second problem is the α hyper-parameter. The α
hyper-parameter assigns weight to both rewards. Given the
various difficulty settings of the simulations, security should
be prioritized in some simulations as compared to the others.
Moreover, as MARL experiments take substantial amount of
time, finding an optimal α can be time consuming.

We solve this problem by having a dual critic architecture
where the task of the global centralized critic is to approximate

the cumulative global reward while each agent’s local critic ap-
proximates its own local reward. In this particular scenario, Qgψ
learns to approximate rglobal while Qπθi approximates rlocal.
The benefit of this decomposition is more stable learning and
exclusion of the α hyper-parameter.

B. Evaluations

To evaluate the efficacy of DE-MADDPG and its variants
we compare our results with baseline MADDPG and DDPG
on the defensive escort team problem in the environments
described above. We trained the global critic with two different
approaches. In the first approach, we updated the policy by
using the standard Multi-Agent Deep Deterministic Policy
Gradient mentioned in Equation (1) while in the second
approach, we updated the policy using the Twin Delayed Deep
Deterministic Policy Gradient mentioned in Equation (2).
Additionally, to mitigate the global sparse reward problem, we
replace the standard replay buffer with prioritized experience
replay buffer (PER). We performed our experiments on 8
different seeds. We used neural networks with three layers for
both the critic and actor networks. For each environment, we
trained each approach for 20, 000 episodes except the Pie-in-
the-Face environment which was trained for 10, 000 episodes.

Figure 3 shows the learning curves of our experiments.
Figure 3a corresponds to the Random Landmark environment
and it can be seen that the DE-MADDPG based approaches
outperform MADDPG and DDPG by a significant margin.
Similar observations can be made for the Shopping Mall, and
Street environments. For the Pie-in-the-Face, there is little dif-
ference between the performance of the different approaches
- all approaches converge very quickly. A possible reason for
this is that this environment, focusing on a single attacking
bystander, makes the positioning choice less complex.

Though, Figure 3 shows the learning curves that visually
represents the performance of the different approaches, it does
not quantitatively explain the improvement in performance
across different approaches. To that end, we test our trained
policies across all environments on 8 different seeds. Table I
shows the average returns of the global reward over 1000
episodes. We notice that in complex environments such as
Shopping Mall and Random Landmarks, DE-MADDPG aug-



Algorithm 1 Decomposed Multi-agent Deep Policy Gradient

1: Initialize main global critic networks Qg1ψ and Qg2ψ .
2: Initialize target global critic networks Qg1ψ′ and Qg2ψ′ .
3: Initialize each agents policy and critic networks.
4: for episode = 1 to T do
5: for t = 1 to episode–length do
6: Get environment state st.
7: For each agent i, select action ati = πθi (o

t
i)

8: Execute actions at = [at1, . . . , a
t
N ]

9: Receive global rtg and local rewards rtl .
10: Store

(
st, at, rtl , rtg, st+1

)
in replay buffer.

11: end for
12: /* Train global critic*/
13: Sample minibatch of size S

(
sj , aj , rjg, s

′j
)

from
buffer.

14: (a′1, . . . , a
′
N ) :=

(
π′θi(o

′j
i ), . . . , π

′
θN

(o′jN )
)

15: Set yjg = rjg + γmini=1,2Q
gi
ψ′
i

(
s
′j , a′1, . . . , a

′
N

)
16: Update global critics by minimizing

1

S

∑
j

(
yjg −Q

gi
ψi

(
sj , aj1, . . . , a

j
N

))2
17: Update target network parameters

ψ′i ← τψi + (1− τ)ψ′i
18: if episode mod d then
19: /* Train local critics and update agent policies*/
20: for agent i = 1 to N do
21: Sample minibatch of size S

(
sj , aj , rjl , s

′j
)

22: Set yj = rjil + γQπ
′

φ′
i

(
o
′j , π′θi(o

′j
i )
)

23: Update local critic by minimizing

1

S

∑
j

(
yj −Qπφi

(
oj , aji

))2
24:

θi = θi +
1

S

∑
j

∇θiπi
(
ai|oji

)
∇aiQ

g1
ψ

(
sj , aj1, . . . , a

j
N

)
+∇θiπi

(
ai|oji

)
∇aiQπφi

(
oj , aji

)
25: end for
26: Update target network parameters for each agent i

θ′i ← τθi + (1− τ) θ′i
φ′i ← τφi + (1− τ)φ′i

27: end if
28: end for

mented with TD3 and PER was able to achieve 55% and 73%
better performance than baseline MADDPG. Similarly, on the
slightly less complex environments Street and Pie-in-the-Face,
the performance was about 61% and 100% better.

(a) Random Landmarks (b) Shopping Mall

(c) Street (d) Pie-in-the-Face

Fig. 3: Learning curves representing the average cumulative
global reward. The higher reward represents higher protection
to the VIP (payload).

TABLE I: Average cumulative return of the global reward over
1000 episodes over 8 seeds. Maximum value for each task is
bolded. ± corresponds to 95% confidence interval over seeds.

Environment DE-MADDPG
(TD3+PER)

DE-MADDPG
(TD3)

DE-MADDPG
(PER)

DE-MADDPG MADDPG DDPG

Shopping Mall -4.87 ± 0.06 -5.61 ± 0.08 -6.17 ± 0.08 -6.27 ± 0.07 -7.59± 0.13 -9.51± 0.12
Rand. Landm. -4.43 ± 0.05 -4.91 ± 0.06 -5.75 ± 0.04 -6.34 ± 0.08 -7.67± 0.13 -10.22± 0.16
Street -2.13 ± 0.06 -2.38 ± 0.07 -2.36 ± 0.07 -2.66 ± 0.08 -3.43± 0.13 -3.81± 0.11
Pie-in-the-Face -0.07 ± 0.002 -0.06 ± 0.002 -0.11 ± 0.003 -0.07 ± 0.004 -0.12± 0.003 -0.10± 0.006

Figure 4 and Table II shows the learning curves and the
test results of the sum of the local rewards. Similar to the
global reward, it can be seen in Figure 4 and and Table II that
DE-MADDPG based approaches outperforms MADDPG and
DDPG results. One point to be noted here is that maintaining
a certain distance from a moving payload is a fairly easy
problem for standard reinforcement learning algorithms as
the reward is dense and the state space is relatively easy.
However, adding an additional objective such as global reward
maximization not only had catastrophic affect on the global
reward maximization but also negatively effected the learning
of a trivial task.

TABLE II: Average cumulative return of the local reward over
1000 episodes over 8 seeds. Maximum value for each task is
bolded. ± corresponds to 95% confidence interval over seeds.

Environment DE-MADDPG
(TD3+PER)

DE-MADDPG
(TD3)

DE-MADDPG
(PER)

DE-MADDPG MADDPG DDPG

Shopping Mall -0.41 ± 0.02 -0.23 ± 0.03 -0.28 ± 0.03 -0.30 ± 0.07 -1.44± 0.07 -0.92± 0.05
Rand. Landm. -0.15 ± 0.02 -0.19 ± 0.01 -0.25 ± 0.02 -0.22 ± 0.03 -1.46± 0.06 -0.94± 0.05
Street -0.12 ± 0.01 -0.15 ± 0.02 -0.16 ± 0.02 -0.18 ± 0.08 -1.23± 0.08 -0.47± 0.04
Pie-in-the-Face -0.11 ± 0.01 -0.28 ± 0.01 -0.12 ± 0.01 -0.31 ± 0.01 -0.20± 0.01 -0.31± 0.01

A common pattern can be seen in Figure 3 and Figure 4:
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(c) Street
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(d) Pie-in-the-Face

Fig. 4: Learning curves of the experiments representing the
sum of local rewards. Notice that similar to global rewards,
the local reward learning of MADDPG and DDPG is also
unstable and reaches only at sub-optimal performance.

TABLE III: Average cumulative return of the global reward
of multi-scenario learning over 1000 episodes over 8 seeds.
Maximum value for each task is bolded. ± corresponds to
95% confidence interval over seeds.

Environment DE-MAUPG
(TD3+PER)

DE-MAUPG
(TD3)

DE-MAUPG
(PER)

DE-MAUPG MAUPG UVFA

Shopping Mall -3.85 ± 0.07 -4.34 ± 0.08 -5.70 ± 0.09 -5.98 ± 0.10 -6.97± 0.11 -6.94± 0.11
Rand. Landm. -3.91 ± 0.07 -3.86 ± 0.07 -4.65 ± 0.08 -3.54 ± 0.08 -5.02± 0.14 -5.62± 0.11
Street -2.54± 0.08 -3.22 ± 0.09 -3.58 ± 0.11 -3.51 ± 0.10 -3.97± 0.14 -4.34± 0.14
Pie-in-the-Face -0.07 ± 0.003 -0.13± 0.008 -0.08 ± 0.003 -0.07 ± 0.002 -0.12± 0.003 -0.19± 0.008

DE-MADDPG based approaches not only achieve higher
global and local rewards but they achieve it significantly faster
compared to MADDPG and DDPG. For example, in complex
environments such as Random Landmarks and Shopping Mall,
DE-MADDPG (TD3 + PER) reaches the maximum perfor-
mance before 2500 episodes while the baseline MADDPG
reaches its best performance for Random Landmarks and
Shopping Mall environment at around 12, 000 episodes and
20, 000 episodes respectively.

TABLE IV: Average cumulative return of the local reward
of multi-scenario learning over 1000 episodes over 8 seeds.
Maximum value for each task is bolded. ± corresponds to
95% confidence interval over seeds.

Environment DE-MAUPG
(TD3+PER)

DE-MAUPG
(TD3)

DE-MAUPG
(PER)

DE-MAUPG MAUPG UVFA

Shopping Mall -0.56 ± 0.02 -0.27 ± 0.03 -0.22 ± 0.03 -0.25 ± 0.07 -1.04± 0.06 -0.96± 0.05
Rand. Landm. -0.18 ± 0.02 -0.12 ± 0.02 -0.22 ± 0.02 -0.11 ± 0.02 -0.89± 0.08 -0.71± 0.08
Street -0.16 ± 0.02 -0.15 ± 0.02 -0.17 ± 0.02 -0.13 ± 0.02 -0.64± 0.07 -0.60± 0.07
Pie-in-the-Face -0.21 ± 0.01 -0.43 ± 0.01 -0.24 ± 0.01 -0.27 ± 0.01 -0.27± 0.007 -0.22± 0.009
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(d) Pie-in-the-Face

Fig. 5: Learning curves representing the average cumulative
global reward of multi-scenario learning experiments..

C. Multi-Scenario Experiments

Multi-agent reinforcement learning is sensitive to distor-
tions and does not work well if the trained policies are
deployed on scenarios other than the scenario on which the
policies are trained on. This problem is generally referred
as single-task multi-scenario learning. The goal here is to
learn a joint policy π that performs equally well as scenario-
dependant policy. [15] introduced Multi-Agent Universal Pol-
icy Gradients (MAUPG) to solve the multi-scenario learning
and evaluated it on the VIP protection environments similar
to our experiments. The main idea behind MAUPG is to
replace the standard centralized Q-functions in MADDPG
with Universal Value Function Approximators (UVFA). In an
analogous way, we replaced all the critics in DE-MADDPG
with UVFAs. For brevity, we will refer our multi-scenario
solution as Decomposed-Multi-Agent Universal Policy Gradi-
ents (DE-MAUPG) For our experiments, we kept our settings
identical to DE-MADDPG experiments and trained it for
20,000 episodes. Unlike scenario-dependant training, where
every scenario was trained for 20,000 episodes, all scenarios
are trained in parallel using one joint policy π.

Figure 5 shows the learning curves of the DE-MAUPG
and its variants. Similar to our results from Section V-B, de-
composition based learning solutions outperform the baseline
MAUPG. The point to be noted here is that not only our
solutions learn to achieve a higher reward but they also learn
faster. This can be easily seen in Figure 5a and Figure 5b
where DE-MAUPG (TD3 + PER) reaches the maximum
performance in less than 2500 episodes while the baseline
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Fig. 6: Learning curves representing the sum of local rewards
of multi-scenario learning experiments.

MAUPG reaches its peak performance at 12,500 episodes in
the Random Landmarks environment and does not even reach
its peak performance before 19,000 episodes for the Shopping
Mall environment.

Table III quantifies the improvement of DE-MAUPG in
maximizing the global reward when compared to MAUPG
and UVFA. We find that the decomposition based approaches
achieve 81% on the Shopping Mall environment and 41%
on the Random Landmarks environment. Similarly Table IV
quantifies the improvement of DE-MAUPG in maximizing the
local reward when compared to MAUPG and UVFA.

D. Memory and time complexity

In this section we evaluate the growth of parameter space
as the number of agents increases and we empirically evaluate
the computation time for DE-MADDPG and compare it with
MADDPG and DDPG. The main components of the MAD-
DPG that fuel its learning are the distributed centralized Q-
functions. As the number of the agents grow, the input space of
those Q-functions increase quadratically. Concretely, assuming
all the agents have identical observation and action space,
the number of trainable parameters can be represented by
O(n2(odim+adim)), where n is the number of agents, odim
and adim represents the dimensionality of observation and
action space respectively. Alternatively, DE-MADDPG solves
this scalability problem by having a shared global centralized
Q-function whose parameter space increases linearly and can
be represented as O(n(odim + adim)). In Figure 7, we
show the growth of number of parameters of all the main Q-
networks of MADDPG, DE-MADDPG and its TD3 variant. It

5 10 15 20 25
Number of Learning Agents

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f p
ar

am
et

er
s

1e6

MADDPG
DEMADDPG(TD3)
DEMADDPG
DDPG
MAUPG
DEMAUPG(TD3)
DEMAUPG
UVFA

Fig. 7: Number of trainable parameters in the main Q-
networks. Notice that 25 agents can be trained by DE-
MADDPG approaches using the same number of parameters
as 10 MADDPG agents.

TABLE V: Average training time for experiments in minutes
over 8 different seeds. Minimum value for each task is bolded.
± corresponds to standard deviation across seeds

Environment DE-MADDPG
(TD3+PER)

DE-MADDPG
(TD3)

DE-MADDPG
(PER)

DE-MADDPG MADDPG

Shopping Mall 168.25 ± 7.22 152.85 ± 6.31 167.25 ± 4.40 149.5 ± 1.65 268.5± 21.21
Rand. Landm. 168.87 ± 0.78 151.25 ± 1.19 164.14 ± 1.35 146.875 ± 1.16 262.25± 2.86
Street 397.62 ± 4.71 352.87 ± 5.63 356.87 ± 13.97 340.75 ± 16.74 462.75± 43.14
Pie-in-the-Face 64.25 ± 1.23 59.25 ± 0.59 63.5± 1.09 55.12 ± 1.05 72.79± 1.16

can be seen that our solution has a significantly smaller number
of parameters compared to MADDPG and MAUPG. Note that
the figure only represents the number of trainable parameters
in the main Q-networks and does not include target or policy
networks as the growth of the policy network parameters
are identical and no gradient based learning happens in the
target networks. All these statements hold true for their UVFA
variants.

We empirically verified the benefits of the parameter re-
duction by measuring the time taken to train the experiments.
Table V shows that DE-MADDPG based approaches always
train faster than baseline MADDPG. The details of the network
architecture are shown in Section VI.

VI. EXPERIMENTAL DETAILS

TABLE VI: The parameters used for various variations of
DE-MADDPG and the baseline algorithm MADDPG in the
experiments.

Parameter DE-MADDPG
(TD3+PER)

DE-MADDPG
(TD3)

DE-MADDPG
(PER)

DE-MADDPG MADDPG DDPG

Episodes 20k 20k 20k 20k 20k 20k
Replay buffer 106 106 106 106 106 106

Minibatch size 2048 2048 2048 2048 2048 2048
Steps per train Qg 4 4 4 4 N/A N/A
Steps per train Ql 2 2 2 2 2 2
Max env steps 25 25 25 25 25 25
PER α 0.6 N/A 0.6 N/A N/A N/A
PER β 0.4 N/A 0.4 N/A N/A N/A
PER ε 1e-6 N/A 1e-6 N/A N/A N/A
PER β decay 10000 N/A 10000 N/A N/A N/A

A. Network Architecture

Both actor and critic networks consist of 2 hidden layers
containing 64 units in each layer with a ReLU activation



function while the output layers of both networks use linear
activation. Both networks are initialized using Xavier normal
initializers however, the output layer of the target critics were
initialized with uniform random values between (-0.01 and
0.01)). The hyperparameter details are shown in Table VI.
Note that same configurations were used for multi-scenario
learning experiments.

VII. CONCLUSIONS

In this paper, we focused on the dual-reward MARL: a
collaborative setting where a group of agents must simulta-
neously learn to maximize the collective global reward and
individual local reward. To solve the problem, we proposed the
Decomposed Multi-Agent Deep Deterministic Policy Gradient
(DE-MADDPG) algorithm and applied it to the problem
of defensive escort team: how can agent learn a policy to
maintain an optimal formation around the VIP to protect
him/her from possible physical attack. We first demonstrated
that decomposing a multi-objective reward function leads to
higher and more stable performance. We compared our results
with the MADDPG algorithm and achieved at least 50% better
performance in terms of the collected reward. Additionally,
we showed that our solution is computationally efficient and
requires a significantly lower number of parameters while
achieving better performance than the baseline.
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