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Abstract—The paper presents a design and an implementation
of an intelligent detector of a novel “colluded applications”
attack on user’s privacy in Android OS devices, which employs
recurrent neural network (RNN) models. The paper reports the
results of an empirical study that involved the attack research,
data collection and pre-processing, the choice of the RNN model
for a detector design, multiple detector implementations, their
performance evaluation and analysis, and finally, an Android
app realization and execution on a real device. We investigate
and analyze multiple attack scenarios and the attack influence
on such technological signals as memory consumption and a
CPU’s cores clock speed. For the attack detection, a few detectors
exploring multiple RNN models are designed, implemented, and
examined. The detectors employ various RNN models, such as a
simple recurrent neural network, a long short-term memory, and
a gated recurrent unit. Each model’s performance in detecting
multiple attack scenarios is evaluated and analyzed in order to
compare classification models against various criteria.

Index Terms—Recurrent neural networks, anomaly based
attack detection, Android device security.

I. INTRODUCTION

There are nearly 3.2 billion smartphone owners in the world
right now [1], with most of them connected to the Internet.
In 2019, around 52.2% of all website traffic worldwide was
generated through mobile phones [1]. These smartphones
provide a vast computational power and have a gamut of
embedded sensors. Many applications use these sensors and
the computational power to provide users with outstanding
functionalities and features. For instance, consider fitness
tracking applications that use the accelerometer and GPS
inputs to keep track of your fitness. According to the 2019 data
[1], the share of Android phones in the global mobile market is
continuously rising and is more than 87% of mobile platform
market share. Moreover, this Android OS platform has around
2.47 million applications available; from this, we can imagine
the sheer impact of this platform and the volume of data
these devices might be generating. This massive volume of
generated data attracts a lot of malevolent actors who create
malicious applications to steal this data, as it may have
substantial monetary benefits. Android OS mobile platform
becomes a major battleground in the cyber-security domain
[2]. New malware gets very sophisticated [3] that requires

adequate detection techniques. In this paper, we present a
novel approach to the detection of the “Colluded Applications”
attack on the users’ privacy that involves using computational
intelligence (CI) techniques and investigate their feasibility
and performance.

The Android operating system uses the Linux kernel at
its core. Its security architecture is a bit different, however.
It has redesigned some of the underlying operating system
security policies to provide better application security, protect
users’ private sensitive data and system resources. Android
implements these privacy policies through the application
sandboxing, application signing, and the permissions mech-
anism. In addition to this, there are various authentication
mechanisms and anti-malware tools provided by Original
Equipment Manufacturers (OEM). These tools mostly use
some computational intelligence approaches to detect threats.
The security threat can be mitigated at the user level as
well by using the applications from the authenticated sources
and giving them only the required permissions. Unfortunately,
users do not always pay attention to these choices. On top
of this, even if a user sets permissions to the applications
very cautiously, it does not guarantee an absolute data leakage
prevention as applications can bypass this permission model
by colluding with each other, discussed in detail in Section II.

Moreover, the maliciousness of the attacks is increasing
daily, and these existing tools can detect only the existing
threats. Hence, even after these security measures, Android is
not as secure as it seems to be, and these security measures
are breachable in various ways. One of the most seemingly
benevolent but very harmful breach being the “colluded appli-
cations” attack.

The cyber-security community turned their sight onto this
attack in 2014, and since then, have produced a number
of tools that address this issue [4], [5], [6], [7], [8], [9],
[10], [11], [12]. Unfortunately, these tools are based on the
system data that is not accessible in modern stock versions of
Android OS [13], [14], [15], [16] or involves severe firmware
modifications, which make them unusable on stock Android
OS devices. Unlike previous research, we aim at finding an
effective AND efficient solution implementable on resource-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



constrained mobile platforms that would restrict the amount of
data collected and analyzed with only major system parameters
but would allow achieving a reasonable detection performance
in real-time.

In order to achieve this goal, in this paper, we employ
recurrent neural network (RNN) and analyze the performance
of its various models for the attack detector design and
implementation on mobile devices in real-time. The RNN
architecture was chosen based on our previous research results,
where it outperformed such CI techniques as feed-forward
neural networks and decision trees [17], [18]. To validate
our results and design, we implement multiple scenarios of a
novel “colluded applications” attack and record corresponding
system technological signals such as memory consumption and
CPU clock speed (frequency) and use them to design CI-based
attack detectors. We realize the developed attack detector as
an Android application that can be executed on Android-based
devices without firmware modification.

The paper is organized in the following way. Section
II introduces the “colluded applications” description and a
corresponding attack formalized model. We present the data
collection process for technological system signals and inves-
tigate the effect of the attacks on these signals in section III.
Section IV presents RNN-based attack detectors, analyzes their
performance, and renders the attack detector implementation
on a mobile device. Section V concludes the paper.

II. COLLUDED APPLICATIONS ATTACK MODEL

“Colluded applications” attack, despite its novelty, has
already been reported multiple times. In 2015, a modified
version of this attack was discovered [19]. The “Moplus”
SDK library that was used in 14,112 Android applications
at the time of discovery created numerous backdoors and
other breaches. Once the application that contains this library
was installed, its exploitation allowed an attacker to: get
phone details, download and upload files to/from a device,
read/send text messages, get a user’s geo-location, etc. In 2016,
Intel identified 21 applications that may execute “colluded
applications” attacks to escalate privileges, bypass system
limitations, and perform malicious activities [20]. Later, in
June 2016, McAfee Labs published the threats report [21]
that documented 23 colluded applications. In 2017, more than
twenty thousand of application pairings that may leak data
were identified [22]. More applications in the wild that exploit
this vulnerability were discovered in 2018 [23]. In November
2019, the security research team at Checkmarx discovered
and implemented a modification of “colluded applications”
attack [24] that involved vulnerability of the standard “camera
app” and allows to control a smartphone’s camera, take photo
images, record videos, and send them to a remote server. These
cases demonstrate the importance of developing an efficient
and effective attack detector.

A. Colluded applications attack formalized description

Let the applications A and B belong to a set of installed
applications S. A has the permission set PA, and B has the

Fig. 1: Attack data flow model

permission set PB . PA consists of the normal permission
subset PNA and the dangerous permission subset PDA. PB

consists of the normal permission subset PNB subset and the
dangerous permission subset PDB . PDA and PDB represent
subsets of dangerous permissions DP . PDA and PDB are not
equal. A generates data object D. To generate D, a permission
pD is required, and to leak D to third parties permission pL
is required. A transmits D to B (tA(B,DpD

, background))
while A and B are in the background. If PDA includes
pD and does not include pL, PDB does not include pD
but includes pL, then A and B are colluded applications.
Definition of colluded applications can be written with the
following statements:

(A,B ∈ S) ∧ (PDA, PDB ⊂ DP ) ∧ PDA 6= PDB ∧ (pD ∈
PDA) ∧ (pD /∈ PDB) ∧ (pL ∈ PDB) ∧ (pL /∈ PDA)∧
∧tA(B,DpD

, background)→ A and B are colluded.

It is important to notice, that PDA 6= PDB . In the case
PDA = PDB there is no sense for application collusion. Ap-
plying this rule before further analysis may reduce the search
space of analyzed applications. In addition, this definition is
true for Intra-Library Collusion (ILC) attack [25] as well, since
instances of an embedded library are part of host applications.

The attack is an action that results in unauthorized data flow
from the device’s source to the attacker’s destination through
colluded applications without a user’s permission (see figure
1).



III. DATA COLLECTION AND ITS PRE-PROCESSING FOR
DETECTOR DESIGN

A. Data Collection

To employ CI techniques in detector design, we collect
data representing various attack/“no attack” scenarios on real
Android devices (see Table I). We have collected 14,143,997
entries for over 5,000 attacks. As we rendered in section
I, most of the current research on “colluded applications”
detection use data that are not accessible on the modern
versions of Android OS. For our research, we chose those
technological signals that are available through a standard
Android API: random access memory (RAM) consumption
and CPU cores clock speed (a.k.a. CPU frequency).This
data collection is done using an Android application which
monitors technological system signals in diverse application
collusion scenarios such as:

1) Pure Attack Scenario: This scenario represents the
attack implementation on a real device. In this scenario,
we employ two Android applications (A and B). Both
A and B applications have an activity’s A1 and A2 and
a service’s S1 and S2 (the activity provides the user
interface (UI), while service is a UI-less app component
that runs in the background and performs long-running
tasks). S1 is capable of processing incoming intents and
then sending the data to the requester. S2 is capable of
sending explicit intents to demand data from application
A. Application A has access to contacts, SMS, audio,
and image data, while application B has access to the
internet. Applications B colludes with app A and steals
all the data to which application A has access. The data
is transmitted between applications in chunks.

2) No Attack Scenario: This scenario represents typi-
cal device exploitation, where users perform various
operations with such types of data as images, video
recordings, audio recordings, etc. In this scenario, two
legitimate applications may exchange data and transfer
it to the internet. For instance, images are shared by
Instagram or WhatsApp performs a data backup. Using
this scenario data helps us to reduce the false alarm rate.

3) No Data Transmission Scenario: In this scenario, no
attack is executed, and no data is uploaded, accessed, or
transmitted.

Figure 2 visualizes an example of the collected technologi-
cal signals, with clearly visible correlation patterns between
attack and CPU frequency and memory consumption that
could be learned with CI techniques.

B. Data Pre-processing

Before using it in the detector design, the collected data
is pre-processed and normalized to facilitate an RNN model
application. The data pre-processing includes:

1) Noise reduction;
2) Stabilizing the time interval between records;
3) Data normalization;
4) Data labeling;

Fig. 2: Samples of the technological signals and their change
during the attack and no-attack intervals.

5) Input dimensionality reduction;
Below, we provide further details on these data preprocessing
operations.

The first problem that was identified in our preliminary
empirical study with various devices [17], [18] is the excessive
noise in the recorded CPU frequency signals. To resolve this
issue, we used a band-pass filter, which is called to limit
the output frequencies within the specified range of allowed
frequencies. We embedded this band-pass filter into the afore-
mentioned “signal monitoring” application. This frequency
range is determined during the data collection, and it varies
for each Android device.

The second problem that we identified is inconsistency in
time intervals between sample records because technological
system signals are not measured at regular time intervals due
to the Android OS properties. We solved this problem by
generating missing samples using linear interpolation.

The data was normalized within the range from 0 to 1 for
each input (we employed formula 1). Thus, after performing
the Exploratory Data Analysis, we made the data suitable for
an RNN model.

normalized value =
col val − colmin

colmax − colmin
(1)

The data was labeled with all samples that lay within the
attack time bracket identified as “attack” and all others labeled
as “no attack”.

To improve the performance of an RNN model, we apply a
Principle Component Analysis (PCA) to reduce the dimension
of our input data. This processed data is then used as an input
to RNN models, as discussed in the next section.

IV. RNN MODELS, THEIR IMPLEMENTATION AND
PERFORMANCE

As stated earlier, the data collected is presented as the time-
series data, where many inputs or chunks of input sequences
are mapped to a single output. This is one of the major



TABLE I: Android phone models and OS versions used for
data collection.

Name OS Version

One Plus 6T 9.0
One Plus 5T 8.0

Moto G6 9.0
Moto G5 8.0
Pixel XL 9.0

Fig. 3: Basic architecture for a simple RNN model

reasons why we considered using an RNN in our investigation.
One of the goals of this research is to investigate which
type of an RNN model would perform better at the limited
computational cost. We analyzed such types of RNN as a
simple RNN, a Long short term memory (LSTM) RNN, and
a Gated Recurrent Unit (GRU) RNN.

An RNN is a type of neural network that is generally
used when the data has certain temporal structures, and the
current state depends not only on the current input but also
on the previous state. An RNN model can be considered as
a modified Feed-Forward Neural Network (FFNN) with an
internal memory component. As seen in figure 3, it processes
X0 input from the data to produce the output h0. This output,
along with the X1, the next input, produces the output h1,
then used as an input to its next state. This way, it keeps
remembering the context while training. The formula for the
current state is

ht = f(ht−1, Xt)

This network uses the tanh squashing function, as shown in
figure 3.

In one of our early classifier designs, we employed an RNN
architecture with a single input layer, multiple hidden layers
with the feedback loop, and an output layer. The results we got
were not impressive, even for smaller sizes of sliding windows,
and they deteriorated even further for larger window sizes.
The accuracy we achieved was 62%. The primary reason for
this low performance was the vanishing gradient problem that
RNN faces. We managed to overcome this issue by employing
an LSTM-based classifier.

Fig. 4: Basic architecture for LSTM model

Fig. 5: LSTM model parameters generated by TensorFlow

The LSTM is a modified version of an RNN architecture
with three gates that facilitates remembering past data in
memory (see figure 4). The LSTM model is trained by using
back-propagation. The first gate is the input gate, which
decides which input should be allowed to modify the memory
and to what extent. The second gate is the “forget gate”, which
decides what to discard from the memory block, and the third
is the output gate [26]. We implemented an LSTM model using
the architecture presented in figure 5.

The model we created using the LSTM model achieves a
very good result with a detection accuracy of 93.48% for the
non-interpolated data set and 96.27% for the interpolated one.
However, an LSTM model faces another issue, which is due to
the additional gates, the computational resources required to
run this model, and the time needed for the training are high
if compared with a simple-RNN model. Moreover, the size of
the generated model is significantly bigger. Since our ultimate
goal is to create a stand-alone Android OS application that
is going to be executed on an Android device with limited
resources, employing a large and computationally intensive
model is not the best solution. These problems can be solved
by utilizing a GRU-based model instead of the LSTM-based
model.

GRU is another variation of the RNN architecture, which
provides good accuracy at a lower computational cost if
compared to the LSTM architecture [27]. It consists of one
gate called an “update gate”, which decides whether to pass the



Fig. 6: Basic Architecture for GRU model

Fig. 7: GRU model parameters generated by TensorFlow

output of the previous state to the next state or not (see figure
6). We implemented a GRU-based model using the architecture
presented in figure 7. This GRU-based model trains faster (see
figures 9, 11), has better accuracy (see figures 8, 10), and the
size of the output model is 17% less if compared to an LSTM-
based design.

We performed various experiments using these models for
finding the right hyper-parameters. We used the interpolated
and non-interpolated datasets to compare the results for dif-
ferent window sizes, as seen in figure 12 and figure 13.

A. Implementing an attack detector on a real Android smart-
phone

Since initial classifier implementations were developed in
Keras with TensorFlow backend, we converted the devel-
oped GRU-based model to a TensorFlow-Lite model. The
conversion was performed by the TensorFlow-Lite converter
and allowed us to embed the developed GRU model into

TABLE II: SQLite table: attack info (dataset example)

Attack Time Active Apps

03-12-2019 5:39 Mail, App A, App B
03-12-2019 5:40 Photos, App A, App B

Fig. 8: Detection accuracy of both GRU and LSTM models
that use raw dataset.

Fig. 9: Loss function plot from GRU vs LSTM using raw
dataset.

the Android OS stand-alone application. The final Android
application has three parts, a Service component, and two
Activity components (see figure 14). The service component
runs in the background and continually collects the system
data and feeds it to the TensorFlow-lite model. If an attack
is detected, we find out all the applications that are active on
the host phone at that point of time and save them into the
SQLite database table called attack info (see table II).

We display the attack timings column in the first activity as
a RecyclerView, and upon selecting an attack row, the second
activity is triggered, which displays all the applications which
were active at that moment. The user can then check the
permissions granted to this application subset and easily find
the “colluded applications”.



Fig. 10: Detection accuracy of both GRU and LSTM models
that use pre-processed dataset.

Fig. 11: Loss function plot from GRU vs LSTM using pre-
processed dataset.

V. CONCLUSION

In this paper, we presented the developed effective and
efficient implementation of the “colluded applications” attack
detection based on the analysis of the major accessible An-
droid OS system technological signals of mobile devices. The
detector was developed by employing RNN and its variations.
The attack detector is designed to perform in real-time on
a stock Android smartphone with no firmware modification
required. “Colluded applications” attack poses a severe threat
to the user’s data privacy and safety on the ever-growing, most
popular mobile platform. Even though this attack has been
researched for several years, no tools have been developed that
are capable of detection and mitigation of this attack in real-
time on a standard device. We analyzed available accessible
data, which resulted in choosing to employ overall memory
consumption and CPU cores’ clock speeds as the inputs of

Fig. 12: Detection accuracy vs. window size for the GRU
model (20 epochs) for the raw dataset.

Fig. 13: Detection accuracy vs. window size for the GRU
model (20 epochs) for the pre-processed dataset.

the developed attack detectors.
In order to evaluate the effectiveness and efficiency of

our attack detectors, we conducted an empirical study that
exploited this novel attack. In this paper, several scenarios that
represent restricted data transmission of various types such as
contacts, text messages, audio, video, and images were imple-
mented on the real Android smartphones. During the attacks,
overall memory consumption and CPU cores clock speed
(frequency) were recorded. We compiled a comprehensive
dataset and performed exploratory data analysis on it to find
the most relevant data points that we can use to train our RNN
based model. In addition, in order to use the collected data in
RNN models, it was processed by filtering out the excessive
noise and restoring the missed data points. We made the
dataset available for public use (link: http://bit.ly/2k3M5Ny).

We implemented attack detectors that are based on simple



Fig. 14: Android application screenshots

RNN, LSTM, and GRU models. All models were trained
and tested on the collected data, and their performance was
compared and analyzed. Our analysis has rendered that the
most effective and efficient design is based on the GRU
model, which achieved more than 95% accuracy in the attack
detection task. The developed GRU model was then converted
into a stand-alone Android application that detects attacks
in real-time and makes the attack logs available to a device
owner.

In our future work, we are aiming at collecting more data
from a broader set of smartphones and more comprehensive
attack and device usage scenarios. In addition to Android OS,
we are planning to cover iOS as well, which will allow us to
cover an even bigger percentage (close to 100%) of mobile
devices.
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