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Abstract—Development of Virtual Agents (VAs) for Goal/Task-
oriented conversations capable of handling complex tasks per-
taining to multiple domains and its various intents is quite an
onerous task. Lack of high quality, domain specific conversational
data required to train policies is one of the biggest challenges
for the success of any dialogue system. In this paper, we present
a multi-domain, multi-intent based task-oriented dialogue sys-
tem by successfully combining Hierarchical Deep Reinforcement
Learning and Transfer Learning paradigms. The notion is to
exploit or take advantage of the resemblance between domains
as various domains share considerable amount of overlapping
data or slots. Thus, Options framework along with Transfer
Learning is employed to curate VAs with better and faster
learning performance. Our proposed approach reduced the data
requirement to train multi-domain VAs by atleast 20% for distant
domains and almost 38% for close domains. It also significantly
curtailed the learning time and aided faster learning for transfer
learning based policies.

Index Terms—Transfer Learning, Hierarchical Reinforcement
Learning, Multi-domain System

I. INTRODUCTION

Dialogue systems typically known as Virtual Assistants have
found extensive usage in a multitude of distinct applications,
varying from simple chit-chatting to goal-oriented conversa-
tions. Task/Goal-oriented or information seeking chatbots are
commonly devised to assist users achieve a pre-defined goal
(for eg., book a flight ticket etc.) [1]. These bots are usually
closed-domain, i.e., domain-specific in nature aiming to serve
user query for limited scenarios (or domain) [2]. Prominent
VAs available in the market such as Apple Siri, Microsoft
Cortana, Amazon Echo, Google Home etc. are capable of
managing basic and direct tasks such as requesting for movies,
food and so on. However, users’ demands or needs can be
quite complex, not limited to a single task or domain. Such
situations require VAs to be extremely comprehensive so as to
effectively meet multi-domain based user requirements. Thus,
creating VAs focused on accomplishing such complex tasks
continues to be one of the most important problems for the
NLP researchers and AI in particular.

In recent times, two prominent paradigms of research have
emerged in Goal-oriented Dialogue Systems. The first category
includes sequence to sequence based supervised models [3],
encompassed as Natural Language Generation (NLG) task
wherein an user utterance and its context are encoded to
decode a VA response directly [4]. The data requirement for
these categories of models is huge as they directly imitate
the knowledge contained within the training data [2]. The
second ones are frameworks based on Reinforcement Learning
(RL) algorithms such as Deep Q-Networks (DQN) [5] wherein
supervised learning techniques are combined and applied
to RL tasks [6]. These approaches require less amount of
data as compared to the former because of their ability to
simulate dialogue conversations. They explore various facets
of dialogue space efficiently by exploiting its sequential nature.

Lately, researchers have proposed an array of works that
utilize Hierarchical Reinforcement Learning based methodolo-
gies focused on managing multi-domain based conversations.
Works such as [1], [7] employ Options framework belonging
to the class of Semi-Markov Decision Processes (Semi-MDPs)
to successfully fulfill composite task of the user pertaining to
multiple domains at a time such as travel planning. Authors of
[8] presented Feudal Reinforcement Learning based approach
for learning policies in large domains. However, scalability
of all these approaches still remains a question as paucity
of domain-specific or in-domain data is a major challenge
for learning decent policies in DQN based VAs. Annotated
domain-specific dialogue data is primarily required for the fol-
lowing two reasons : i) to train VAs by simulating substantial
amount of distinct conversations for a robust dialogue policy
and ii) to warm-start the VA during training for it to converge
to an acceptable policy. Thus, any RL based model is data
intensive and acquiring high quality dialogue data pertaining to
different domains is the biggest hurdle faced by its developers.

In this paper, we focus on developing a multi-domain, multi-
intent based task-oriented dialogue system by successfully
combining Hierarchical Deep Reinforcement Learning and
Transfer Learning. The VA must be able to handle complex
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Fig. 1: End-to-end Goal-oriented Dialogue System with Transfer Learning

and composite task of the user pertaining to multiple domains.
For this, we employ a hierarchical options [9] framework
based multi-domain and multi-intent policy over different
domains and their intents that serve at discrete time-steps
and provide the user with a system which is a one stop for
all queries. With this structure at the background, the notion
is to exploit or take advantage of the resemblance between
a source and a target domain, as many domains, for e.g.,
restaurant and hotel reservation, share considerable amount
of overlapping data or attributes in terms of slots. Previous
works were focused on creating end-to-end VAs independently
with domains in isolation such as one for Restaurant, Air
Travel, Movie etc. individually [6], [2]. These domains have
common or overlapping attributes such as location, time, no.
of people and so on. Intuitively, this information need not
be learnt multiple times pertaining to individual domain and
that a transfer is indeed desirable and feasible. Thus, we
aim to show experimentally how Transfer Learning combined
with Hierarchical Reinforcement Learning cumulatively aids
to curate multi-domain, multi-intent dialogue system with
better and faster learning and performance of the VA. The
proposed approach has been demonstrated for two distinct
cases : i) when two domains have significant overlap and ii)
when two domains have little to no overlap. Double DQN with
Prioritized Experience Replay (DDQN-PER) [10] algorithm
has been used to train the policies at different hierarchies of
the system. A diagrammatic representation of a Goal-oriented
dialogue system with Transfer Learning is shown in Figure 1.

The key contributions of this paper are as follows : (a)
To the best of our knowledge, this paper is amongst the
first of its kind that successfully combines Transfer Learning
with Hierarchical Reinforcement Learning (specifically Op-
tions framework) to build multi-domain, multi-intent based
dialogue system; (b) The utility of Transfer Learning helps
faster and better convergence of the dialogue policy for the
target domain compared to the ones trained independently;
(c) Our proposed approach reduces the data requirement to
train multi-domain VAs significantly by leveraging from the
Transfer Learning based approach.

II. RELATED WORKS

As mentioned before, there are two distinct lines of research
in relation with the development of Goal/Task-oriented VAs.
The first one being sequence to sequence based supervised
models, majorly contained as NLG task [11], [12], [13].
However, the focus of this paper is on the latter category

focused on building DQN based VAs popularly known as the
Dialogue Management (DM) task.

A plenty of work has already been presented in this
context to develop multi-domain based system. Authors of
[1] proposed a HRL approach based on options framework
to learn policies in different domains for a single intent.
In [14], authors developed a DM strategy for multi-domain
dialogue systems and applied it to the domains of hotels and
restaurants for a single intent. However, such framework does
not scale to modeling complex conversations by restraining
their performance as domains and intents often share subtasks
and slot space, respectively not defined in their approach.
In [7], authors propose a divide and conquer approach for
efficient policy learning where a complex goal-oriented task
is broken into simpler subgoals in an unsupervised manner
and then these subgoals are used to learn a multi-level policy
using HRL. Feudal Reinforcement Learning has been used
with DQN in the work of [8] for learning policies in large
domains however, this particular work uses handcrafted feature
functions to model policies. These works however, focus on
proposing DM methodologies to handle multi-domain con-
versations with a single subtask/intent per domain. Whereas
our work focuses on handling composite and complex, multi-
domain, multi-intent dialogue conversations.

In [15], authors proposed a Transfer Learning based DM for
a single intent per domain. However, their approach couldn’t
establish how these Transfer Learning approaches can be
leveraged to develop a multi-domain based system. In [16],
authors proposed a variant of DQN where the VA explores
via Thompson sampling, drawing Monte Carlo samples from a
Bayes-by-Backprop neural networks. In [17] presented an end-
to-end RL framework for induced flexibility in dialogue con-
versations. However, all these works are focused on proposing
strategies for a single intent of a domain. Also, scalability of
such approaches remains an open question as training of these
models requires huge amount of dialogue conversation data of
any domain. Acquiring considerable amounts of conversational
data itself poses a bigger issue.

III. PROPOSED METHODOLOGY

This section presents the proposed options framework to
learn a hierarchical dialogue management policy followed by
the transfer learning based approach in combination with the
hierarchical structure.



Fig. 2: Flow diagram of the proposed HDRL system without Transfer Learning

A. Proposed Options Framework
We aim to build a multi-domain, multi-intent dialogue

system which requires the VA to manage composite task
pertaining to multiple intents of multiple domains at a time.
For this purpose, we employ a well known foundation of Hi-
erarchical Reinforcement Learning called the Options, which
typically belongs to the group of decision problems called the
Semi-MDPs [9]. Options framework fundamentally provides
a hierarchical schema to decompose a composite task into
several subtasks at different levels of hierarchies. It primarily
requires three elements : a collection of states for the option
to trigger, an intra-option policy [18] that chooses primitive
actions till the option is being served and a halting condition
to signal that the option is finished. Thus, we integrate hier-
archical value functions with Deep Reinforcement Learning
(DRL) for the VA to learn strategies for managing multi-
domain, multi-intent system in an unified manner.

a) Hierarchical DRL Agent: It is a three-level HDRL
agent that comprises of a top-level domain meta-policy, πd,
intermediate-level intent meta-policies, πi,d, low-level con-
troller policies, πa,i,d and a global slot tracker. The domain
meta-policy takes as input state s from the environment
and selects a particular domain d ∈ D based on the user
requirement, where D represents the set of all domains present
in the system. Based on the domain selected, the intent
meta-policy of that domain πi,dj

inputs state s and selects
a subtask i ∈ I among-st multiple subtasks identified based
on the user requirement, where I represents the set of all
intents/subtasks of that domain. The controller policies of a
particular domain πa,i,dj

are a set of sub-networks, where
each sub-network represents servicing a particular intent of the
domain to complete a particular subtask chosen by the higher
level meta-policies. It inputs state s and outputs a sequence
of primitive actions a ∈ A where A represents the set of all
the primitive actions of all the intents/subtasks of a particular
domain.

b) Global Slot Tracker: One of the elementary chal-
lenges in developing a multi-domain dialogue system is to
ensure certain inter-subtask constraints which we refer to as
slot constraints. This is rather intuitive as various intents
of a domain share overlapping information amongst each

other. Thus, eliciting these information from the user multiple
times in a conversation individually for each intent makes
the dialogue redundant and increases user dissatisfaction. To
counter this issue, we maintain a global slot tracker for all the
slots of a domain and thereby extending it for all domains to
share already elicited information across all domains. Thus,
we now have a global slot tracker which manages information
of all the slots across all the domains. These information are
updated in input state s for all the hierarchies at every time
step. The flow diagram of the proposed hierarchical approach
is shown in Figure 2.

B. Semi-MDP

In the context of the current work, the following definition
applies : Intent captures the main communicative intention
of the user utterances. Intent and subtask have been used
synonymously in this paper. So, similarly multi-intent captures
more than one intentions present in an user utterance. Multi-
domain refers to an user query that contains subtasks belong-
ing to more than one domain. A set of intents or subtasks
from different domains as queried by the user is referred to
as a whole task. Slots are basically defined as the important
information that are present in the user utterances.

A generic architecture of semi-MDP is used. It finds its
applicability in any number of k domains having ni number of
intents for domain i and mi number of slots for domain i. The
task of the VA is to elicit necessary information in the form of
slots from the user based on the subtasks/intents and domain
identified to make a valid database query so as to provide
necessary and apt information based on the data elicited. This
process continues until the user’s task(s) is completed. Below,
we explain the details of the Semi-MDP with regards to a
source - target domain pair.

a) State Space: The domain meta-policy is a tuple of
k + n1 + n2 variables. An universal state space for both the
intent meta and controller policies is used which is a tuple
of n1 +m1 or n2 +m2 variables and so on depending upon
the number of intents and slots of different domains. This is
done specifically to curtail any human intervention required to
conceptualize state space in accordance to the task. The k, n1
and n2 variables are binary values of either 1 or 0 representing



the domain/option/intent in action. The m1 and m2 variables
are the confidence scores of different slots present in various
domains which are the probability values outputted from the
Slot-Filling (SF) module representing the confidence of the
module in predicting different slot labels.
• Domain Meta-Policy : For the domain meta-policy, the

k variables are multi-hot encoding values representing the
multiple domains identified by the Domain Classification (DC)
module for the user utterance. Similarly, n1 and n2 variables
are multi-hot encoding values representing the multi-label
intents identified by the Intent Classification (IC) module for
the domain classified. It keeps track of the current domain
being served based on which top-level options are picked up
in order for the intent meta-policies and controller policies to
serve the users’ need.
• Intent Meta-Policy : For the intent meta-policy, the n1

or n2 variables are multi-hot encoding values representing the
multi-label intents identified by the IC module for the user
utterance. It keeps track of the intent to be served based on
which relevant options/intents are picked up as subtasks for
the controller policy to execute.
• Controller Policy : For the controller policy, the n1

or n2 variables are one-hot encoding values representing the
current option/intent being picked up by the meta-policies to
be served. The task of the controller policy is to then pick
up primitive actions to fill in relevant slots from m1 or m2

pertaining to the option in control.
b) Action Space: The action space consists of actions for

the meta as well as controller policies. For the domain meta-
policy, k options are available to serve the user’s need. For
the intent meta-policies, n1+1 or n2+1 options are available
to serve the intents. For the controller policy, 20, 17 and 28
(in our case) primitive actions are available for Air Travel,
Restaurant Info and Hotel Info domains, respectively; these are
categorized in three different classes, i.e., Ask, Reask/Confirm
and Salutation.

c) Reward Model: The reward functions for different
hierarchies at different time-steps of the dialogue are as
follows :
• Controller Policy : The intrinsic reward for the controller

policies are as follows :
– Case 1 : The reward function at any other time-

step except at the terminating or closing step is :
R(s, a, i, s′) = (w1 ∗ (‖

−→
S′ ‖1 − ‖

−→
S ‖1))− (w2),

where ‖
−→
S′ ‖1 is the summation of the confidence

scores of all the state variables in the state vector s′

which is obtained after taking an action a in state s.
‖
−→
S ‖1 is the summation of the confidence scores of

all the state variables in the state vector s. w1 is the
weight over the difference of the summation of the
two state vectors in state s and s′. w1 encourages
the agent to act in a way so as to increase its
confidence on the acquired slots. w2 encourages
useful communication and discourage unnecessary
iterations. Here, w1 = no. of unique slots of the

domain and w2 = 1 for our experiments. All specific
values were assigned through empirical analysis by
conducting the parameter sensitivity tests.

– Case 2 : The reward function at the terminating time-
step is subject to a checking condition (mentioned
below). If the checking condition is satisfied, the
agent gets the reward as : R(s, a, i, s′) = w1∗ ‖−→
S ‖1

– Case 3 : If the checking condition isn’t satisfied,
the reward function is : R(s, a, i, s′) = −w1 ∗ (‖−−→
EV ‖1 − ‖

−→
S ‖1), where ‖

−−→
EV ‖1 is the

summation of the maximum expected confidence
scores of different slots that adds up to be equal to
n for controller policies with n slots (the maximum
expected confidence score for each slot being 1). The
checking criteria is as follows : if the confidence
scores of all the individual slots for a particular
controller state S ≥ threshold (set to 0.7), then the
checking condition is passed, otherwise it fails.

• Intent Meta-Policy : If the correct subtask/intent/option
was picked up based on the users’ need then,
R(s, i, d, s′) = w1∗ ‖

−→
S′i ‖1 − ‖

−→
Si ‖1 else,

R(s, i, d, s′) = −w1, where ‖
−→
S′i ‖1 represents state

vector s′ after completing subtask i. ‖
−→
Si ‖1 represents

state vector s while beginning to serve intent i.
• Domain Meta-Policy : If the correct domain was served

based on the users need then, R(s, d, s′) = w1 else,
R(s, d, s′) = −w1

C. Transfer Learning based Approach

As stated above, the main focus of this work is to exploit the
benefits of Transfer Learning to develop multi-domain, task-
oriented dialogue system. Analogous to its literal meaning,
Transfer Learning allows transfer of knowledge or learning
from one neural network to another, i.e., transfer of knowledge
from the source network to the target network [19]. The ob-
jective of this transfer process is towards achieving better and
faster learning on the target domain/network while leveraging
from the added or extra information from the source domain.
So, as described in the above section, the input space of both
the source and target networks of the intent meta-policies
and the controller policies are their respective state spaces
in isolation with the other. Without transfer learning, the
two domains are trained independently where the weights of
the network of each domain are initialized randomly which
produces dialogue states from unique or distinct distributions.
Also, the output space or the set of actions are as well
independent of the other domains.

a) With Transfer Learning: We apply transfer learning
from the source to the target domain only for the low level
controller policies. This is due to the fact that the VA interacts
or elicits information from the user with the help of only the
low level controller policy. Rest of the higher level meta-
policies help decompose the composite task into multiple
subtasks in different granularities, not known to the user. In



Fig. 3: Flow diagram for the Transfer Learning based approach at the low level controller policies

order to leverage from Transfer Learning, it is essential to
model the dialogue state for both the source and target domains
such that it came from the same or an identical distribution.
Therefore, while training the controller policy for the source
side, the state of the dialogue depends or must also incorporate
not just the slots explicit to the source domain but also those
that are present in the target domain and vice-versa. Similarly,
the set of primitive actions need to be shared as well. The
controller policies specific to the source domain must now
also be aware of the primitive actions of the controller policies
of the target domain, even if most or none of these slots or
actions are ever used in a particular domain and vice-versa.
This imposition or extension is mandatory, arising from the
fact that it is impossible to reuse the neural network weights
if the input and output space differ from domain to domain.
This intuition is common and can be generalized to a range
of source and target domain pairs.

So, the controller state space for both the domains are
modified such that it now includes intents and slots of both the
source - target domain pair, i.e., n1+n2+m1+m2. The same
applies to the set of primitive actions in both the domains as
well. For transferring the knowledge, we follow two criteria :

• Firstly, we choose sub-networks or controller policies
which are semantically similar or have significant over-
lapping slots with each other in between the source and
the target domains. For e.g., inquiring about the price
of an entity (such as Restaurant or Hotel) semantically
means the same thing barring the entity.

• Secondly, even if the intents do not semantically represent
a similar thing, we can still exploit the existence of similar
slots in unrelated intents. For, e.g., eliciting information
about a location could be common to several intents
irrespective of them being used in the same context or
not.

Thus, we transfer knowledge from the sub-network of the
source domain to the sub-network of the target domain on an
one-to-one basis. Figure 3 shows the Transfer Learning based
approach at the low level controller policies. Rest of the higher
level meta-policies operate in the same manner as described
above. So, now while training the sub-networks or controller
policies of the target domain, the weights of the neural
networks are not initialized randomly. Rather, the weights of
a chosen sub-network of the source domain (following the
above criteria) for both input and output space are copied to
a sub-network of the target domain. Then, the sub-network

pertaining to the target side is further trained to optimize and
learn behaviours specific to its subtask.

D. Implementation Details

This section describes the datasets used, implementation
details of the system including the Natural Language Un-
derstanding module comprising of a joint Domain and Intent
Classification (DC-IC) module and a Slot-Filling (SF) module
followed by the Natural Language Generation (NLG) frame-
work.

a) Dataset: The proposed approach is applied on Air
Travel Information System (ATIS) [20], FRAMES [21]
and MIT Restaurant1 dataset where the user can have
multiple/multi-label intents. Therefore, the intents taken into
account to demonstrate the current work are as follows:
“flight”, “airfare”, “airline”, “ground service”, “ground fare”
from the ATIS dataset and “restaurant”, “price”, “review”,
“time”, “address” from the MIT Restaurant dataset. From
FRAMES dataset we only utilize the conversation related to
the Hotel booking domain, to identify various intents with its
corresponding slots. The once used for this work are “hotel”,
“hotel-price”, “hotel-review”, “hotel-restaurant”, “transport”
and “address”.

b) Joint Domain and Intent Classification Module:
The task of this module is to identify the domain and intent
of the user utterance jointly. For this, a two layer CNN [22]
based deep learning model has been trained on the ATIS,
FRAMES and MIT Restaurant datasets collectively. We obtain
a classification test accuracy of 84% based on this model.
Thus, the identified domains and one or more of the intents
of that domain at a time are the inputs to the state space of
the domain and intent meta-policies.

c) Slot-Filling Module: To extract relevant information
from the user’s utterance in the terms of slots, an SF mod-
ule has been trained. It is a deep learning model which
uses a single Bi-directional LSTM Network [23] at its core.
This module is also trained on the ATIS, FRAMES and
MIT Restaurant datasets, collectively. The developed model
achieved test accuracy of 75%. The necessary slots identified,
along with the probability scores of the predicted labels are
used by state space of the controller policies of different
domains for further processing.

1This dataset has been downloaded from https://groups.csail.mit.edu/sls/
downloads/restaurant/.



Fig. 4: Different Slots for Air-Travel, Restaurant Info and
Hotel Info domains

d) Natural Language Generation: A retrieval based
NLG framework has been used to map the action taken by the
VA to its corresponding natural language to present to the user.
Similarly, predefined sentence templates with slot placeholders
which are replaced by the user goal for a dialogue have been
defined for the user responses to present to the VA [24].

e) Model Architecture: The architectures of the neural
network for all the domains, intent meta and controller policies
are as follows: Number of nodes in the input layer is equivalent
to the size of state space of each policy, followed by one
hidden layer with 75 nodes. Number of nodes in the output
layer is equivalent to the action set (options or primitive
actions) for each of the policies. The activation function of
the hidden layer is Rectified Linear Unit. The DDQN-PER
algorithm with experience replay memory is used as the
learning algorithm. The other parameters of the model are :
discount factor (γ) = 0.7, minimum epsilon = 0.15, experience
replay size = 100000, batch size = 32. The training is done
for 5000 dialogues for each of the policies and sub-networks.

IV. RESULTS AND ANALYSIS

To analyse the performance of the proposed system, ex-
periments were conducted for two distinct cases : (a) Case-1
: When the source and target domain have very little to no
overlap in terms of the presence of common slots. For e.g.,
Air Travel and Restaurant Info domains; (b) Case-2 : When
the source and target domain have significant overlap such that
majority of the slots of the source domain are contained within
the target domain. In this case, the intents in the source - target
domain pair are semantically similar. For e.g., Restaurant Info
and Hotel Info domains. Different slots for these domains are
shown in Figure 4.

We compare our Transfer Learning and Hierarchical Rein-
forcement Learning based approach with the following base-
lines :
• Flat DRL Agent : This agent is trained with a single state

space encompassing all the intents and slots of the source
- target domain pair collectively without any abstraction
or hierarchies, i.e., a flat DRL agent. It is also trained with
the DDQN-PER algorithm. This baseline is required to
compare the performance with the proposed hierarchical
dialogue system.

• Controller Policies trained independently (no Transfer
Learning) : For Hierarchical RL based approach, we train

TABLE I: Quantitative Analysis of the baselines and the
proposed systems. † represents that the results are statistically
significant

Baseline and Proposed System

Metric Flat DRL HDRL without HDRL with
Transfer Learning Transfer Learning

Average Dialogue
Length † 135.79 ± 55.87 22.32 ± 3.80 21.65 ± 3.56

Number of Dialogues
for Training † Convergence failed 4809 (Case-1) 3700 (Case-1)

(for a success rate of 0.8) 7830 (Case-2) 5000 (Case-2)

the controller policies or the sub-networks at the low level
of the target domain without any prior information or
knowledge from the source domain. No Transfer Learning
is applied from the source to target domain, thus, the
weights of the sub-networks are initialized randomly. This
baseline is required to show the importance of Transfer
Learning in building multi-domain dialogue systems.

We report Average Reward, Average Dialogue Length, Suc-
cess Rate and Number of Dialogues for Training as the metrics
for evaluation of Hierarchical RL and Transfer Learning
based approach. All the reported results below are statistically
significant as we have performed Welch’s pairwise t-test [25]
at 5% significance level. Thus, to ensure that no ambiguity was
introduced during training, the experiments were conducted for
20 times.

a) Comparison with the baselines: Figure 5 shows the
learning curves of the dialogue policies at different levels of
hierarchies (proposed multi-domain, multi-intent agent without
Transfer Learning) and the flat DRL agent for the Air Travel
- Restaurant Info (source - target) domain pair. For all the
agents, the results are reported for 60k learning steps. As is
evident from the learning curves that the flat DRL policy is
not improving or learning over time. Whereas the learning
curves of all the policies of the proposed system at different
hierarchies are linearly increasing over number of iterations
and then stabilize after a while when they learn efficient
policies with little fluctuations. This is supposedly because of
the abstraction exhibited in the hierarchical approach where
dedicated system actions for specific tasks are available at
different hierarchies rather than knitting them across multiple
domains. Thus, the increased complexity in the flat DRL agent
owing to flat state space and the lack of focused system actions
to handle multiple intents of the user for multiple domains
prevents it from learning an effective dialogue policy. Table I
shows the quantitative analysis of the baseline systems against
the proposed system.

Figure 6a and 6b shows the success rate of the controller
policies/sub-networks for Restaurant Info domain pre-trained
on Air-Travel domain, i.e., the first case having very few
overlapping slots. We see that models trained with prior
knowledge i.e., with Transfer Learning attains a success rate
of 80% much faster than the ones trained without Transfer
Learning thus, requiring lesser number of dialogue data to
converge to a decent policy. This gain is rather intuitive, as,
policies learnt at the source side have been leveraged upon to
learn newer policies at the target side. Whereas, for the model



(a) (b) (c)
Fig. 5: Learning Curves of dialogue policies at different levels of hierarchies and the baseline. (a). for Meta-Domain and
Flat DRL (baseline) policies, (b). for Meta-Intent Air-Travel and Restaurant Info policies, (c). for Controller Air-Travel and
Restaurant Info policies

(a) (b) (c)
Fig. 6: Learning Curves of controller policies/sub-networks for Restaurant Info with pre-training on Air-Travel domain (less
overlapping slots). (a). for Restaurant intent transferred from Ground Service, (b). for Price intent transferred from Ground
Fare, (c). for Restaurant intent transferred from Flight intent

(a) (b) (c)
Fig. 7: Learning Curves of controller policies/sub-networks for Hotel Info with pre-training on Restaurant Info domain
(significant overlapping slots). (a). for Hotel intent transferred from Restaurant, (b). for Hotel-Price intent transferred from
Restaurant-Price, (c). for Hotel-Restaurant intent transferred from Restaurant

without Transfer Learning, there isn’t any prior knowledge to
benefit from. On an average, Transfer Learning helped reduce
the data requirement by 28% - 32% in all the relevant cases
and 21% - 24% in absolute terms. This gain even further
escalates for the second case which has significant amount
of overlapping slots. Figures 7a, 7b and 7c show the success
rates of the controller policies/sub-networks for Hotel Info
domain pre-trained on Restaurant Info domain. In this case,
Transfer Learning based models achieved greater gains by
reducing the data requirement down to 38% to 44% on an
average for related cases and 34% - 37% in absolute terms.
This outcome is likely as plurality of the slots from the source
domain is contained within the target domain resulting in
greater contribution from the source side. This improvement
can be viewed in terms of faster learning as well. Transfer

Learning based policies attained an acceptable success rate
of 0.8 much faster than ones trained independently thereby,
reducing the training time. Thus, transferring the knowledge
between source and target domains indeed helps in faster and
better learning and performance of the VA. We also present
a case where there was no overlapping slot at all between
the source and the target side such that as one in Figure 6c.
Here, the model without Transfer Learning performed much
better than with Transfer Learning. This is because, when the
source and target networks don’t have any semantic similarity
or overlapping slots, transfer of weights can simply be viewed
as a form of random initialization with no prior information to
take aid from. Supposedly, in this case, transfer of knowledge
clearly nudged the neural network weights of the target side
much farther from the optimal weights.



V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a method of incorporating Transfer
Learning with Hierarchical Reinforcement Learning to develop
a task-oriented multi-domain, multi-intent system. Through
empirical results, we demonstrate how Transfer Learning can
boost faster and better learning and performance of the VA,
while additionally reducing the dependence on huge amount of
dialogue data for various domains. This notion is rather imper-
ative at a time when there is a dearth of good quality dialogue
data of varied domains for training such data intensive DRL
based models. Results are visualized for two distinct cases
such as one where the two domains have significant overlap
and the other where there is very little overlap in terms of
slots and intents.

Future works include investigating different HRL frame-
works to formulate VAs for this specific task. Also, exploiting
the benefits of Transfer Learning to curate VAs capable of
handling conversations in low-resource language will also be
addressed in the future work.
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