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Abstract—Deep neural networks have proven highly effective
at speech enhancement, which makes them attractive not just as
front-ends for machine listening and speech recognition, but also
as enhancement models for the benefit of human listeners. They
are, however, usually being trained on loss functions that only
assess quality in terms of a minimum mean squared error. This
is neglecting the fact that human audio perception functions in
a manner far better described by logarithmic measures than
linear ones, that psychoacoustic hearing thresholds limit the
perceptibility of many signal components in a mixture, and that
a degree of continuity of signals may also be expected. Hence,
sudden changes in the gain of a system may be detrimental.
In the following, we cast these properties of human perception
into a form that can aid the optimization of a deep neural
network speech enhancement system. We explore their effects on
a range of model topologies, showing the efficacy of the proposed
modifications.

Index Terms—speech enhancement, denoising, psychoacous-
tics, slow feature analysis

I. INTRODUCTION

Speech enhancement and denoising have been around for a

long time. Early works of spectral subtraction algorithms date

back to 1979 [1], and although the algorithms have evolved,

the problem has stayed the same; remove noise from speech

recordings and make speech more intelligible.

The relevance of this topic, however, increased with the

availability of mass-market telecommunication and especially

mobile devices, as these are used in nearly all real-world

situations and noise conditions. In recent years, this field of

research has profited from the availability of massive and

affordable computing power, together with an abundance of

recorded or realistically generated data, e. g., [2]. This has

enabled a proliferation of methods based on artificial neural

networks, or more generally driven by the machine-learning

idea of autonomously discovering optimal structures and pa-

rameter sets, e. g., [3]–[6]. These methods typically need to be

trained on large-scale databases with respect to an optimiza-

tion criterion, which is expressed as a task-appropriate loss

function. One of the most commonly used examples of such

a loss function is the mean squared error (MSE), the square
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of the Euclidean distance between the processed data and a

clean reference. However, recent works have shown how more

specialized functions can be utilized to optimize a neural net-

work model. Hence, for the optimization of audio processing,

it is interesting to include psychoacoustic principles and thus

to take the human perception into account [7]. For example,

the work in [8] optimized speech enhancement algorithms

directly on a short-time objective intelligibility (STOI) [9]

metric approximation. This approach works on par with,

but could not outperform an MSE baseline and thus raises

the question of what the best metric may be. Additionally,

the framework introduced in [10] showed that incorporating

psychoacoustic metrics into the loss function can be beneficial

for neural network training. Lastly, a metric that evaluates

the contributions of both signal-to-distortion-ratio (SDR) and

perceptual-evaluation-of-speech-quality (PESQ) [11] was in-

troduced in [12].

Recently, the idea of slow feature analysis (SFA) [13] has

also taken hold in the deep learning community. The goal of

SFA is to find a representation of a signal in such a way that

this representation is slowly varying over time. References and

examples of applications of SFA can be found in the field of

computer vision [14], [15], as well as in audio processing [16].

In 2019, a system that uses an SFA loss to optimize for a slow

representation of an audio signal was proposed in [17], but this

resulted in a collapse of the latent space of the employed auto-

encoder. In our work, we propose a normalization of the plain

differential SFA loss, which solves this problem.

Not only the loss, but also the topology of the neural

network is a pertinent point. A variety of possible model

structures has been proposed and evaluated, e. g., a wave-

net-based model [17], which optimizes network parameters

directly on the time domain signal differences of clean and

processed speech. Although wave-net encoders produce very

natural sounding signals, they come with the drawback of

requiring a large-scale training dataset. Therefore, we will

incorporate the general idea of calculating parts of the loss

directly on the signal in the time domain, but with a classical

short-time Fourier transform instead of the wave-net architec-

ture.

Concretely, we will evaluate a model topology that is based

on classical frequency masking algorithms. As shown in [18],
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it is possible to use time-frequency masking to recover the am-

plitude spectrum of a speech signal, when it is superimposed

by a number of other sources. This becomes possible due to the

sparsity of speech, when represented in an appropriate time-

frequency domain, a characteristic that is referred to as W-

disjoint orthogonality by Yilmaz and Rickard.

Many works have exploited this property to separate a

speech source of interest from interferers by estimating such

a time-frequency mask, e.g. based on beamforming [19] or

independent component analysis [20] for multi-channel en-

hancement, or on statistical properties of speech versus noise

[21] or of speech over time [22] for the single-channel case.

As we can see in [23], [24], it is also possible, and highly

effective, to use a DNN to calculate such a soft mask for

the amplitude spectrum of a single-channel input signal. This

mask is then used to gate the input magnitude spectrum and

it hence should encode the estimated proportion of the clean

speech energy in all time-frequency bins.

In contrast to [23], we will use a multi-layered LSTM in-

stead of explicit recurrent smoothing in order to train our setup

end-to-end and let the network learn the correct transition

rates between masks. Since we are primarily investigating the

impact of different loss functions on enhancement quality, we

did not try complex model topologies as described in [25]; also

we did not look into generative adversarial network topologies

[3]. Nevertheless it will be interesting for future research to

investigate the impact of phase-aware algorithms such as [25]–

[27] and to employ our suggested loss functions in a broader

range of architectures.

II. SYSTEM DESIGN

In the following section, we describe our system architecture

and training process as well as the high-level overview of the

proposed objective functions.

A. Recurrent Soft Gating Filter

Our proposed models are based on classical speech en-

hancement structures. As shown in Figure 1, they utilize an

STFT to transform the signal into the time-frequency domain,

where they apply a point-wise gain to suppress non-speech.

A corresponding inverse STFT (iSTFT) is applied to the

resulting spectrogram, using the phase of the input signal for

reconstruction.

The frame length of the STFT should not exceed the short-

time stationarity of speech signals. Our choice of 16ms frame

length and 4ms frame shift is motivated by this consideration

and is also within the typical ranges of frame-lengths in similar

approaches, cf. [5], [18]. Since we use a differentiable im-

plementation of this spectral transformation, we can optimize

the enhancement system parameters directly on losses that are

calculated in the time domain.

All models utilize Long Short-Term Memory (LSTM) [28]

cells to control this soft mask, similarly, e. g., to [12], which

enables them to take temporal context into account. As shown

in Figure 1, it fades out frequency content that is not speech

by multiplying the amplitude spectrum with a mask that is

x̃b,t STFT iSTFT
∠(X̃)b,k

|X̃|b,k ×

LSTM σ(hb,k)

hb,k

x̂b,t

Fig. 1. In the proposed model, an STFT is applied to the input signal. The

resulting magnitude spectrum |X̃|b,k is multiplied point-wise with a soft mask

σ(hb,k). We use the phase of the noisy signal ∠(X̃)b,k for reconstruction.
During the training phase, the representation hb,k is also passed to the loss
function.

calculated from the noisy input amplitude spectrum. Moreover,

the LSTM topology can be bidirectional, which means that

future context can also be considered in the model. While

this results in a loss of causality and real-time applicability

of the speech enhancement model, it allows for an optimum

enhancement.

Lastly, we can reconstruct the clean signal from the masked

amplitude in conjunction with the input signal phase. Note that

the noisy input phase, which is used to synthesize the signal, is

only a stand-in for the clean speech phase, which is unavailable

in this context. This has been done similarly in the majority

of previous works, see, e. g., [20], [23], [29].

We tested our model with different numbers of LSTM

layers and compared the results for uni- and bidirectional

LSTMs. The number of LSTM output neurons is set to the

number of frequency bins of the spectrogram, or twice this

size for bidirectional topologies. The subsequent sigmoid layer

generates a frequency-dependent soft-mask, which is used to

filter the amplitude of the input signal. We chose the sigmoid

function because it ensures a gain smaller than one. This is

important since we are working with additive noise and the

amplitude spectrum of a single input source is more sparse

than the amplitude spectrum of the noisy superposition of

multiple sources. Hence, the denoising algorithm should also

be designed in such a way that it favors an increase of sparsity.

Moreover, the sigmoid function ranges smoothly from 0 to 1,

as is desired for the calculation of soft time-frequency masks.

B. Training Process Overview

Our framework is shown in Figure 2. As the primary input,

we load a batch of clean speech signals with the indexing

structure xb,t, where b denotes the batch entry index and t

the sample index in the discrete time domain, as encoded in

the raw audio file. We use zero-padding to the length of the

longest sequence in each batch. We add randomly chosen noise

to every clean signal in the batch, which yields the noisy input

signals denoted as x̃b,t.

This degraded batch is fed into the denoising model de-

scribed in Section II-A, which returns the processed signal

x̂b,t and a signal representation hb,k. Note that k is a frame

index in the spectral domain. In contrast, t is the sample index

of the raw audio file.
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Losses

+

xb,t

nb,t x̃b,t
x̂b,t

pb,k

wb,k

hb,k
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Fig. 2. Depiction of the overall training setup. Noise nb,t is added randomly.
The two outputs of the model are the reconstructed signal x̂b,t and the
signal representation hb,k . The phoneme boundaries are encoded into the
weights wb,k , which are used in the loss function. The psychoacoustic hearing
thresholds pb,k are passed to the loss function as well. The optimizer tunes
the model parameters.

During training, we use different losses, which are described

in Section II-C. Three of these losses measure the distance

between x̂b,t and xb,t. The fourth loss is calculated on tem-

poral information of the representation hb,k. We implemented

the denoising framework with PyTorch [30] and the SciPy

stack [31]. The models are trained with the Adam optimizer

with decoupled weight decay (AdamW) [32], with a fixed

learning rate of 0.0005.

To measure the quality of a denoising algorithm, different

metrics are available. Here, we use PESQ and the short-time

objective intelligibility measure (STOI) for evaluation. The

PESQ metric is standardized by the ITU in recommendation

P.862 and is designed to asses the quality of telecommunica-

tion lines perceived by human listeners [11].

C. Speech Enhancement Losses

We are interested in designing loss functions that are es-

pecially amenable to the goal of speech enhancement. Speech

has numerous characteristics that can be utilized for the design

of loss functions. Additionally, as we carry out speech en-

hancement for human listening, it is also important to improve

perceptual quality, which implies a set of further desired

characteristics, and hence, another set of loss functions. None

of the loss functions can, however, be expected to work well in

isolation. Therefore, in the course of this study, we conducted

experiments with different combinations of optimization goals.

1) Mean Squared Error: The first loss, which we will

consider as a baseline loss, is the well known and widely used

mean squared error loss (MSE).

2) Mean Squared Logarithmic Error: The second loss is the

mean squared logarithmic error (MSLE). Since the original

clean signal, as well as the processed signal, are available

in the time domain, this loss is calculated as the batch- and

sample-wise mean over

LMSLEb,t
∝ (log(|xb,t|+ 1)− log(|x̂b,t|+ 1))

2
. (1)

The parts of the sequences that are appended during zero

padding are excluded in the computation.

3) Psychoacoustics: The psychoacoustic loss (PSY) ap-

proximates the human listening experience by utilizing hearing

thresholds. Psychoacoustic hearing thresholds are an effective
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Fig. 3. An example of the signal-to-mask ratio (SMR) (top), shown together
with the clean audio spectrogram (bottom), from which it was derived.

measure of audibility and describe how the dependencies

between frequencies and across time lead to masking effects

in human perception [33]–[35].

The hearing thresholds are therefore useful to identify and

penalize those time-frequency bins, that deviate from the

clean signal by a perceptible amount. To quantify the hearing

thresholds, we calculate the signal-to-mask ratio (SMR) pb,k,

which describes the masking effect via the logarithm of

the ratio of the clean signal energy to the psychoacoustic

masking threshold. Hence, the higher the value of the SMR,

the more noise can be added to the signal without being

perceivable by human listeners. An example of the SMR and

its corresponding audio signal is given in Figure 3.

To obtain the SMR, we utilize the psychoacoustic model

of the MP3 compression algorithm [36]. Our proposed loss is

defined as the mean over

LPsyb,k
∝ ReLU

(

20 log10
|X̂b,k|

|Xb,k|
− pb,k

)

, (2)

where Xb,k is the target signal and X̂b,k the estimated signal,

both in the frequency domain. Equation (2) thus assesses

the degree to which the added noise exceeds the hearing

thresholds, and sets the cost of all remaining time-frequency

bins, which do not exceed the hearing thresholds, to zero.

4) Slowness Loss: The slowness loss (SLOW) acts as a

regularisation term. By penalizing rapid changes in the output

nodes of the LSTM in the gating algorithm, we use the idea

of slow feature analysis (SFA) under additional consideration

of the phoneme annotation. The idea behind this is to allow

the filters to change more easily near phoneme boundaries.

Therefore, we use a forced alignment tool, which utilizes a

trained automatic speech recognizer for the English language

to calculate the phoneme transcription of our speech sam-

ples [37]. Those transcriptions are only needed in the training

phase of the algorithm.



The main goal of SFA is to find a representation of an

input signal which varies slowly over time. This optimization

for slowness has shown its utility in recent publications and

was introduced in [13], [38].

The slowness of the representation, in our case the output

of the final LSTM layer hb,k, is calculated via

S(hb) ∝

K−1
∑

k=1

wb,k||hb,k+1 − hb,k||
2
2. (3)

The weight wk is set to zero if hk is close to a phoneme

boundary and to one if hk is in the middle of a phoneme

frame. Specifically, wk is calculated in the following way:

First, we start with the integer encoded phoneme annotation

bb,k and generate a sequence of ones and zeros

δbb,k =

{

1 if bb,k+1 − bb,k 6= 0
0 otherwise

. (4)

Subsequently, we convolve the resulting sequence δbb,k with

a trapezoidal window

tk = [0.25, 0.5, 0.75, 1, 1, 1, 0.75, 0.5, 0.25] (5)

to smooth the phoneme boundary mask over time. The result-

ing sequence is called δb̂b,k. Finally, we set

wb,k = 1− max
(

1, δb̂b,k

)

. (6)

This ensures that the representation is allowed to change

when the spoken phoneme changes. In order to avoid a trivial

solution, which results in the collapse of the representation

space [17], we apply an additional scaling

LSlow ∝
∑

∀b

[

S(hb)
∑K

k=1
||hb,k||22

]

. (7)

To perform a full SFA, it is common to apply a zero mean

and unit variance constraint as well as to require decorrelation

and ordering by slowness of the components of the represen-

tation. This is usually done by solving an eigenvalue problem.

For this work, only slowness will be considered, since it is

the most relevant property in the context of a denoising task.

Because we are not enforcing unit variance, we are using

normalization to prevent the trivial solution.

III. EVALUATION

In this section we describe the training configuration and

evaluation. We first introduce our baseline methods and

database, followed by a description of the evaluation metrics.

A. Baseline Method

As a first baseline, we use the well-known improved

minima-controlled recursive averaging (IMCRA) algorithm

[39]. Furthermore, we use models that are trained on the MSE

loss as a second baseline.

B. Dataset

The Mozilla Common Voice database (MCV) is a

community-driven speech corpus that is permanently under

development. It consists of over 1,965 hours of spoken and

annotated recordings in 29 different languages. The MCV is

published under a Creative Commons (CC-0) license and is

publicly available. The English sub-corpus consists of 780

hours recorded from approximately 39,577 speakers, cf. [2].

Every utterance of this database is a separate file, which

comprises a single sentence. Mozilla provides a word-level

transcription for every utterance.

In order to validate our approach, we use a train-test-

development split of this database. Cross-validation is not per-

formed due to the excessive training time of the experiments.

For this work, we use a subset of 56,843 files recorded from

1,577 different English speakers as our training set. Due to the

crowd-sourcing nature of the database, these files vary in qual-

ity between studio-quality and low-quality recordings. This

range of possible input devices closely resembles recordings

in the field. Our development set consists of 11,499 files and

our test set contains 100 files. The length of recordings in our

database ranges from 2.3 to 7.2 seconds.

For the noise, we use two databases: the open-source

DEMAND corpus [40] and the RSG-10 corpus [41]. The

DEMAND corpus contains 16-channel recordings of different

natural environments, like street or kitchen noise. We only

used the first of the 16 channels. The RSG-10 corpus is another

collection of noises, stemming from a wide variety of noise

conditions.

Analogously to the clean signals, we applied a train-test-

development split to the noises as well. Since we are perform-

ing noise-reduction speech enhancement, we excluded noise

that contains intelligible speech. The noise level for training

is chosen uniformly between −10 and 30 dB RMS SNR to

cover a wide range of noise levels. Furthermore, the segment

of the noise, which is added to the speech signal, is chosen

randomly throughout the training.

C. Experimental Setup

We trained our models with different losses and parame-

ter combinations for a maximum of 100 epochs. As com-

binations of loss functions, we considered MSE, MSLE,

MSLE+PSY, MSLE+SLOW, and the combination of all,

MSLE+PSY+SLOW. The MSE loss is not taking any psycho-

acoustics or temporal information into account. It is, therefore,

considered as a baseline and not combined with the other

metrics.

In a first experiment, we assessed the impact of specific

model parameter settings, testing LSTM layers counts from

3 to 4 and comparing bidirectional and unidirectional LSTM

topologies on a slightly larger version of our database. Here,

we selected the weights for the losses as wMSLE = 1, wPSY =
wSLOW = 0.0001 and the learning rate of the optimizer as

α = 0.0005. The batch size was selected to be 24. In Table I

we list the corresponding results.







enhancement process. Additionally, a complex-valued variant

of the system that directly utilizes the complex spectrum

provides a promising direction for further research.
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