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Abstract—We present a new deep reinforcement learning
algorithm using the technique of successive over-relaxation (SOR)
in Deep Q-networks (DQNs). The new algorithm, named SOR-
DQN, uses modified targets in the DQN framework with the aim
of accelerating training. This work is motivated by the problem of
auto-scaling resources for cloud applications, for which existing
algorithms suffer from issues such as slow convergence, poor
performance during the training phase and non-scalability. For
the above problem, SOR-DQN achieves significant improvements
over DQN on both synthetic and real datasets. We also study the
generalization ability of the algorithm to multiple tasks by using
it to train agents playing Atari video games.

Index Terms—reinforcement learning, deep learning, cloud
computing, resource allocation, atari games

I. INTRODUCTION

Reinforcement learning (RL) framework involves an agent
that learns to behave adaptively by interacting with its environ-
ment. By combining deep neural networks with reinforcement
learning, deep reinforcement learning algorithms have been
shown to be successful in a wide variety of control tasks. In
particular, Deep Q-network proposed in [1] achieves human-
level performance in complex domains like Atari video games,
using only low level information such as screen images and
scores as inputs.

Typically, deep RL algorithms require a large number of
iterations (sometimes of the order of millions) in the training
phase before they attain good performance in the evaluation
phase. For example, DQN was trained on a total of 50 million
frames for Atari games [2]. While this is not a concern in
simulated environments, it becomes prohibitive in real world
applications where data is expensive. Our objective in this
paper is to develop an algorithm that learns faster, thus
reducing the training costs.

Our algorithm uses the technique of successive over-
relaxation in deep Q-networks. The key idea is as follows.
The Q-function that a DQN approximates is known to be the
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fixed point of the Bellman operator. A technique known as
successive relaxation can be applied to generalize the Bellman
operator with an additional parameter such that the contraction
factor of the generalized Bellman operator is less than that
of the Bellman operator [3]. When the relaxation parameter
is greater than 1, the method is known as successive over-
relaxation (SOR). We apply the SOR technique to modify the
targets in the DQN algorithm in order to make the learning
faster. The new algorithm is named SOR-DQN. It has the same
computational complexity as DQN.

For evaluating our algorithm, we consider the problem of
autoscaling resources for cloud applications. Cloud computing
provides individuals and organisations with a shared pool of
configurable computing resources. One of the key attractions
of the cloud is its elastic nature i.e., its ability to increase or
decrease the amount of resources allocated to an application
depending on the changing requirements. To efficiently utilize
elasticity of clouds, the decisions on resource allocation need
to be made algorithmically, adaptively and in real-time [4].
Moreover, they must respect the performance requirements of
the application, as specified in the Service Level Agreement
(SLA) between the cloud provider and the client.

While several RL based solutions exist already [5], [6]
for this problem, they suffer from issues such as slow con-
vergence, non scalability and poor performance during the
learning period. We propose the use of SOR-DQN as a scalable
and efficient RL algorithm for adaptive resource provisioning
to cloud applications. The deep neural network addresses the
scalability issue, while the SOR technique accelerates the
training phase. We test the algorithm on simulated and real
workloads to demonstrate its superiority over DQN. Further,
we study the generalization ability of our algorithm using a
set of 48 Atari 2600 games involving diverse tasks that was
used in the evaluation of DQN.

The rest of the paper is organized as follows. Section II
discusses the mathematical background and related work in
this area. We present our algorithm in Section III followed by
a description of the problem of auto-scaling cloud applications
in Section IV. The experimental results in cloud computing



and Atari games are given in Section V. Finally, Section
VI concludes the paper and points out directions for further
research.

II. BACKGROUND AND RELATED WORK

The interaction between the agent and the environment in a
reinforcement learning problem is modelled mathematically
using a Markov Decision Process (MDP) which has the
following components : The set of states S, the set of actions
A, the transition probability function P : S x A x S — [0, 1],
the reward function r : S X A — R and the discount factor ~.
The agent tries to learn the best action sequence or policy that
maximizes the expected sum of discounted rewards (return)
over a period of time. Formally, a policy 7 is a mapping from
states to actions. The goal is to find an optimal policy i.e.,
one that maximizes over all policies 7 the expected return or
value function given by

VT (s) =E[thRt30 _ ]
t=0

where s is the initial state and R; is the possibly random
reward obtained at time ¢ with expected value r(s,a) if the
state at time ¢ is s and the action chosen is a.

In most of the real world applications the transition proba-
bilities and reward functions are not accurately known a priori.
In such cases a model free approach like Q-learning [7] can be
used. Here the agent interacts with the environment iteratively
to learn Q values for each (state, action) pair. The optimal Q
values correspond to the maximum expected return for using
action a in a certain state s.

Deep RL algorithms approximate the Q-function using deep
neural networks. The optimal Q-function @Q* satisfies the
Bellman equation [8] given by

Q' (5,0) = r(s,0) +7 Y P(s'ls,a) max @ (s,0) (D
s'esS
This expresses the fact that the optimal expected return by
taking action a in the current state s is the sum of the reward
obtained for taking action a in state s and the optimal expected
return from the next state s’. The optimal policy may be
computed from the optimal Q-function as

7 (s) = argmax Q*(s, a) Vs € S.
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A Deep Q-network (DQN) with weights 6 updates its
weights in each iteration ¢ so as to minimize the mean
squared error between the right hand side of equation (1)
and the current Q estimate given by the network. In order
to mitigate the issue of high correlation among consecutive
training samples, the technique of experience replay is used.
For this, the agent’s experiences are stored in a replay buffer
D and random samples from this buffer are used to update ;.
Gradient descent is performed on the following mean squared
error loss function

L(0;) = E(s,a,5)~P [(yj - Q(S,a;ei)ﬂ ;

where y; = r(sj,a;) + ymaxyea Q(sjq1,b;0]) for
(sj,aj,8541) € D. Note that 6!, the network parameters
used to compute the target at iteration ¢ are different from 6;.
The Q-network parameters are copied to the target network
parameters periodically to make the training stable. Further e-
greedy strategy is used for exploration. This means that at each
time step, the agent chooses a random action with probability
€ € (0,1) or the best action based on its current estimate of Q-
values (i.e., argmax,¢ 4 Q(s, a; ;) with probability (1 — €).

B. Relaxation methods

Successive relaxation methods are iterative methods for
solving systems of linear equations. These are variants of the
Gauss-Siedel procedure involving an additional parameter. It
is known that for certain positive choices of the relaxation
parameter, faster convergence is obtained [9].

C. Related work

In tabular reinforcement learning where the Q-function is
maintained as a table of Q-values for each (s,a), methods
such as Speedy Q-learning [10] and SOR Q-learning [11] have
been proposed to speed up the convergence of the algorithm. In
order to reduce the training time in deep RL, methods such as
having a supervised pre-training stage for feature learning [12]
and fast reward propogation via optimality tightening [13] have
been proposed. Several variants of DQN have been proposed
such as Double DQN [14], Prioritized Experience Replay [15],
Dueling network architecture [16] to improve stability and
performance during the test phase. While these methods aim
to achieve better performance once training is completed, our
aim is to accumulate rewards faster during the training phase
itself.

III. ALGORITHM

We propose a simple modification in the target Q-values
to speed up the DQN algorithm. From Equation (1), we see
that Q* is a fixed point of the Bellman operator H defined as
HQ(s,a) =r(i,a) +v) g P(s's,a) maxpc 4 Q(s', ). It
is known that H is a contraction mapping with contraction
factor equal to the discount factor of the MDP ~. The
method that we propose is based on the Generalized Bellman
operator [3] given below, which uses the concept of successive
relaxation.

HYQ(s,a) =w (r(&a) + Z P(s'|s,a) max Qs b))

s'eS
+(1—w) max Q(s,c),

i 1
= min————
s,a 1 —yP(s]s,a)
on the underlying MDP (note that w* > 1).
It is proven, see [11], that H™ is a max-norm contraction
with contraction factor (1—w+~w). Moreover, for w € [1, w*]

and v € (0,1),

where w € (0,w*] and w* depends

l—w+yw <. 2)



Let Q' be the unique fixed point of HY. Then,

Q'(s,a) =w (R(& a)+7 ) P(s/]s,a) max Q' (s, b))

s’'eS
+(1—w) rgleag(Q’(s,c). (3)

Further, it has been shown [3] that both Q' and Q* yield the
same optimal value function. i.e.,

/ *
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Hence, either Q' or Q* can be used to compute the optimal
policy. Based on this idea, an algorithm known as SOR Q-
learning has been proposed in tabular reinforcement learn-
ing. This algorithm has been shown to converge faster than
Watkins’ Q-learning for the case w > 1, which is known as
over-relaxation [11].

We borrow these ideas to the field of deep RL, by modifying
the target Q-values in the DQN algorithm. Instead of using
the future reward based on the next state as in the Bellman
equation (1), the proposed algorithm uses the Generalized
Bellman equation (3) which has a weighted combination of the
target given by the Bellman equation and the value function of
the current state. This combination is expected to make the the
Q-values converge faster when w > 1 because the contraction
factor of the Generalized Bellman operator is less than that
of the Bellman operator in this case (see (2)). The target Q-
values in our algorithm, which we call SOR-DQN will be as
follows.

y; = w(r(s;,a5) + 'Vrgleaj(Q(SjJrl’ b;0;))
+ (1= w)max Q(s;, ¢;67),

where w > 1 is an input to the algorithm. The pseudo code
of the algorithm is given in Algorithm 1.

For episodic MDPs which have special states designated as
the starting state and some terminal states, the targets y; are
set as follows in SOR-DQN.

r(s;, aj), for terminal s;4;
w(r(sy, a;) +ymaxpea Q(s;+1,b;6;))

+(1 — w) max.ca Q(s;, ¢; 0F)otherwise.

Y; =

Gradient descent is used to minimize the mean squared error
between the target and the current Q-estimate, as in DQN. By
modifying the targets in this way, we expect the algorithm to
learn faster i.e., collect more rewards in less time. (note that
when w = 1, the update rule is same as that of DQN.) This
is important in applications for which performance during the
initial phase of learning is also crucial. In the next section,
we discuss one such application - automatic allocation of
resources to cloud applications.

IV. AUTOSCALING OF CLOUD APPLICATIONS

The resource requirements of an application hosted on the
cloud keep on changing due to variations in its real-time
workload. Autoscaling refers to the automatic allocation or

Algorithm 1 Deep Q-network with Successive Over-relaxation

(SOR-DQN)

Input: Initial weight vector 6, discount factor ~y, relaxation
parameter w > 1, number of iterations N, size of replay
memory M, minibatch size b, exploration rate e, initial
state sg, frequency of target updation C'

1: Initialize replay memory D to capacity M
2: Initialize action value function @) with weights 6 and target
action value function @ with weights 0! = 0
for i =0,1,2,...., N — 1 do
With probability e, select a random action a;
Otherwise select a; = arg max,c 4, Q(s;,a;0)
Execute action a; and observe reward r; and next state

AN

Sit+1

Store transition (s;, a;, 7, $;+1) in D

Sample random b size minibatch B from D

: for (sj,a;,7j,5541) € B do

10: Set y; = w(r(sj,aj) + ymaxpea Q(s;+1,b;0%)) +
(1 — w) maxcea Q(s;, ¢; 6)

11 Perform gradient descent on (y; — Q(s;, a;; 9))°

12:  Every C steps reset Q=0Q

® 3

deallocation of resources to a cloud application based on
its requirements. The decisions regarding allocation should
not only consider the cost of the resources involved, but
also the performance requirements of the application such
as throughput, response time etc. as specified in the Service
Level Agreement (SLA). This problem can be modelled using
a Markov Decision Process as follows.

o The state at time ¢ is (W, v), where W is the workload of
the application and v is the number of units of resource
currently allocated.

o The action or decision at time ¢ is the amount of resources
to be allocated or deallocated for the next time period.

o After action a is taken, the new state becomes (W', v")
where W’ depends on the workload characteristics and
v =v+a.

o The reward is the negative of a cost function which is
defined as follows.

C((W,v),a) =cx v+ SLApenaiy(r),

where c is the cost per unit of resource, r is the response
time of the application and SLApecnaity is based on the
performance requirements of the application as specified
in the SLA between the client and the cloud service
provider.

While reinforcement learning is a natural solution to this
adaptive decision making problem, tabular methods such as
Q-learning fail to be computationally feasible for large state
and action spaces. Recently, deep reinforcement learning was
proposed [17] to address the scalability issue in autoscaling.
However, methods have not yet been developed to make the
algorithm perform well during the training phase. We propose
the use of SOR-DQN to handle this issue.



V. EXPERIMENTS

In this section, the proposed algorithm is experimentally
evaluated. We first consider the interesting application of
autoscaling cloud resources that was described in Section
IV. The resource under consideration is the number of vir-
tual machines (VMs) allocated for the application. The cost
incurred by the proposed algorithm is compared to that of
DQN on both simulated and real workloads. Next, we study
the performance of both the algorithms on a set of 48 Atari
games. The relaxation parameter w was chosen as 1.3 in all
the experiments.

A. Cloud computing

1) Parameters: In the MDP model, the action space was
set as

A={-10,-8,...,0,...,8,10}.

The constant ¢ was set as 0.1 and the penalty function was
chosen as SLApenaity(r) = 7. The same neural network
was used for both DQN and SOR-DQN. Since the state is
low-dimensional, we used a simple fully connected network
consisting of 3 hidden layers. The number of neurons in these
layers was chosen to be 4, 8, 16 respectively. ‘ReLU’ activation
function was used in all layers except the output layer where
‘linear’ activation was used. The output layer has 11 neurons
corresponding to the number of actions in the MDP model. A
schematic diagram of the network is shown in Figure 1.
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Fig. 1. Neural network used in Cloud computing experiments

2) Simulated data: We use the CloudSim [18] platform
to simulate cloud environment. CloudSim is a Java based
framework for modeling and simulation of cloud computing
infrastructure and services. The workload W of the application
for each hour was generated such that W = min(x,50)
where & ~ Poisson(25). The probability mass function of
Poisson(\) distribution with mean A\ = 25 is shown in Figure
2. The average total cost incurred by DQN and SOR-DQN
(averaged over 5 simulation runs) against time is plotted in
Figure 3 for a duration of 1000 hours. It is seen that SOR-
DQN achieves a significantly lower cost as compared to DQN
right from an early stage of training.
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Fig. 2. Probability mass function of Poisson distribution with mean A = 25
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Fig. 3. Total cost incurred by DQN and SOR-DQN algorithms on simulated
data

3) Real data: Next, the experiment is repeated with real
workloads of web servers that are publicly available [19]. We
consider two datasets : 1. Two weeks of HTTP logs of Clarknet
server from August 28, 1995 to September 10, 1995 (ClarkNet
is a full Internet access provider for the Metro Baltimore-
Washington DC area). 2. One month of HTTP logs of NASA
server from July 1, 1995 to July 28, 1995. These logs are
preprocessed to get the timeseries data of the number of hourly
requests, which is shown in Figures 5 and 6 respectively. We
ran the two algorithms and compared the total cost incurred.
The results are in Figures 7 and 8. It is seen that SOR-DQN
outperforms DQN on real data as well. These experimental
results confirm our assertion that SOR technique in deep
reinforcement learning is useful for improving performance
during the training phase.

B. Atari games

Atari 2600 video games is an RL testbed implemented in
the Arcade Learning Environment [20], which consists of
diverse and interesting set of tasks (which are episodic in
nature). It was shown in [1] that a single DQN agent was
able to successfully learn to play several of these games,
using only the video input and the scores as humans do. We
compare the performance of SOR-DQN against that of DQN
during the training phase on 48 Atari games as in [2], using
the same neural network and other hyperparameters in [2].
After performing N = 50,000 training iterations for both
the agents we note the scores denoted as Scorepgny and
Scoresor—pgn respectively. The percentage improvement
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Fig. 4. Percentage improvement of SOR-DQN over DQN on Atari games
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(PI) of SOR-DQN with respect to DQN on a game is The results for the individual games is shown in Figure 4.

calculated as (We have omitted 7 games on which both the algorithms
gave negative scores - Boxing, DoubleDunk, FishingDerby,
P — Scoresor—poN — Scorepon < 100 IceHockey, Pong, PrivateEye, Tennis as well as the game

Scorepon Freeway on which DQN attained a score of 0 whereas SOR-
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DQN attained a score of 556.) The overall improvement (O.1.)
is calculated as the mean of the percentage improvement on
individual games.

1) Discussion: It was found that the overall improvement
achieved by SOR-DQN over DQN across all games put
together is as good as 17.5%, although the number of games
on which SOR-DQN achieves higher score is slightly less than
half. It may be noted that we used the same constant value of
the parameter w for all the games in the implementation of
SOR-DQN and did not adapt the same for different games. If
the value of w is adapted for each game individually, much
better results will be obtained for SOR-DQN.

VI. CONCLUSION AND FUTURE WORK

We proposed a new deep reinforcement learning algorithm,
SOR-DQN, to improve the performance of the RL agent
during the training phase. The update rule of the algorithm is
a simple modification of the update rule for DQN, motivated
by the successful application of successive over-relaxation
techniques in tabular reinforcement learning. Through experi-
mental study on simulated and real datasets, it was seen that
the proposed algorithm incurs lower training cost as compared
to DQN in autoscaling cloud applications. Further, it was
found to have a generalization ability better than that of DQN
on Atari games.

In the future, we would like to explore the possibility
of applying the successive over-relaxation technique in other
deep RL methods, such as those for continuous control [21].
Further, the choice of the parameter w plays an important role

in the algorithm. It would be useful to develop a heuristic
to determine the value of w for each problem instance. We
believe that with a good heuristic for choosing w, the gener-
alization ability of the algorithm would improve significantly.
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