
Forest Fire Control with Learning from
Demonstration and Reinforcement Learning

1st Travis Hammond
University of Groningen

Groningen, The Netherlands
dashdeckers@gmail.com

2nd Dirk Jelle Schaap
University of Groningen

Groningen, The Netherlands
d.j.schaap@student.rug.nl

3rd Matthia Sabatelli
Montefiore Institute

Liège, Belgium
m.sabatelli@uliege.be

4th Marco A. Wiering
University of Groningen

Groningen, The Netherlands
m.a.wiering@rug.nl

Abstract—This paper describes a novel approach to control
forest fires in a simulated environment using connectionist re-
inforcement learning (RL) algorithms. A forest fire simulator is
introduced that allows to benchmark several popular model-free
RL algorithms that are combined with multilayer perceptrons
that serve as a value function approximator. For our experiments,
we test in total four different algorithms: Q-Learning, SARSA,
Dueling Q-Networks and a novel algorithm called Dueling-
SARSA. To enable the algorithms to better cope with the
difficulty to contain the forest fires when they start learning,
we use demonstration data that is inserted in an experience-
replay memory buffer before learning. In the experiments, the
performance of these algorithms are compared under different
experimental setups ranging from the complexity of the simulated
environment to how much demonstration data is initially given.
The results show that the demonstration data are necessary to
learn very good policies for controlling the forest fires in our
simulator and that the novel Dueling-SARSA algorithm performs
best. Furthermore, the results indicate that the used on-policy
algorithms are better able to use the demonstration data than
the off-policy algorithms.

Index Terms—Reinforcement learning, Multilayer perceptrons,
Forest fire control, Dueling-SARSA

I. INTRODUCTION

In 2019 there were very large forest fires in Siberia, the
Amazon, Central Africa and Australia. Forest fires result in the
tragic loss of lives and houses and have very large ecological
consequences. Trees and plants are a key factor in the carbon
cycle [1]. Using photosynthesis massive amounts of CO2 are
filtered from the atmosphere and stored. When fires destroy
large forests, all this stored CO2 is released back into the
atmosphere, which leads to more global warming and this will
also increase the likelihood and risk of future forest fires.

Fighting these forest fires is a challenging task. To ex-
tinguish a fire one or more of the following three required
elements have to be eliminated: fuel, heat or oxygen. The
ordinary tactic is to remove the heat and oxygen by spraying
water or foam from hoses or aircraft, but large forest fires
require more effort to be contained. Possible options include
burning down specific areas in a controlled fashion or using
bulldozers to cut fire lines. These techniques limit the further
propagation of the fire by creating fire lines, which are areas
consisting of not burnable material. This paper focuses on a
single agent that has the aim to cut optimal fire lines around
a simulated expanding forest fire.

There is still not much research being done in the field of
artificial intelligence to optimize forest fire control strategies.
The CHARADE project [2] led to the first large software
platform for the development of intelligent decision support
systems and was designed to construct plans for controlling
forest fires. The planning system used case-based reasoning
and was integrated with a Geographic information system and
a model for simulating forest fires. Other research has been
done on the detection and prediction of forest fires. In [3], the
authors outline how reinforcement learning algorithms could
be used to optimize forest fire control policies by interacting
with a forest fire simulator. Later research explored the use
of the enforced sub-populations (ESP) algorithm to evolve
neural network controllers capable of controlling forest fires
in a simulated environment [4], and a model of multi-agent
coordination in fire-fighting scenarios [5].

Contributions. In this paper, we explore how connectionist
reinforcement learning (RL) can be used to allow an agent to
learn how to contain forest fires in a simulated environment
by using a bulldozer to cut fire lines. For this purpose, we
developed a novel simulator that is used to train an agent to
control forest fires. We introduce a new RL algorithm called
Dueling-SARSA and compare it to three existing algorithms:
Q-Learning [6], SARSA [7] and Dueling Q-Networks [8]. To
deal with the large number of possible states, all algorithms
are combined with multilayer perceptrons (MLPs) to learn
the state-action value function. Because an agent trained from
scratch will initially almost never stop an expanding forest fire,
we employ an algorithm to generate initial demonstration data
that can be easily integrated in the experience-replay method
[9]. Different experiments are performed with two different
sizes of the forest area and we examine the effects of using
different amounts of demonstration data. The results show
that the use of enough demonstration data is important to
successfully learn to control the forest fires in the simulator.
Furthermore, the results show that the novel Dueling-SARSA
algorithm obtains the best performances of all tested algo-
rithms. Finally, we observe that the used on-policy algorithms
are better able to use the demonstration data than the off-policy
algorithms.

Paper outline. In Section II we describe the used reinforce-
ment learning algorithms. Section III explains the workings of
the forest fire simulator, the used reward function and the state

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

representation. Section IV gives the experimental setup, and
Section V presents the results. Finally, we conclude the paper
in Section VI.

II. REINFORCEMENT LEARNING

Reinforcement learning [10] is a machine learning paradigm
that consists of an agent learning from its interaction with
an environment. These environments can come in different
forms, ranging from board-games and video-games [11, 12], to
robotic simulators [13]. In this paper, we consider a simulation
of a forest fire that needs to be contained. At each discrete time
step t ∈ {1, 2, 3..., T}, the environment provides the agent
with an observation of the current environmental state st ∈
S. This allows the agent to interact with the environment by
choosing an action at from a set of possible actions A =
{1, ...,K}. The result of taking a particular action is a new
state st+1 which is associated with a reward rt. The interaction
between the agent and the environment can be modelled as
a Markov Decision Process (MDP) where the probability of
visiting state st+1 is only dependent on the previous state st
and the performed action at. The goal of the agent is to select
actions such that the cumulative future reward from the current
time step t is maximized. This is called the return Rt defined
as:

Rt =

T∑
t′=t

γt
′−trt′ , (1)

where T is the time step at which the simulation terminates and
γ ∈ [0, 1[is the discount factor that determines the trade-off
between the importance of immediate and delayed rewards. A
policy π is a mapping of states to actions (or distribution over
actions). The optimal policy π∗ leads to the highest return
as defined in Equation (1). In value-function based RL, an
algorithm does not search for the optimal policy directly, but
aims to learn the optimal action-value function (also known
as Q∗), defined as:

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π]. (2)

When the MDP is completely known, the Q-function can
be computed by using dynamic programming methods that
iteratively update the Bellman equation:

Qi+1(s, a) =
∑
s′ P (s

′|s, a)[R(s, a, s′)+
γmaxa′ Qi(s

′, a′)].
(3)

In this case P (s′|s, a) is the probability of observing state
s′ after executing action a in state s, and R(s, a, s′) is the
expected reward obtained after executing action a in state s
and ending up in state s′. Such a value iteration algorithm will
eventually converge to the optimal Q-function Q∗ as i → ∞
[10]. Once the Q-function is learned, the optimal policy can
easily be derived by simply taking the highest-valued action
in each state:

π∗(s) = argmax
a

Q∗(s, a) (4)

For most practical problems, the transition function is
not known and the state space is very large, continuous or

unknown and therefore dynamic programming cannot be used.
In this case, connectionist reinforcement learning can be used
and this approach has led to many successful results. In con-
nectionist reinforcement learning, the goal is to approximate
the Q-function with Q(s, a; θ) ≈ Q(s, a), which is a neural
network parameterized by weights θ. The neural network is
then trained by an RL algorithm on experiences that result
from the interaction of an agent and the environment.

A. Reinforcement Learning Algorithms

We start by defining the neural architecture used by the RL
agent. We use a single hidden-layer perceptron with 50 hidden
units that are activated by a sigmoid non-linearity. The network
takes as input a state representation and outputs an array
of size K (K = 4 in our experiments), which corresponds
to the Q-values of taking any of the possible actions. The
network is trained with the Adam optimizer [14] over mini-
batches of experiences et = (st, at, rt, st+1) which are stored
in an experience-replay memory buffer Bt = {e1, ...et}. The
buffer allows for the storage of M experiences, once it is full
the oldest experiences will be discarded to make room for
new ones. Using an experience-replay buffer is a well-known
strategy for improving the stability of RL algorithms which
use a function approximator: it decorrelates the inputs that
are used for training and avoids feedback loops which could
make the network parameters diverge [12, 15]. Furthermore,
the experience replay buffer also increases sample efficiency
since it allows experiences to be reused multiple times over
training. In this paper, we show that the experience-replay
memory buffer is also useful for initially adding experiences
that result from demonstrations, which are given before the
training process starts.

The objective function that is used for training the neural
network is either based on the Q-Learning [6] algorithm or
on the SARSA [7] algorithm, a choice which is motivated by
investigating the difference in performance between an off-
policy learning algorithm and an on-policy learning one. In
the case of Q-Learning, the loss function that is minimized is:

LQ(θi) =
∑

(s,a,r,s′)∼U(B)

[(Y Target −Q(s, a, θi))
2]. (5)

Where B is the experience-replay memory buffer from which
experiences are uniform randomly sampled, and Y Target is
the target value for an experience defined as:

Y Target = r + γmax
a

Q(s′, a; θt). (6)

Note that this temporal-difference target is computed by the
target-network θt, which is a periodically updated frozen copy
of the Q-network to make learning more stable [12].

The SARSA algorithm differs in two ways: because we use
experience replay, we need to save the next action a′ into the
memory buffer with the tuple (s, a, r, s′, a′), and the target
value for a state-action pair now depends on the selected action

in the next state. The loss function that is minimized by the
neural network for SARSA is:

LS(θi) =
∑

(s,a,r,s′,a′)∼U(B)

[(Y SARSA −Q(s, a, θi))
2]. (7)

where
Y SARSA = r + γQ(s′, a′; θt). (8)

Note that SARSA also uses a target network in our research
and all four RL algorithms do.

One limitation of neural networks that directly learn the Q-
function is that they are not able to estimate the value of a state
and action separately. This ability can however be very useful
as originally presented in [8]. The dueling network architecture
achieves this by having two streams, each predicting either the
value of a state or the action advantages A(s, a) for all possible
actions. These streams are both modelled by a separate hidden
layer in the used multilayer perceptron after which they are
merged together based on the following equation:

Q(s, a;α, β) = V (s;β) +
(
A(s, a;α)− 1

K

∑
a′
A(s, a′;α)

)
,

(9)
where α and β denote the weights of the two fully connected
layers and K is the number of possible actions. This equation
prevents the state value layer from estimating anything related
to the action advantages, since the sum of the advantages is
kept to zero. The above equation results in the final Q-value
for a state-action pair, which is trained in the same way as with
the Q-network. The Dueling Q-Network is therefore based
on another architecture to estimate the Q-function with some
constraints on the values learned by the state-value function
and advantage function streams.

We developed a new RL algorithm by combining the dueling
architecture and SARSA, which we call Dueling-SARSA. The
idea is very similar to the Dueling Q-Network, but the targets
for the Q-values are determined by the update rule for SARSA
instead of by Q-Learning. Because SARSA is an on-policy
algorithm, Dueling-SARSA is also an on-policy algorithm.

III. FOREST FIRE SIMULATOR

In this section we describe the environment which we have
created for simulating and controlling forest fires. We will also
explain the used reward function and the state representation.

A. Environment

We simulate forest fires by using a grid of cells that comes
in the shape of a square of either 10 × 10 or 14 × 14 cells.
Each cell has several attributes that are related to how forest
fires can spread in real-world situations. These attributes are
the following:
• Heat-Potential: the amount of heat each cell can radiate to

its neighbor cells once it is ignited. This has the effect of
increasing the neighboring cells’ temperatures over time.

• Ignition-Threshold: a threshold parameter on a cell’s
temperature, which once reached will make the cell ignite
and start burning.

• Temperature: a parameter that defines the temperature
of a cell. Once the temperature is equal to the ignition-
threshold a cell will start to burn.

• Amount of Fuel: keeps track how much fuel is present in
each cell. At each iteration, each burning cell consumes
fuel until there is no more fuel left. This makes the
considered cell a dead (burned) cell.

The heat from a burning cell reaches its neighbor cells
directly north, south, east, and west. If that neighbor cell is
flammable, its temperature is increased by the heat potential
of the burning cell, otherwise, nothing happens.

For a visual representation of the environment please see
Figure 1. The green cells represent trees, and therefore cells
that can become ignited. The agent is represented by the white
tile. Wherever it moves it destroys the trees and an empty,
inflammable (brown) cell is formed. A line of these dug cells
forms a fire line over which the fire cannot spread. Burning
cells are represented by red tiles and dead cells are represented
in black. Yellow cells are only shown for illustration purposes
and are not observed by the agent.

At each time step, the agent has to move either north, south,
east or west and is not allowed to idle on the same cell. The
agent is always digging while it moves. The simulator reaches
a terminal state and restarts if the agent dies (by entering a
burning cell), or if there are no more burning cells.

Fig. 1: A visual representation of the 10×10 environment. The
agent is shown in white, leaving behind a trail of inflammable
dug cells (shown in brown). The trees (green) can ignite to
become burning cells (red), which heat up the neighbouring
cells (yellow). When a burning cell runs out of fuel it dies
(black).

B. Reward Function

The reward function of the environment is defined by the
following equation:

rt =

1000, Fire is contained
1000 ∗ (p), Fire burns out
−1000, Agent dies
−1, Otherwise

 , (10)

where p is the percentage of the grid which is not damaged
by either a fire or by the digging of the agent. Different
rewards emitted at the same time step are added together. A
total reward of 1700 could for example mean that the agent
successfully controlled the fire within 30 time steps and saved

73% of the forest area. The containment of a fire is defined
as: ∑

f∈F

∑
b∈B

astar(f, b) = 0, (11)

where f is a burning cell from the set of currently burning
cells F and b is a cell on the border of the grid from the fixed
set of border cells B. The function astar is defined as:

astar(f, b) =

{
1, if A* path exists
0, Otherwise

}
, (12)

where a path is a sequence of directly connecting cells starting
with cell f and ending with cell b, determined using the A*
path-finding algorithm and not allowing diagonal steps. The
intuition is that if there exists a path between any burning cell
and any cell on the border of the map, then there exists a way
for the fire to spread beyond control and therefore it is not
contained. Note also that if at the end of the simulation the
fire reached the border, then the containment reward will not
be given.

C. State Representation

We represent the state of the environment, as it is visible
to the agent, with three matrices of size N2 with a boolean
domain which results in a flattened array of 3 ×N2 boolean
inputs. This allows to represent the environment with three
grids: the first grid contains the position of the agent where
all entries are represented by a 0 except for the one denoting
the position of the agent which has a value of 1. The second
grid represents the positions of the fire and follows a similar
logic. Cells that are on fire are represented by a 1, while non-
burning cells are set to 0. In the third grid, we represent the
fire lines that are cut by the agent by again following this
boolean approach. When the size of the grid is N = 10 this
results in a state representation consisting of 300 inputs.

This state representation is shown graphically in Figure 2.
Note that this representation can better represent a state when
compared to a single matrix representing the color or gray-
scaled map as input. The reason is that the grids contain
meaningful information, which makes it easier for the neural
network to learn the value function. This multi-grid state
representation was also shown to be efficient for learning to
play the game Tron [16].

IV. EXPERIMENTAL SETUP

The reward function defined in Section III-A provides
delayed rewards. Positive rewards are only given at the end of
the simulation if the forest fire is contained, and therefore the
agent might require additional guidance to learn to contain the
fire in a reasonable training time. To achieve this we decided to
fill the experience-replay memory buffer with demonstration
data already before the learning starts. The purpose of this
demonstration data is to show the agent how it might be able to
collect the containment reward. We have therefore developed
a simple algorithm that makes the agent move around the
fire clockwise by choosing randomly one of the two possible
actions that lead the agent in the specified direction, unless one

Fig. 2: An example of the state representation. Each layer
shows an important aspect of the RL environment: the location
of the fire, inflammable cells and the agent itself.

of the actions would lead to the death of the agent in which
case the agent chooses the safe action. These two possible
actions depend on the position of the agent relative to the
fire as shown in Figure 3. The environment is reset upon
containment as defined in Equation (11). Only trajectories
leading to successful containment are stored. This results in
an average of 35 memories per episode for the 10× 10 grid,
and of ≈ 48 memories per episode for the 14×14 grid. In our
experiments, we examine the influence of different amounts of
demonstration data.

Fig. 3: The possible actions available to the agent based on
the position (quadrant) of the agent relative to the origin of
the fire.

To be able to reliably compare the performance of the
different RL algorithms, we created an algorithm which serves

as a baseline. The algorithm, shown in Algorithm 1, follows
the same logic used for the creation of the demonstration data
required by the memory buffers, except that it continues to
run until the fire has burnt out and therefore does not stop
as soon as the fire is contained. In step 4 of the algorithm, a
random action from the two actions that lead the agent to the
next subgoal is chosen.

Algorithm 1 Baseline algorithm to contain the fire

1: procedure RUNBASELINE
2: totalreward = 0
3: while not done do
4: action = random(possible actions)
5: if action is dangerous then
6: action = other possible action
7: end if
8: reward, done = execute(action)
9: totalreward = totalreward + reward

10: end while
11: return totalreward
12: end procedure

We investigate the performance of both Q-Learning and
SARSA, with and without the respective dueling extension,
for a total of four different tested algorithms. As exploration
strategy, all RL algorithms used ε-greedy exploration with a
decreasing value for ε over time. The hyper-parameters that
have been used throughout all experiments are reported in
Table I.

TABLE I: All relevant hyperparameters used for the training
process. These values were selected by performing an infor-
mal search using the Q-Learning algorithm without dueling
networks. The target network is updated every C episodes.
The epsilon value is decayed after every episode.

Memory size 20000
Batch size 32
Target update (C) 20
Gamma (γ) 0.999
Alpha (α) 0.005
Epsilon decay (ε) 0.01
Epsilon maximum 1
Epsilon minimum 0.005

V. RESULTS

We now report the results which were obtained with the
experiments. For each algorithm and respective parameter
combination, we ran 10 simulations of 10,000 episodes each.
The performance of the different algorithms is compared with
the baseline algorithm introduced before. We do this for two
different grids of sizes with N = 10 and N = 14 respec-
tively. Furthermore, we use three different methods of using
demonstration data, which differ in the number of episodes that
initialize the experience-replay memory buffer before training
starts. We ran experiments after filling the buffer with 0,
100 and 1000 episodes. At the start of each simulation, the

environment is initialized with trees, while a single cell at the
center of the map is ignited. The agent starts at a random
location on a circle centered around the initial burning cell
with a radius of either 1, 2 or 3 cells. The distance to the
fire center is randomly determined. All line plots represent
averages of 10 simulation runs ±1 standard deviation, while
all tables report the final averaged performances on the final
2500 episodes.

A. Results on 10× 10 Environments

We start by discussing the results obtained on a simulated
environment of size 10×10. The first, second and third plots of
the first row of Figure 4 report the three cases in which the al-
gorithms are given 0, 100 and 1000 episodes of demonstration
data respectively. We can start by observing that all algorithms
have difficulties to perform better than the baseline algorithm
when no experiences from demonstrations are provided to
the memory-buffer. Only the Dueling Q-Network is able to
learn to perform quite well, although less than the baseline
algorithm. All other algorithms perform similarly to each
other and significantly worse than the Dueling Q-Network.
The average performances on the final 2500 episodes are also
shown in Table II.

TABLE II: Averages of the last 2500 episodes given 0 episodes
of demonstration data. The numbers in bold indicate the
highest average and best rewards of the 10 simulations.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1129 80 1387
Q-Network 221 283 715
SARSA 132 240 563
Dueling
Q-Network 956 352 1335

Dueling
SARSA 241 296 582

In the second plot we can notice that the performance of
the algorithms gets more similar among the different tested
approaches. More notably, the Dueling Q-Network, which was
the best performing algorithm in the previous experiment, is
now the worst-performing one, while SARSA and Dueling-
SARSA improved their performance a lot when given 100
episodes of demonstration data. The average performances on
the final 2500 episodes are also shown in Table III.

TABLE III: Averages of the last 2500 episodes given 100
episodes of demonstration data.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1129 80 1387
Q-Network 878 357 1758
SARSA 776 237 1292
Dueling
Q-Network 521 378 1535

Dueling
SARSA 1031 162 1312

Finally, in the third plot we see that each algorithm performs
differently. The Q-Network performs worst, but still performs

Fig. 4: The results obtained when testing different RL algorithms in the forest fire control simulator. The first row reports the
results obtained on a grid of size 10 × 10, while the second row reports results on a larger grid of size 14 × 14. The first,
second and third plot of each row correspond to the results obtained when initializing the experience replay memory buffer
with different amounts of experiences, by using 0, 100 or 1000 episodes of demonstration data.

better than when less memories are given to the replay-
memory buffer. Interestingly SARSA is now able to beat the
baseline algorithm and the same holds for Dueling-SARSA
which outperforms SARSA. It is worth noting that the two
networks based on the SARSA algorithm do not only perform
better but also show more stable training as can be seen
by the shaded areas around the line plots representing the
standard deviation over the different simulation runs. The
average performances on the final 2500 episodes are also
shown in Table IV.

TABLE IV: Averages of the last 2500 episodes given 1000
episodes of demonstration data. The asterisk (*) indicates
the average reward is greater than the average reward of the
baseline.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1129 80 1387
Q-Network 907 343 1696
SARSA 1607* 108 1748
Dueling
Q-Network 1369* 276 1826

Dueling
SARSA 1745* 83 1860

Based on these results we can observe that a key element
that makes the algorithms perform well is the amount of
demonstration data the algorithms are provided with at the
beginning of training. The novel Dueling-SARSA algorithm
performs best of all RL algorithms when demonstration

data is given. Its final performance when 1000 episodes of
demonstration data are given, is very good with a score of
1745 on average. With this amount of demonstration data,
SARSA performs second best. It is remarkable that in these
experiments, the on-policy algorithms Dueling-SARSA and
SARSA profit the most from the demonstration data. In most
research off-policy algorithms are used when learning from
demonstration is used, but our results show that this does not
have to be the optimal choice.

B. Results on 14× 14 Environments

We now report the results that were obtained on a larger
environment of size 14 × 14. From the first plot of the
second row of Figure 4, we can observe that the results of
all RL algorithms are much worse compared to the results
on the 10 × 10 environment. Without using demonstration
data, the Dueling Q-Network again performs best. However,
the results of all algorithms are much worse than those of
the baseline algorithm. The average performances on the final
2500 episodes can also be found in Table V.

When looking at the second plot of Figure 4, we see that all
algorithms are learning to optimize their policies, but do not
outperform the baseline algorithm with the amount of training
episodes they received. The average performances on the final
2500 episodes are also shown in Table VI.

In the final plot of Figure 4, we can see that only the
Dueling-SARSA algorithm clearly outperforms the baseline
algorithm, while SARSA performs at a similar level as the

TABLE V: Averages of the last 2500 episodes given 0 episodes
of demonstration data.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1152 125 1513
Q-Network -550 144 -139
SARSA -398 116 -92
Dueling
Q-Network -40 335 349

Dueling
SARSA -455 134 -44

TABLE VI: Averages of the last 2500 episodes given 100
episodes of demonstration data.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1152 125 1513
Q-Network 652 418 169
SARSA 670 257 1275
Dueling
Q-Network 667 404 1748

Dueling
SARSA 836 224 1249

baseline algorithm by the end of training. The Q-network
performs very bad and is not able to obtain positive cumulative
reward scores. The average performances on the final 2500
episodes are also shown in Table VII.

TABLE VII: Averages of the last 2500 episodes given 1000
episodes of demonstration data.

Algorithm Average
Reward

Std.
Dev.

Best
Reward

Baseline 1152 125 1513
Q-Network -459 253 411
SARSA 1057 316 1626
Dueling
Q-Network 522 406 1534

Dueling
SARSA 1713* 108 1846

As expected, all RL algorithms perform worse on the
larger environment compared to the 10 × 10 scenario. The
RL algorithms suffer from the curse of dimensionality, and
for the larger environment the neural networks receive 588
inputs compared to 300 inputs in the smaller environment.
This makes it much harder to learn an accurate Q-function
with the MLPs. The baseline algorithm obtains slightly higher
scores on the larger environment, which can be explained by
the fact that a larger proportion of the forest area is on average
protected from the fire.

With the large amount of demonstration data, Dueling-
SARSA and SARSA perform the best. So these results
confirm the results on the smaller environment and indicate
that on-policy methods can outperform off-policy algorithms
when demonstrations are given and experience replay is used.
Dueling-SARSA performs very well with enough demonstra-
tion data and significantly outperforms all other algorithms.
From this we can conclude that Dueling-SARSA combines the
benefits of learning on-policy, and therefore being less prone

to divergence, while it also takes advantage from estimating
both the value of a state in addition to the respective Q-values
as initially introduced for the Dueling Q-Networks.

VI. CONCLUSION

In this paper, we have studied the problem of controlling for-
est fires with connectionist RL. A novel forest fire simulation
environment is introduced that served to study performances
of four different RL algorithms. Among the tested algorithms
is the novel Dueling-SARSA algorithm, which obtained the
best results. Furthermore, we noticed that on-policy algorithms
such as SARSA and Dueling-SARSA performed better than
off-policy RL algorithms when enough demonstrations were
given to the algorithms. This is in contrast to the fact that
most researchers believe that off-policy algorithms are better
able to learn from demonstrations and experience replay.

In future work, we want to examine the efficiency of on-
policy algorithms when combined with learning from demon-
stration on other problems. Furthermore, we would like to
examine if the Dueling-SARSA algorithm also performs better
than other RL algorithms on different problems, such as in
the Atari Arcade Learning environment. We believe
that Dueling-SARSA is also likely to benefit from all the
improvements [12, 17, 18], which have been proposed over
the years and made Deep Reinforcement Learning (DRL) very
successful.

We also want to make our forest fire simulator more com-
plex and allow multiple reinforcement learning agents to learn
cooperative forest fire control strategies. Furthermore, we want
to study the effectiveness of convolutional neural networks
(CNNs) to learn to approximate the value functions, instead
of the multilayer perceptrons used in this paper. Because
the environmental state can be represented with an image,
CNNs could be much more effective for handling very large
environments. Finally, the RL algorithms could profit from
several extensions that have made DRL more sample efficient
and robust to sparse rewards problems [19, 20, 21, 22]. Such
extensions will hopefully lead to effective forest fire control
policies for very complex scenarios in the future.

REFERENCES

[1] E. Kasischke, N. Christensen Jr, and B. Stocks, “Fire,
global warming, and the carbon balance of boreal
forests,” Ecological applications, vol. 5, pp. 437–451,
1995.

[2] F. Ricci, P. Marti, P. Normand, and P. Olmo, “Charade:
a platform for emergencies management systems,” Tech.
Rep. 9404-07, IRST, Trento, Tech. Rep., 1994.

[3] M. Wiering and M. Doringo, “Learning to control forest
fires,” in Proceedings of the 12th international Sympo-
sium on ’Computer Science for Environmental Protec-
tion’, H. Haasis and K. Ranze, Eds., 1998, pp. 378–388.

[4] M. Wiering, F. Mignogna, and B. Maassen, “Evolving
neural networks for forest fire control,” in Benelearn
’05: Proceedings of the 14th Belgian-Dutch Conference

on Machine Learning, M. van Otterlo, M. Poel, and
A. Nijholt, Eds., 2005, pp. 113–120.

[5] D. Moura and E. Oliveira, “Fighting fire with agents:
an agent coordination model for simulated firefight-
ing,” in Proceedings of the 2007 spring simulation
multiconference-Volume 2. Society for Computer Sim-
ulation International, 2007, pp. 71–78.

[6] C. Watkins, “Learning from delayed rewards,” Ph.D.
dissertation, University of Cambridge, 1989.

[7] G. Rummery and M. Niranjan, “On-line Q-learning
using connectionist systems,” University of Cambridge,
Department of Engineering Cambridge, England, Tech.
Rep., 1994.

[8] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling
network architectures for deep reinforcement learning,”
CoRR, vol. abs/1511.06581, 2015. [Online]. Available:
http://arxiv.org/abs/1511.06581

[9] L.-J. Lin, “Self-improving reactive agents based on re-
inforcement learning, planning and teaching,” Machine
Learning, vol. 8, no. 3, pp. 293–321, May 1992.

[10] R. Sutton and A. Barto, Reinforcement Learning: an
Introduction, 2nd ed. The MIT Press, 2018.

[11] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou,
M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran,
T. Graepel et al., “A general reinforcement learning
algorithm that masters chess, shogi, and go through self-
play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fid-
jeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540,
p. 529, 2015.

[13] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep
reinforcement learning for robotic manipulation with
asynchronous off-policy updates,” in 2017 IEEE inter-
national conference on robotics and automation (ICRA).
IEEE, 2017, pp. 3389–3396.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[15] J. Tsitsiklis and B. Van Roy, “Analysis of temporal-
diffference learning with function approximation,” in Ad-
vances in neural information processing systems, 1997,
pp. 1075–1081.

[16] S. Knegt, M. Drugan, and M. Wiering, “Opponent mod-
elling in the game of Tron using reinforcement learning,”
in ICAART 2018 - Proceedings of the 10th International
Conference on Agents and Artificial Intelligence, vol. 2,
2018, pp. 29–40.

[17] M. Sabatelli, G. Louppe, P. Geurts, and M. Wiering,
“Deep Quality-Value (DQV) Learning,” arXiv preprint
arXiv:1810.00368, 2018.

[18] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul,
G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. G. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” CoRR,
vol. abs/1710.02298, 2017. [Online]. Available:
http://arxiv.org/abs/1710.02298

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Sil-
ver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

[20] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin,
C. Blundell, and S. Legg, “Noisy networks for explo-
ration,” arXiv preprint arXiv:1706.10295, 2017.

[21] H. Zou, T. Ren, D. Yan, H. Su, and J. Zhu, “Reward shap-
ing via meta-learning,” arXiv preprint arXiv:1901.09330,
2019.

[22] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider,
R. Fong, P. Welinder, B. McGrew, J. Tobin, P. Abbeel,
and W. Zaremba, “Hindsight experience replay,” in Ad-
vances in Neural Information Processing Systems, 2017,
pp. 5048–5058.

