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Abstract—On account of a large scale of dataset need to be
annotated to fit for specific tasks, Zero-Shot Learning(ZSL) has
invoked so much attention and got significant progress in recent
research due to the prevalence of deep neural networks. At
present, ZSL is mainly solved through the utilization of auxiliary
information, such as semantic attributes and text descriptions.
And then, we can employ the mapping method to bridge the gap
between visual and semantic space. However, due to the lack of
effective use of auxiliary information, this problem has not been
solved well. Inspired by previous work, we consider that visual
space can be used as the embedding space to get a stronger ability
to express the precise characteristics of semantic information.
Meanwhile, we take into account that there are some noise
attributes in the annotated information of public datasets that
need to be processed. Based on these considerations, we propose
an end-to-end method with convolutional architecture, instead of
conventionally linear projection, to provide a deep representation
for semantic information to solve ZSL. Semantic features would
express more detailed and precise information after being feed
into our method. Besides, we use word embedding to generate
some superclasses for original classes and propose a new loss
function for these superclasses to assist in training. Experiments
show that our method can get decent improvements for ZSL
and Generalized Zero-Shot Learning(GZSL) on several public
datasets.

Index Terms—zero-shot learning, clustering, superclass loss

I. INTRODUCTION

We human beings have the ability to recognize an animal
with some descriptions even though we have never seen it
before. This process sounds not difficult for people but not
easy for computers. According to the traditional machine
learning process, the model can recognize such pictures in
the testing stage only after learning this type of picture in
the training stage. However, we do not always have the
cost to label each type of picture, and there will always be
new categories of objects we have never seen before. For
solving this situation, [1] proposed Zero-Shot Learning (ZSL).
According to this learning pattern, we only need to know some
descriptions of a class, and then we can classify it without
learning any specific picture.

ZSL consists of two parts, training stage and testing stage,
also known as inference. Moreover, the data would be divided
into two disjoint groups, seen class and unseen class. In
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Fig. 1. Usual method in zero-shot learning. Attribute lacking of enough ability
to express becomes the main defect in solving this problem.

the training stage, only the images of seen class and their
corresponding label are available. Images of unseen class are
limited only in the testing stage, where we use a model trained
only on seen class to classify unseen class. The most critical
part is to use auxiliary information to bridge the gap between
seen and unseen class. These types of information are called
side-information in this domain, such as semantic attribute and
text descriptions. Because whether it is a seen class or an
unseen class, we can use an attributes vector to describe it.
They share a list of attributes, except that the values within it
are different. For example, if the vector of attributes orderly
contains stripes, horse-like and black&white, the attributes
feature of tiger should be (1,0,0), the horse is (0,1,0), and
the panda is (0,0,1).

From this problem was proposed on, two main ways of solv-
ing ZSL arose, probability inference and feature projection. [1]
proposed to train a separate classifier for each attribute, and
use these classifiers to obtain an attributes vector for each test
image as its feature in the testing stage, and then compare
the similarity with the vector of unseen classes. This type
of method uses cross-class attribute and maximum likelihood
estimation to figure out the probabilities of unseen classes,
which is the basis of probabilistic inference methods. However,
it relies too much on the accuracy of attribute prediction,
and there is still a large gap between semantic feature and
visual feature of instance, which limits the development and
application of probabilistic reasoning methods.

With the rapid development of deep neural networks, the use
of which to map features has gradually become the mainstream
in recent research, and each brought decent improvements



compared to previous work. Regarding the prevailing pattern
where the model learns a projection between semantic space
and visual space, two major problems exist and hurt the per-
formance of the model. Domain shift [2]and hubness problem
[3], [4] are the two crucial problems and need to be solved.
One of the critical points for solving ZSL is the choice
of embedding space. Existing works often focus on mapping
the visual feature of target images into semantic space then
searching for the nearest semantic representation of the unseen
class, where the nearest class can be seen as the predicted
label. Nevertheless, this type of method still suffers severe
hubness problems, which means there are always some class
features that will become the hubness of most classes after
mapping, which may hurt the performance of ZSL. Unlike
conventional mapping of image features to semantic space in
SOC [5], EsZSL [6] and [7], DEM [8] proposed to consider the
semantic space as the embedding space, which can alleviate
the impact of the hubness problem on ZSL to a certain
extent. Based on the consideration that the visual space with
a much higher dimension has a stronger ability to express the
distinguishable feature, we follow this setting in our paper.
A conventional process of addressing the ZSL problem is
presented in Figure 1. We need to train our model with images
of seen class and only attributes of unseen class. So the scarcity
of annotated data is very prominent in our training process.
Traditional methods usually use a linear mapping to process
features like ALE [9], DeViSE [10], SJE [11] and DEM
[8]. However, this linear mapping method cannot essentially
optimize the original attributes. [12] argued that in the original
labeled data, there are some attributes, such as “inactive”,
“smelly” and “solitary”, which may affect the performance
on ZSL, because these attributes cannot be clearly expressed
on the image features, but are a kind of noise. The method of
linear mapping cannot handle these noises well. So we propose
to apply a convolutional architecture before the conventionally
linear mapping. Our convolutional architecture can filter those
weakly correlated attributes with a relu activation function.
Meanwhile, those attributes with a strong correlation stand
out to make the correct class be isolated from other classes.
The hubness problem would be alleviated well in this way.
Besides, we also propose to generate some superclasses for
original class with the embedding of class names to assist in
training our model. In many classic ZSL works [10], [13], [14],
word vectors are used to encode class names, but most of them
use it as a feature of the class to map. To our knowledge, we
are the first to use word vectors to generate superclasses and
assist in training. We think that this processing of class names
in a hierarchical manner can make the mapping results more
accurate, and the differences between superclasses would be
more significant.
Experiments show that our method could achieve superior
performance over the state-of-the-art (SOTA) approaches. The
main contributions of this paper are summarized as follows:

+ We propose a more complicated and practical method to
extend the information content of semantic features. This

method makes the semantic feature between classes more
distinguishable and representative.

e We consider the centroids of multiple homogeneous
classes as the superclasses to get the deep representations
of semantic attributes hierarchically and introduce a new
loss function into the training phase.

The rest of this paper is organized as follows: we will
introduce some related work in the ZSL domain in Section II.
Then we formulate the definition of this problem and go into
the details of our proposed method in Section III. Details and
results of our experiment presented in Section IV. Conclusions
and some future work in Section V.

II. RELATED WORK
A. ZSL

Zero-shot learning was first put forward by [1], and a classic
method DAP was proposed. This method trains a classifier for
every attribute once a time, then a test image is inferred by
searching the class, which attains the most similar attribute
set. This method uses knowledge shared between the seen and
unseen classes as a bridge to transfer information and lays
the foundation for subsequent research. Moreover, a method
[15] like DAP first gets each attribute classifier during the
training stage, but estimates the class posteriors through a
random forest, which can mitigate those unreliable attributes.
This type of probabilistic inference method generally employs
the attributes between seen and unseen classes to estimate the
maximum likelihood of the probabilities of unseen classes.

So far, with the significant progress of deep neural networks,
recent advances in ZSL mainly focus on learning a projection
method between visual space and semantic space. SOC [5]
maps the image features into the semantic space and then
compares and finds the nearest, i.e., the most similar, class
embedding vector. DeViSE [10] also learns a linear mapping
function between image and semantic attribute, but a designed
ranking loss function is added. EsZSL [6] simply uses the
square loss to learn the bilinear compatibility and explic-
itly regularizes the objective function. [16] transfers visual
features into the semantic attribute space and then learns a
metric to improve the consistency of the semantic embedding.
Nevertheless, these methods only connect visual space with
semantic space through simple linear mapping and do not
deal with attributes effectively. Recently, SAE [17] proposes to
enforce the image feature projected to the semantic space to be
reconstructed, then gets a semantic autoencoder to regularize
its original model. This design allows the mapping of visual
features to be trained to be more discriminative during the
reconstruction process. While most of the zero-shot learning
methods learn the cross-modal mapping between the image
and class embedding space with designed losses, there are also
some generative models [18]-[21] that represent each class
as a probability distribution using GAN [22] or VAE [23]
training. These generative models aim at generating pseudo
samples for unseen classes from seen classes, making ZSL
a supervised task. GFZSL [18] models each class-conditional
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Fig. 2. A whole process of our method. We should transfer the semantic attribute into visual space as same as the dimension of visual feature and then

search for the nearest class with the Nearest Neighbor algorithm, considering
some superclasses to calculate another loss between its corresponding feature
hierarchical semantic attributes.

distribution as a Gaussian and learns a regression function
that maps a class embedding into the latent space. GLaP
[19] assumes that each class’s conditional distribution follows
a Gaussian distribution and then generates virtual instances
of unseen classes from the learned distribution. [20] acts
in a similar way supposing class and visual embeddings of
categories are both represented by Gaussian distributions to
learn a multimodal projection.

Besides, both conventional setting and generalized set-
ting are considered as practical in recent work [24], [25].
Conventional setting restricts the search space during testing
only consisting of unseen classes, which seems not practical.
Therefore generalized setting was proposed in which seen and
unseen class are both included during testing. This setting may
hurt the performance of the previous ZSL method but often
has more practical implications.

B. Generalized ZSL

Zero-shot learning has been considered as not realistic for
being a restrictive set up as it comes with an assumption
of the image used during the inference stage can only come
from unseen classes. Therefore, generalized zero-shot learning
setting [26] was proposed to generalize the zero-shot learning
task to the case where both seen and unseen classes are
available at test time. Lots of methods on the Generalized
ZSL(GZSL) setting have been proposed and get some great
results. [27] argues that although the existing method has
reached beyond the human performance of the ImageNet
classification challenge, we still could not find a generalized
method to work at the challenge of object detection. It is a
task that not only needs to be able to detect the position and
label of the object but also needs to be able to reject unknown

it as the predicted label for the input image. In the training stage, we obtain
and the training image feature. Superclass forms the deep representation of

categories. So [28] proposes to use this idea to train an off-line
classifier first to classify the input image and then determine
whether to use ZSL or GZSL according to the classification
result.

III. PROPOSED METHOD
A. Problem Formulation

In this paper we formulate the target problem as follows:
the seen data S = {(z7, yf)}fil that consists of N*® images is
used as training set, where z¢ is the i-th image and y§ € Y
is its coreesponding label. Similarly the unseen dataset U/ =
{(z¥, yf)}f\il is used as the testing set.

The seen and unseen classes are disjoint, i.e.JJ‘S NyU =
0, YUY =Y. For each y € ), there is a corresponding
attribute vector a, € R¥. In the ZSL setting, the target class is
restricted only in unseen class where ) = VY. While search
space is expanded, for GZSL, to which both seen and unseen

classes are included where ) = VS U DX,

B. Architecture

Compared with previously simply linear projection, we pro-
pose to add a newly-designed deep convolutional architecture
to map the semantic feature into visual feature space:

v(z) = F(T(C(x))) (D

where C,T,F are respectively two convolutional layers
and one fully connected layer to transform semantic attributes
to the same dimensions as visual features. The « denotes a
vector of continuous attribute distribution. Detailed process is
presented in Figure 2.

For a given input z, that is the attribute distribution of
one class, the two convolutional layers can heighten the
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Fig. 3. Heatmap of the intermediate result for one class’s attribute distribution.
The changes in attribute distribution can be observed. The vertical axis on the
right represents the value of the attribute. The darker color equals a higher
value of an attribute to this class. The lighter color equals a lower value of
an attribute to this class.

dimension of the original attribute to a higher dimension,
where these two convolutional approaches can attain more
abundant information, and some of the noise attributes would
be removed due to the processing of the convolution kernel.
In the last stage, there is a fully-connected layer to transfer the
flattened vector into the visual space. We can get the target loss
by calculating the mean square error between the transferred
vector and the training image feature extracted by ResNet-101
[29]. Finally we get an output feature v(z) in 2048 dimension.
We also use a hierarchical process to generalize these features
further, which will be explained in Sec III-C later.

We argue that after the processing of these two layers, the
input vector, distribution of attributes for one class, will be
filtered without those weakly correlated ones. From Figure 3,
the upper one is a heatmap of the attribute distribution of
one class in AWA2. We can learn that all of the attributes
distribute unevenly. Given the attribute vector, only some
reliable correlation attributes are kept, and the rest have been
removed, like the lower one in Figure 3, which means all of
them are set zero.

Through these convolutional processes, the original seman-
tic feature can be regarded that those unrelated attributes would
be filtered, which makes our method focus on those strong-
related attribute distribution.

C. Loss Function

The loss function in our method consists of two parts. The
first one is the basic L7, which is calculated by the training
image y and its corresponding transformed class feature v(x),
as shown in Equation 2.

L = Loss(v(x),y) )

L1 allows the features of a class to be projected to the
center of the class of pictures in visual space.

Except for the loss between the image feature and class
feature mentioned above, we propose a second loss based on
the clustering of the class called superclass loss. We use this
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Fig. 4. t-SNE visualization of clustering result with K-means algorithm on
\WA?2 dataset. Homogeneous classes with similar visual characteristics are
divided into one cluster.
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Fig. 5. Evaluation of cluster number with Calinski-Harabaz score on AWA2
dataset. We set the steepest position as our K number.

hierarchical design to strengthen the training stage so that the
learned mapping method can focus more on the region where
those homogeneous classes belong, and make the transformed
feature space more distinguishable.

We firstly get an embedding for every class name using
Word2Vec [30]. Then use K-means [31] algorithm to cluster
those embedding of class, naming every new cluster as a
superclass. As illustrated in Figure 4, all of 50 classes can
be divided into three superclasses, e.g., humpback whale and
blue whale are in the same superclass. As for the visual feature,
they both are marine organisms, so that the blue background
is common in their images. We can get the features of a
superclass by calculating the sum and average of all the classes
in the cluster.

We use Calinski-Harabaz index score to evaluate the effect
in the K number and then choose the best one.

Supposed we have K clusters, for cluster £ = 1,2,... K
we define IV - total object number, nj - number of objects in
cluster K, ¢ - centroid, C, - indexes of objects.

The covariance matrix within cluster:

K
W:NiiKZZ(x—ck)(x—ck)T 3)

k=1x2€C}

And covaraince matrix between clusters:
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So the Calinski-Harabaz Index score is calculated by:

_ tr(B)
I= o) )

where tr(M) denotes the trace of matrix M.

From Figure 5, we can observe that K = 3 is the steepest
position corresponding to the curve. It is natural to find the
curve keep descending with an increasing K, as the score is
evaluated on the dispersion degree of classes. However, the
steepest place is we need because where gradient closes to
zero stands the best trade-off between the cluster number and
total quantity.

After we get the clustering result, we can then calculate the
feature of one cluster.

1 k
S; = %;v(%) (6)

where S; denotes the feature of i-th superclass and z;; € S;.
Supposing & classes are classified into this superclass, features
of this superclass is the the sum and average of all the classes
that belongs to it. Then conduct an MSE loss between the
initially visual feature and the attained feature.

Ls = Loss(S;,y) (7N

L could further improve the performance of the transferred
feature of classes and effectively alleviates the hubness prob-
lem, making the class more inclined to be projected to the
center point of its target region and then more distinguishable
in visual space.

Finally we get the total loss written as:

L=~Lp+als ®)

where « is a hyperparameter that controls the weight of our
superclass loss.

D. Prediction

Through our method, the semantic feature of the unseen
class will be projected into the visual space. Then we use
the Nearest Neighbor algorithm to search for the most similar
class for the test image. To predict the class label y“*, the
index of the maximum compatibility score can be chosen as
the predicted label:

y** = argmax v (z) )

where ¢ € YV in the ZSL setting and ¢ € ) in the GZSL
setting.

IV. EXPERIMENTS
A. Datasets and Settings

We conduct our experiments on 4 widely used datasets
for ZSL, AWA2 [32], CUB-200 [33], SUN [34] and aPY
[35]. AWAZ2, i.e., Animals with Attributes, consists of 30475
animal images from 50 different classes. Each of them is
associating of a continuously 85-D attribute vector. CUB-
200, i.e., Caltech-UCSD Birds-200-2011, contains a total of
11,788 bird images in 200 categories and 312 binary attributes
annotation for every class, which is usually used for image
classification and object detection tasks. SUN, i.e., Scene
UNderstanding research. Like the way how they conducted
in [36], we use 645 classes of SUN for training and the other
72 for testing. Each of them has 102 attributes. aPy, i.e.,
Attribute Pascal and Yahoo, is a small-scale dataset, which
contains 32 classes with 64 attributes. Twenty of them from
Pascal are used for training, and twelve of them from Yahoo
for testing.

Considering that the back-end model we use to extract the
feature of images is pre-trained based on the ImageNet dataset,
and part of them overlap with some unseen classes of the
experimental data, we follow the proposed way in [32] to split
the training set and test set for all of the four datasets during
our experiment to avoid interference with the results in this
case.

As for the visual feature, we use ResNet-101 as the back-
end model to extract the feature of images. No matter what the
dimensions of the original image are, they all are transferred
to (3,244,244) format.

Conventional ZSL setting is that only attributes of unseen
class can be attained during training, and only unseen class
would be predicted during testing. This scene seems not so
practical because we do not just classify in categories we
have never seen in reality. Therefore generalized ZSL setting
was proposed to fit this task into reality, which is both seen
and unseen class are used in the testing stage. Except for the
conventional ZSL setting, we also conduct our experiments in
the GZSL setting to verify the feasibility of our method.

B. Hyperparameters and Training Details

After several times of experiments, we found an initial
learning rate of le-5 and a batch size of 100, only 50 for aPY
because it is a small-scale dataset, can get the best performance
comparing other hyperparameters.

Another crucial hyperparameter is the number of clusters,
which is decided by Calinski-Harabaz score. We use sklearn
package to draw the score curve on different K number in
Figure 5. Where the slope of the curve changes the most is
where the clustering effect is relatively best. Finally, we get
K = 3 for AWA2 and aPY, K = 4 for CUB-200, and K = 6
for SUN. Lastly, @ value, which controls the weight of the
superclass loss in the total loss, is decided on the performance
in our experiments. The specific result is presented in Table II.

We found that most of the four datasets except aPY can
achieve better results when « is about 0.8 and can be improved



TABLE I
PERFORMANCE COMPARISONS IN THE ZSL AND GZSL SETTINGS ON SEVERAL DATASETS, AWA?2 [32], CUB-200 [33], SUN AND APY. T1=Top-1
ACCURACY, u = Accuracy ON YV s = Accuracy ON ), AND H = HARMONIC MEAN. THE BEST NUMBER IS MARKED IN RED. THE SECOND-BEST
SCORE IS MARKED IN BLUE. THE RESULTS OF OUR METHOD ARE PRESENTED AT THE LAST TWO ROWS. OURS MEANS THE PROPOSED METHOD, AND
OURS W/S 1S EQUIPPED WITH SUPERCLASS LOSS.

AWA2 CUB-200 SUN aPY
Model ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL
T1 u S H T1 u S H T1 u S H T1 u S H
DAP 46.1 0.0 84.7 0.0 40.0 1.7 67.9 3.3 399 4.2 25.1 7.2 33.8 4.8 78.3 9.0
IAP 359 0.9 87.6 1.8 24.0 0.2 72.8 0.4 194 1.0 37.8 1.8 36.6 5.7 656 | 104
ConSE 445 | 05 | 906 | 1.0 | 343 | 1.6 | 722 | 3.1 | 388 | 68 | 399 | 116 | 269 | 00 | 91.2 | 0.0
CMT 379 8.7 89.0 | 159 | 34.6 4.7 60.1 8.7 399 8.7 28.0 | 13.3 | 28.0 109 | 742 | 19.0
SSE 61.0 8.1 82.5 14.8 | 439 8.5 469 | 144 | 515 2.1 36.4 4.0 34.0 0.2 78.9 0.4
DeViSE 59.7 17.1 747 | 27.8 | 52.0 | 23.8 | 53.0 | 32.8 | 56.5 169 | 27.4 | 209 | 39.8 49 76.9 9.2
SIE 61.9 8.0 73.9 144 | 539 | 235 | 59.2 | 33.6 | 53.7 14.7 | 30.5 19.8 | 329 3.7 55.7 6.9
LATEM 55.8 11.5 | 77.3 | 20.0 | 49.3 152 | 573 | 240 | 553 14.7 | 28.8 19.5 | 352 0.1 73.0 0.2
ESZSL 58.6 5.9 77.8 11.0 | 539 126 | 63.8 | 21.0 | 54.5 11.0 | 279 | 158 | 38.3 2.4 70.1 4.6
ALE 62.5 140 | 81.8 | 239 | 549 | 23.7 | 62.8 | 344 | 58.1 | 21.8 | 33.1 | 26.3 | 39.7 4.6 73.7 8.7
SYNC 46.6 | 100 | 90.5 | 180 | 55.6 | 11.5 | 709 | 19.8 | 563 | 7.9 | 433 | 134 | 239 | 74 | 663 | 133
SAE 54.1 1.1 82.2 2.2 333 7.8 54.0 | 13.6 | 40.3 8.8 18.0 | 11.8 8.3 0.4 80.9 0.9
DEM 67.1 | 30.5 | 86.4 | 45.1 | 51.7 19.6 | 57.9 | 29.2 | 61.9 | 20.5 | 343 | 25.6 | 35.0 11.1 | 75.1 194
Ours 72.6 187 | 889 | 309 | 504 | 18.1 | 55.7 | 27.2 | 62.9 2.2 65.6 4.3 44.1 | 12.2 | 60.2 | 20.2
Ours w/S || 72.3 | 20.7 | 88.7 | 33.6 | 578 | 35 | 71.6 | 66 | 624 | 78 | 56.6 | 13.7 | 39.3 | 11.0 | 62.9 | 188
TABLE II the four datasets in the conventional ZSL setting. Respectively
ZSL PERFORMANCE OF THE «« CHOICE. BEST RESULTS ARE MARKED IN 55% improvement on AWAZ’ 22% improvement on CUB_
BOLD- 200, 1.0% on SUN and 4.3% improvement on aPY. This
a AWA2 [ CUB | SUN [ aPY result confirms the feasibility of our method. Comparing the
0.2 64.4 52.0 | 61.7 | 39.3 previous method, we assume the reason why our method can
0.5 64.9 524 | 624 | 276 . ; . . .
0.8 723 578 | 615 | 293 get this outstanding result is mainly the reinforcement feature
1.0 68.3 | 47.1 | 622 | 309 attained by our method. As we can see from Figure 3, our

compared to the case without adding a superclass. On aPY, the
addition of superclasses seems only to hurt the performance
of our method. As « increases, that is, the proportion of Lg
increases, it gradually becomes worse. We think that this is
because the categories in aPY are too different. Unlike the
other three datasets, there is no visually significant relationship
between the categories, which results in poor clustering results.
Moreover, in our experiments, only two superclasses were
generated from classes of aPY, which may adversely affect the
learning performance of our method during training, making
the generated class features not distinguishable enough.

C. Evaluation Metrics

We compare our proposed method with some other recent
methods on 4 popular datasets. Top-1 accuracy(ACC) was
adopted as the evaluation metric. Besides, to evaluate our
method in the GZSL setting, we follow conventional evalu-
ation protocol for GZSL. Suppose that ACC v denotes the
ACC for the testing samples only from the unseen classes,
and ACC,s denotes the ACC for testing samples only from
seen classes. Their Harmonic mean H is calculated as:

2 x ACCyv x ACCys

ACCyuv + ACCys
D. The Performance on ZSL

Our experimental results are shown in Table I. We can
observe that our method can get the new SOTA result on all of

(10)

method keeps and enhances those useful attributes and sets
those noisy ones as zero, which makes every class’s feature
more distinguishable and representative.

The most significant improvement is on AWA2, 50 classes
and 85 attributes in it, and the smallest improvement is on
CUB-200, 200 classes and 312 attributes in it. This discrep-
ancy may result from a different number of categories and
attributes. The second-largest improvement happens on aPY,
another small-scale dataset as same as AWA2. Clearly, under
the premise of improvement, our method performs better on
small-scale datasets than on large-scale datasets. This situation
is evident because more classes mean more difficult to be
distinguished in space with the same dimension.

E. The Performance on GZSL

Unlike ZSL, both seen and unseen classes are included in
the search space for GZSL. Our method does not perform
as well as conventional ZSL on GZSL but still gets three
best results. We use u# and s to represent the performance
of GZSL, which respectively denotes only unseen or seen
images used for testing in Table I. Our method performs
well in only seen classes included but poorly in only unseen
classes included. The result shows that our method has a
strong ability to transfer the class feature into visual space
accurately. However, on account of no unseen class appearing
in the training stage, the projected feature of the unseen class
seems not distinguishable and representative. Naturally, the
result of the unseen class does not perform well as expected.



TABLE III
TOP FIVE IMAGES CLOSEST TO CLASS FEATURES PROJECTED BY OUR METHOD ON THE AWA?2 DATASET. THE NUMBERS BELOW REPRESENT THE
EUCLIDEAN DISTANCE BETWEEN FEATURES OF THE PICTURE AND FEATURES OF THE CLASS EMBEDDING. THE CORRECT CATEGORY OF EACH PICTURE
IS ALSO MARKED BELOW THE PICTURE. PICTURES NOT IN THIS CATEGORY ARE MARKED IN ITALICS.

Representation .
of Class TOP-5 images
Horse
20.185
Horse
Dolphin —= =
20.597 21.517 22.097 22.111 22.362
Dolphin Dolphin Dolphin Dolphin Dolphin
=
Blue Whale -
19.212 19.402 19.435 19.727
Blue Whale Dolphin Dolphin Blue Whale Dolphin

The hubness problem still exists and affects our results to some
extent.

F. Superclass Performance

In our setup, we conducted two sets of comparative exper-
iments based on whether or not the superclass loss is added
to evaluate its performance.

We got an improvement in six results, three results de-
clined, and others stayed approximately equal(~2%). We think
that this design of the superclass gives our method more
information to learn and strengthen the ability to induce. A
superclass is made up of all the classes classified into it. This
further enhances the discrimination of the transferred features.
Just like the example we mentioned earlier, humpback whale,
blue whale, and dolphin all are marine organisms and belong
to the same superclass. Therefore, the characteristics of this
superclass will be more generic. Hence the addition of the
superclass will make our method tend to map other classes
belonging to the class into a specific region to reduce the
distance of intraclass and expand the distance of interclass.

To reveal the effect of our method, we randomly select
three test classes from the AWA?2 dataset and get the mapped
features of these classes to search for the closest five images
in the test sets, and the results are shown in Table III. We
can find that the features mapped by our method are very
close to the features of the pictures belonging to this class,
that is, they have a very high degree of similarity in visual
space. At the same time, we can see that three pictures of
dolphins appeared in the top-5 pictures of the blue whale,
which also shows that our design for superclasses is feasible
and reasonable. It connects these visually consistent class to

enhance the mapping ability of our method, so we can achieve
better results when solving the ZSL problem.

V. CONCLUSIONS

In this paper, we argue that the visual space has a stronger
ability to project class features, so the visual space is used as
embedding space in our experiments. Moreover, we replace the
conventionally linear projection with a convolutional architec-
ture. The semantic features obtained after mapping can be a
more distinguishable representation without the interference
of noise attributes. Besides, we propose to use superclasses
to represent those classes within the same cluster, and then
add a new loss function in the training stage. The hierarchi-
cal processing of categories can make the mapped features
more distinguishable and the distance between each superclass
larger. Our method can get a SOTA result in the ZSL setting
and performs well in the GZSL setting. It confirms that our
proposed method can indeed enrich the information hidden in
semantic attributes, help filter those weakly correlated ones,
and alleviate the hubness problem by considering the visual
space as the embedding space. Lastly, the superclasses provide
a hierarchical architecture to help the output feature be more
distinguishable and improve the final performance on several
datasets.

In the future, we will continue to move forward based on
our present work. We consider adding more modules into
our architecture in a positive direction. The popular self-
attention mechanism seems to fit the idea of the method
proposed in this paper. We consider adding this mechanism
to the structure we designed, hoping to achieve better results.
Meanwhile, we think that the clustering method applied in
our experiments is still too naive. It simply clusters the class



names and does not take into account the more realistic
correlation between the classes. At the same time, the feature
representation of superclasses is only obtained by summing
and averaging, ignoring the correlation between the classes in
each superclass. Weighting each class and then obtaining a
feature representation for the superclass sounds more reliable.
All these will be carried out in our subsequent work.
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