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Abstract—Depth completion is becoming a particularly impor-
tant yet challenging problem with the growingly rapid progress
of depth sensing technologies. Depth completion aims to complete
sparse and noisy depth images to generate dense depth images.
In this paper, we propose a multiscale adaptation fusion network
(MAFN) for depth completion. The depth features are fused with
RGB features at multiple scales with adaptation modules, where
a neighbour attention mechanism is designed to adapt the local
structures of the RGB image and the depth image. The fusion
and completion process are unified under the encoder-decoder
framework which is learned in an end-to-end way. By exploiting
the detailed structural relationships of RGB images and depth
images, our MAFN model can accurately complete and restore
the invalid depth values on the sparse depth images. We test the
proposed method on the challenging KITTI depth completion
benchmark. The experimental results prove the effectiveness and
strength of the proposed method.

Index Terms—depth completion, adaptation fusion, neighbour
attention, neural network

I. INTRODUCTION

With the rapid development of depth sensing technologies
such as ToF, LiDAR, and RADAR, depth data is playing
increasingly important roles in myriads of applications such
as automatic vehicles and intelligent robots. Depth data could
provide precise and reliable range and geometry information
for surrounding environments. However, limited by the tech-
nology bottleneck of depth sensors (such as scan discontinuity
in LiDAR) and the influence of natural scene conditions (such
as strong surface reflection of objects), the captured depth
images are often very noisy and depth values of many pixels
are missing. These factors make the depth data inaccurate and
unreliable. In the public KITTI depth dataset [1], the sampling
points with valid depth values usually only account for a very
small portion of all the pixels in the LiDAR depth image. This
would lead to huge errors in applications due to the lack of
complete depth information. Thus, it is of great importance to
repair the sparse depth images.

Given a sparse depth image with invalid depth values such
as noise and holes, depth completion aims to generate a dense
depth image by completing and recovering the invalid depth
values, as shown in Fig. 1. Some previous studies take a sparse
depth image as input and adopt traditional filtering methods [2]
or neural network models [1], [3] to estimate the missing depth
values. However, sparse depth images themselves are usually
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Fig. 1. The illustration of depth completion. Our network takes a sparse
depth image and a corresponding RGB image as inputs and outputs a dense
depth image. The RGB image provides abundant information in local regions
for guiding the depth completion. After depth completion, the point clouds
become dense.

insufficient to recover the missing depth values due to wide-
range discontinuity or large black holes. With the development
of new depth sensors which can capture depth images and
the corresponding RGB images simultaneously, most recent
approaches [4]-[6] integrate depth images and RGB images
for depth completion, which has been demonstrated to perform
better than the approaches with depth images only. Actually,
RGB images provide rich information such as semantics,
geometric structures, neighbour relationships, boundaries, and
region discontinuity, which serve as hidden priors to guide
the recovery of depth images. Thus, in this paper, we use both
depth images and RGB images for depth completion.

While the previous studies have made considerable progress
in integrating RGB and depth information for depth com-
pletion [5], [7], [8], most of them combine RGB and depth
features by simple addition or concatenation. Such fusion
obscures the corresponding relations between RGB features
and depth features and cannot effectively utilize the hidden
local structure information, which therefore may lead to unsat-
isfactory results. Though RGB features are beneficial to guide
the depth value recovery, how to integrate RGB features and
depth features should be learned from data rather than simple
concatenation or addition.

In this paper, we propose a multiscale adaptation fusion



network (MAFN) to integrate depth and RGB features for
depth completion. Different from previous approaches sim-
ply concatenating or adding the features, our MAFN model
integrates depth and RGB features by multiscale adaptation
modules, where the fusion of the two type of features is
learned from data. Inspired by the observation that the essence
for depth completion is to infer the missing values from the
surrounding neighbours, in each adaptation module a neigh-
bour attention mechanism is adopted to enhance the adaptation
of RGB features and depth features in neighbourhoods. The
fusion and completion process are unified under the encoder-
decoder framework which is learned in an end-to-end way. Our
model is trained and validated on the KITTI depth dataset [1],
which is one of the representative public datasets of outdoor
scenes for depth completion. The results of comprehensive
experiments demonstrate effectiveness and strength of the
proposed method.

II. RELATED WORK

We review the related work of depth completion from the
following streams of research.

A. Depth Estimation

Depth estimation aims to directly infer a dense depth map
only from an RGB image by learning a mapping relationship
from RGB images to depth images. Actually, limited by the
acquirement of depth sensors, obtaining a dense depth image
from an RGB image is a simple and direct approach. Early
studies [9], [10] are mainly based on hand-crafted feature
extraction. When neural network models show great ability
in image processing, most current studies have shifted their
attention to the combination with neural networks. Liu et
al. [11] proposed a deep convolution neural field model based
on CNN and CRF. Chen er al. [12] designed a structure-
aware residual pyramid network to learn multi-scale structure
features. Xu et al. [13] introduced a continuous CRF to
combine multi-scale features extracted by convolutional neural
networks with structured attention modules. Cheng et al. [7]
proposed a convolutional spatial propagation network to learn
affinity matrices.

Depth estimation is a different task from depth completion
but can provide much inspiration for depth completion. Depth
estimation methods are often limited by manually defined
scene constraints and therefore the estimated depth values are
not always accurate.

B. Depth Completion

Compared with depth estimation, depth completion seeks
to generate a dense depth map mainly from a sparse depth
map, i.e. from ‘sparse’ to ‘dense’. Some depth completion
approaches only take depth images as inputs while more
studies try to add additional RGB images as guidances to
predict the dense depth images. Some early studies [2], [14],
[15] exploited hand-crafted features to produce a dense depth
map from a sparse depth map. With the advancement of neural
network models, Uhrig et al. [1] proposed an efficient sparsity

invariant convolution model which takes the locations of the
missing values into consideration. In current studies, RGB
images are proved to be of great help for depth completion,
as RGB features can provide additional detailed semantic
information. Zhang et al. [16] proposed to predict surface
normals and occlusion boundaries, and then used a global
optimization for depth completion in indoor scenes. In outdoor
scenes, Eldesokey et al. [6] proposed a normalized convolution
operation to deal with irregular and sparse depth data and
propagate confidence through CNNs. Ma er al. [17] designed a
deep regression framework by self-supervised learning without
ground-truth depth image. Huang et al. [4] proposed three
sparsity-invariant operations to utilize multi-scale features for
handling the sparse data. Jaritz et al. [5] promoted the depth
completion by combining it with semantic segmentation task.
Yang et al. [18] presented a system to infer the posterior
distribution of a dense depth map for depth completion. Qiu et
al. [19] proposed an encoder-decoder framework which uses
surface normal for depth completion.

These studies have achieved much progress in depth com-
pletion. However, how to effectively learn the relations be-
tween RGB and depth features remains an open problem,
which inspires us to pursue new frameworks for depth com-
pletion.

C. Data Fusion

The ways of depth and RGB feature fusion for depth
completion mainly consist of early fusion [7], late fusion [5],
[8], and multi-level fusion [20]. Early fusion means the RGB
image and depth map are combined at the initial stage, and
then jointly sent to neural networks for extracting features. The
late fusion refers to combining the RGB features and depth
features at the end stage. Multi-level fusion means feature
extraction and combination alternate at multiple levels. Cheng
et al. [7] proposed to learn the affinity among neighboring
pixels using CNN with early feature fusion of RGB and depth.
On the other hand, some other studies prove that late fusion
can achieve better performance than early fusion. The work
[5], [8] adopted a late feature fusion scheme, which uses two
streams to extract RGB and depth features separately in the
encoder stage, and then combines them to perform upsampling
operation in the decoder stage. Wang et al. [20] integrated
multi-scale RGBD features for depth completion, while Hu et
al. [21] aggregated RGB and depth features at multi level for
semantic segmentation.

One major drawback of these methods is that they integrate
RGB and depth features by simple addition or concatenation,
which cannot effectively utilize the hidden local structure
information. Inspired by these approaches, we propose a
multiscale adaptation fusion network, which learns from data
to preferably combine the features of RGB and depth at
multiple scales.

III. MODEL

In this section, we introduce the proposed multiscale adap-
tation fusion network model.
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Fig. 2. The proposed multiscale adaptation fusion network (MAFN). The network takes a sparse depth image and a corresponding RGB image as inputs,
and predicts a dense depth image. The features are integrated at multiple scales via the proposed adaptation fusion modules (AFM).

A. Network Architecture

Fig. 2 shows the general architecture of our multiscale
adaptation fusion network (MAFN). The inputs of the model is
the sparse depth image to be recovered and the corresponding
RGB image. The output is the recovered dense depth image.
As shown in Fig. 2, from the left to right, the general structure
of our MAFN is under an encoder-decoder framework. The
encoder aims to extract and integrate RGB and depth features,
and the decoder seeks to recover the output depth image from
the fusion features.

The encoder structure mainly consists of two paralleled
streams which address the sparse depth image and the RGB
image respectively. The two streams share identical structures
but have different parameters. Each stream is composed of four
convolution blocks where the first block has one convolutional
layer with 32 convolutional kernels (kernel size 3 x 3 and
stride 1). The other three convolution blocks contain three
convlutional layers where the stride is 2 in the first layer and
1 in the other two layers. The sizes of all the kernels are all
3 x 3 and the kernel number in the three blocks are 32, 64,
and 128 respectively.

Between the RGB and the depth streams, four adaptation
fusion modules (AFMs) connect the two streams and integrate
the features at different convolution scales, as the triangle
blocks shown in Fig. 2. After each convolution block, the
features separately extracted in the RGB stream and the depth
stream are input into the adaptation fusion module. The fused
features output from AFM pass through a transition layer to
produce new features which are then added to the outputs of
the next AFM. The transition layer performs the convolution
operations with the kernel size 3x 3 and the stride 2. The kernel
numbers of the three transition layers at different scales are
32, 64, 128, respectively. It should be noted that the feature
fusion with AFM is not the simple concatenation or addition
of different features. In Section III-B, we will introduce the
inner structures of the adaptation fusion modules in detail.

The final fusion features output from the four AFMs are
fed to ResBlocks module which consists of five cascaded
residual blocks [22] for further deepening the features without
losing the resolution. The features output from ResBlocks
module are input into the residual atrous spatial pyramid
pooling (ResASPP) [23] module, which is used for learning
combination of the features with different receptive fields.
The ResASPP consists of three ASPP groups, each of which
contains three dilated convolutions with dilation rate of 1, 4, §,
and then these three groups are added in a cascading manner.

In the decoder, the feature maps are upsampled three times
with four deconvolution layers to output the ultimate dense
depth map. The kernel number of the four deconvolution
layers are 64, 32, 32, and 1 respectively. For better feature
fusion and upsampling, we also add the skip connections by
concatenating the features of the depth stream in the encoder
with the corresponding one of the decoder.

B. Adaptation Fusion Module

In order to integrate the RGB and depth features, we design
adaptation fusion modules (AFMs) which connect RGB and
depth streams at different scales, as the triangle blocks AFM
shown in Fig. 2. The inside structure of one AFM is shown in
Fig. 3. An AFM receives the features from the RGB stream
and the depth stream respectively. Inside the AFM, the features
from the two streams separately pass through the neighbour at-
tention module (NAM) to extract local neighbouring relational
information among pixels. After the NAM, the RGB and depth
features are concatenated to feed two cascaded convolution
blocks and output the fusion features, as Conv4 and Conv5
shown in Fig. 3. The Conv4 is an one- layer convolution with
kernel size 1 x 1. The Conv5 is a residual convolution layer
[22].

The essence of depth completion is to infer the missing
depth values from its neighboring pixels. The RGB image
provide rich semantic information of local region relationships.
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Fig. 3. The proposed adaptation fusion module (AFM). The features from RGB stream and depth stream are input into neighbor attention modules respectively.
Then the features are concatenated and fed into two convolution blocks which output the fusion features.

Therefore we design two paralleled neighbor attention mod-
ules to combine the information of RGB and depth in local
regions.

As shown in Fig. 3, suppose F' denotes the feature map
of RGB stream or depth stream that is input to the adaptation
fusion module. The feature map F' is downsampled to half the
size of the original resolution by a general convolution block
with a kernel size 3 x 3 and a stride size 2, as Convl shown
in Fig. 3. Then in order to exploit the relationship of pixels
in local regions, we use the nearest neighbor upsampling,
enlarging the feature map to the same size as the original
feature input, as ‘U’ shown in Fig. 3. Next, we add a
1 x 1 convolution to perform information integration across
channels, as Conv2 shown in Fig. 3. A softmax activation
function is applied to the output of the Conv2 module and
produces the ultimate weighted map W with values between
0 and 1. Finally, a pixel-wise multiplication is conducted for
the input feature map and the weight map, whose result is
added to the input feature map to produce the weighted feature
vector F”. This process is expressed as:

F'=F+W®F, (D

where ® denotes the element-wise multiplication.

The weighted feature map F” is fed to a convolution module
Conv3 to produce the features output from the neighbour
attention module. The convolution module Conv3 has a 3 x 3
kernel with stride 1.

C. Loss Function

We use the Mean Squared Error (MSE) to calculate the loss
between the predicted dense depth image and the ground truth
depth image. The MSE loss function is defined as

1
L= > IDE,; = DI,
i,7Cm

2
m|

where Df’ ; and Digfj represent the predicted depth value
and the corresponding ground truth value at location (,7)
respectively. m is the set of valid pixels in ground truth and
|m| denotes the number of the set elements. In practice, the
ground truth depth map for depth completion is semi-dense.
Thus following the standard evaluation metrics in other work
[1], we compute the valid pixels in ground truth.

IV. EXPERIMENTS
A. Dataset and Setting

Dataset. We test the proposed method on the challenging
KITTT depth completion dataset [1]. It is one of the most
challenging public evaluation datasets for depth completion,
containing 85898 frames for training, 6852 frames for valida-
tion, 1000 frames for evaluation, and 1000 for test on online
server, with depth images and corresponding RGB images. The
ground truth depth values are created by projecting LiDAR
points into the image plane and accumulating 11 LiDAR scans
from frames around the current frame. Following other studies,
we crop the size of all data (includes RGB images, sparse
depth maps, ground truth) to the resolution of 256 x 1216
during training. Furthermore, we horizontally flip all inputs at
random for data augmentation.

Evaluation metrics. We adopt four metrics to evaluate
and compare different approaches: root mean square error
(RMSE), mean absolute error (MAE), root mean squared error
of the inverse depth (iRMSE), and mean absolute error of
the inverse depth (iMAE). The metric units of RMSE, MAE,
iRMSE, and iMAE are millimeter (mm), millimeter (mm),
1/kilometre (km), and 1/kilometre (km), respectively. Since
RMSE is the decisive evaluation metric for ranking all methods
submitted on KITTI depth completion benchmark [1], we
mainly use it to compare our approach with others. Other
evaluation metrics are used as references.

Implementation details. Specifically, two GTX 2080Ti
GPUs are used for training with batch size of 8. We adopt



TABLE I
COMPARISON WITH THE OTHER METHODS ON THE TEST SET OF KITTI
DEPTH COMPLETION DATASET [1]. NOTE: THE ROOT MEAN SQUARE
ERROR(RMSE) IS THE DECISIVE METRIC RANKING ALL METHODS ON
THE KITTI DEPTH COMPLETION BENCHMARK.

Method RMSE MAE iRMSE | iMAE
(mm) (mm) (1/km) (1/km)
SparseConv [1] 1601.33 | 481.27 4.94 1.78
IP-Basic [2] 1288.46 | 302.60 3.78 1.29
NConv-CNN [6] 1268.22 | 360.28 4.67 1.52
Spade-sD [5] 1035.29 | 248.32 2.60 0.98
ADNN (3] 1325.37 | 439.48 59.39 3.19
DFuseNet [8] 1206.66 | 429.93 3.62 1.79
CSPN [7] 1019.64 | 279.46 2.93 1.15
Spade-RGBsD [5] 917.64 234.81 2.17 0.95
NConv-CNN-L2 [6] 829.98 233.26 2.60 1.03
DDP [18] 832.94 203.96 2.10 0.85
Sparse-to-Dense [17] 814.73 249.95 2.80 1.21
HMS-Net [4] 841.78 253.47 2.73 1.13
Ours 803.50 279.37 3.02 1.48

Adam [24] as the optimizer with an initial learning rate of
103 which is decayed to 10~* at 20, weight decay of 106
and betas (a coefficient used to calculate the average value of
the gradient run and its square) of (0.9, 0.999). We also add
an Instance Normalization [25] layer after each convolutional
layer.

B. Comparison with State-of-Art

We perform overall comparison with other methods on
KITTI depth completion benchmark [1]. In order to avoid
overfitting, the ground truth of the test set are not provided
and all the results should be submitted to an online server
for evaluation'. The quantitative comparative results of our
proposed method with other previous related approaches are
listed in Table I. In this table, the first five rows of methods
only use depth images for depth completion and other methods
use both depth images and RGB images.

On this dataset, our approach achieves an RMSE of 803.50,
which outperforms other methods by a large margin. Different
from other methods which simply add or concatenate the RGB
and depth features, our method integrates these two types of
features at multiple scales in an adaptation fusion way, which
makes our method achieve a better performance.

Some visual qualitative comparison with some methods are
shown in Fig. 4. As the regions of the dashed line boxes shown
in this figure, it is clear that our approach maintains better
details in some local regions of the depth maps. Furthermore,
this figure also shows that our method can reconstruct the
missing depth values better. The proposed method combine
the multi-scale features with different receptive fields, which
could capture multi-level semantic and detailed information.

Thttp://www.cvlibs.net/datasets/kitti/eval_depth.php

TABLE II
QUANTITATIVE COMPARISON WITH DIFFERENT FUSION SCHEMES AND
MODULES ON THE SELECTED VALIDATION SET OF KITTI DEPTH
COMPLETION DATASET [1]. HERE ‘W/O” MEANS ‘WITHOUT’ AND ‘W’
INDICATES ‘WITH’.

Scheme RMSE MAE iRMSE | iMAE
(mm) (mm) (1/km) (1/km)
RGB Only 3430.61 | 1632.46 11.10 6.95
Depth Only 1041.02 344.08 4.09 1.78
Early Fusion 918.91 308.71 3.47 1.61
Late Fusion 851.98 283.30 3.02 1.43
Multiscale Fusion 863.41 290.45 3.18 1.49
AFM w/o NAM 832.94 278.62 3.00 1.39
AFM w NAM 826.72 269.86 2.99 1.36

C. Ablation Study

Since the ground truth of KITTI [1] test set are not provided,
to validate the effectiveness of our designed modules, we
conduct ablation studies with the selected validation set on
the KITTI dataset. We compare different fusion schemes and
modules as follows. The ablation study results are shown in
Table II.

1) RGB Only. We consider the way to directly predict a
dense map only from RGB images. As shown in Table II,
the results are with huge errors. Actually, it is ambiguous
to generate a depth value because the RGB image cannot
provide precise 3D information in the world coordinates.

2) Depth Only. This method only takes sparse depth maps as
inputs without the corresponding RGB images. The RMSE
on the selected validation set is more than 1000.0, which
indicates that it is very hard to restore depth values only
relying on a sparse depth map without the guidance of the
RGB information.

3) Early Fusion. We concatenate the sparse depth map (1
channel) and the RGB image (3 channels) as inputs (4
channels), which are then input into a single stream net-
work. The performance is improved slightly compared to
the RGB Only method and the Depth Only method.

4) Late Fusion. Two paralleled streams extract RGB and
depth features respectively, which are then added before
the upsampling operation. It performs better than the
above three ablation methods but still much lower than
the proposed method. Indeed, it just combines the high-
level information, ignoring the utilization of low-level
information. Consequently, it cannot achieve satisfactory
results compared to the proposed method.

5) Simple Multiscale Fusion. We replace our adaptation
module with simple addition operation at multiple scales.
As shown in Table II, it has a lower performance than our
proposed method with the adaptation fusion module, which
proves the effectiveness of the adaptation fusion design.

6) Adaptation Fusion without neighbor attention module
(NAM). We also validate the effectiveness of our neighbor
attention design by excluding it from each adaptation
fusion module. Compared with the proposed method with
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Fig. 4. Comparison of visual results with other methods on KITTI Depth dataset [1].Intuitively, the generated depth maps by our method have more detailed
structures, such as some regions such as cars and poles marked with the dashed line boxes.
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Fig. 5. The performance comparison of different fusion schemes at different
levels of sparsity. EF, LF and MF refer to early fusion, late fusion, and simple
multiscale fusion, respectively.

NAM, this method has a lower performance, which demon-

strates the effectiveness of the neighbor attention design.

All these ablation study results show that the proposed
MAFN framework is reasonable, effective, and advantageous.

Additionally, we compare the performance of different
schemes at varying levels of sparsity, as shown in Fig. 5. We
conduct a sub-sampling on the raw LiDAR depth map with
the sparsity ratio of 0.80, 0.85, 0.90 and 0.95. The lower ratio
means the depth image is more sparse. Under all these sparse
conditions, our method performs better than other comparison
approaches. It proves that our model has better generalization
ability in the sparse situations.

V. CONCLUSION

In this paper, we propose a multiscale adaptation fusion
network (MAFN) to combine the information of RGB and
depth for depth completion. In order to infer the relational
information among local pixels, we propose a neighbor at-
tention to reason about depth values from neighbors. The
fusion and completion process are unified under the encoder-
decoder framework which is learned in an end-to-end way.
By exploiting the detailed structural relationships of RGB
images and depth images, our MAFN model can accurately
complete and restore the invalid depth values on the sparse
depth images. Extensive comparison and ablation experiments
demonstrate that our proposed method is reasonable, effective,
and advantageous.
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