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Abstract—Machine learning (ML) is widely applied to network
traffic classification (NTC), which is an essential component
for network management and security. While the imbalance
distribution exhibiting in real-world network traffic degrades
the classifier’s performance and leads to prediction bias towards
majority classes, which is always ignored by exiting ML-based
NTC studies. Some researches have proposed solutions such
as resampling for imbalanced traffic classification. However,
most methods don’t take traffic characteristics into account and
consume much time, resulting in unsatisfactory results. In this
paper, we analyze the imbalanced traffic data and propose the
focal loss based adaptive gradient boosting framework (FLAGB)
for imbalanced traffic classification. FLAGB can automatically
adapt to NTC tasks with different imbalance levels and overcome
imbalance without the prior knowledge of data distribution. Our
comprehensive experiments on two network traffic datasets cover-
ing binary and multiple classes prove that FLAGB outperforms
the state-of-the-art methods. Its low time consumption during
training also makes it an excellent choice for highly imbalanced
traffic classification.

Index Terms—machine learning, imbalanced traffic classifica-
tion, security, focal loss, gradient boosting

I. INTRODUCTION

With the explosive growth of Internet applications, net-
work traffic classification (NTC) has become the fundamental
component of network management and cybersecurity. At
present, machine learning (ML) is the most mainstream and
effective technology applying to NTC [1] [2]. However, the
imbalance nature of real-world network traffic poses great
challenges to ML-based NTC schemes [3]. ML algorithms
are always designed to achieve the highest overall accuracy,
which may lead to prediction bias towards majority classes
[4]. The performance degradation on minority classes may
be catastrophic in some scenarios such as malicious traffic
identification and intrusion detection, where the malicious
traffic accounts for a very small proportion. For example,
in malicious robot detection tasks, a poor precision on the
malicious robots will result in misclassifying a normal user as
a malicious robot, seriously damaging the users’ experience.
While in intrusion detection tasks, a low detection rate on
abnormal attacks will lead to severe security consequences to
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the system. Therefore, imbalance must be taken into account
in future NTC researches.

Some studies have proposed several solutions to combat
imbalance in NTC [5]. The most common solutions are to
resample the training set to rebalance it [6]. The advanced
solutions combine resampling techniques and ensemble algo-
rithms to further improve the classifier’s performance [7]. In
addition, there are also proposals to consider the design of
misclassification cost or class weight [8]. However, these stud-
ies have some problems. First, the resampling based methods
may lose potentially useful information or increase the risk of
overfitting as well as the time consumption. Secondly, most
methods directly use the general techniques which have been
designed to alleviate data imbalance without considering the
particular characteristics of the network traffic, resulting in
unstable effects and poor generalization capabilities on the
imbalanced NTC tasks. An alternative idea is to design an
end-to-end model that mitigating the traffic’s imbalance during
each iteration of training, i.e., combining a well-designed loss
function and an efficient algorithm into a framework. No
resampling is required in this framework, thus avoiding the
drawbacks mentioned above.

Focal loss is proposed in the field of object detection for
solving the extreme foreground-background class imbalance
which degrades the first-stage detector’s performance [9].
Through the analysis in Section III, we find that there are sim-
ilarities between imbalanced traffic classification and object
detection. Besides, gradient boosting is an excellent algorithm
for its high accuracy [10]. Based on these considerations,
this paper proposes a framework named focal loss based
adaptive gradient boosting (FLAGB) for imbalanced traffic
classification. FLAGB doesn’t need to preprocess the training
data, retaining the rich information in raw traffic data and
avoiding the extra time consumption caused by resampling.

The main contributions of our work are summarized as
follows:

• We propose the FLAGB framework to combat imbalance
in network traffic classification. Considering the char-
acteristics of imbalanced network traffic, FLAGB can
reduce the weight of majority samples in disguise during
the training phase and effectively compensate for the
classifier’s degradation caused by class imbalance.
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• Without the prior knowledge of data distribution, FLAGB
can adapt to the imbalanced traffic dataset under different
network scenarios. The classifier can achieve the best
effect on the target metric with the optimal parameters
automatically found by FLAGB.

• Our FLAGB achieves excellent results on a real-world
network traffic dataset and the well-known KDD 99
dataset, and outperforms several state-of-the-art methods
under various imbalance levels. Furthermore, FLAGB
guarantees less time consumption in highly imbalanced
NTC tasks.

The rest of the paper is organized as follows. Section II
summarizes the related work. Our proposed framework is
introduced in Section III. Section IV presents the experiments
in detail. Finally, we conclude this paper in section V.

II. RELATED WORK

Class imbalance has been widely studied as one of the most
challenging problems in machine learning. The solutions can
be divided into three categories: data-level methods, algorithm-
level approaches, and cost-sensitivity methods [4]. Data-level
methods, including oversampling, undersampling and hybrid
algorithms, resample the dataset to diminish imbalance. Over-
sampling copies or synthesizes samples belonging to minority
classes to rebalance the class distribution, while undersam-
pling reduces samples of majority classes to achieve the
same goal. Hybrid algorithms such as SMOTE-TL, SMOTE-
ENN, combine two sampling techniques [11] [12]. Algorithm-
level method is actually a hybrid model combining data-level
approaches and ensemble algorithms, which uses resampling
to mitigate data imbalance and boosting-like algorithms to
enhance the classifier’s performance. Cost-sensitive methods
consider diverse costs for different classes, which directly
modify the learning procedure to improve the classifier’s
sensitivity towards minority classes. It may bring better effect
with a well-designed cost [4] [5].

Some works have sought solutions for combating imbalance
in NTC, among which data-level methods are widely adopted.
Seo et al. proposed an approach to find the optimal SMOTE
ratio in imbalanced datasets for intrusion detection [6]. Oeung
et al. put forward a clustering-based undersampling method
called CTU in their NTC framework [13]. The key idea of
CTU is to select the most informative samples from major-
ity classes, which are determined by clustering. Data-level
methods are easy to implement and effective to some degree.
However, their performance cannot be guaranteed in real-
world network traffic, because oversampling usually consumes
much time and undersampling loses important information
when reducing majority samples. Wei et al. compared several
boosting-based ensemble algorithms for real-time imbalanced
NTC and proposed a similar method called BalancedBoost
[14]. They claimed that it outperformed other methods on
the UNIBS dataset. However, Khoshgoftaar et al. found that
ensemble learning was more time-consuming than the data-
level approach and the cost-sensitive method [15]. Peng et
al. proposed a cost-sensitive method called IDGC [8] and

applied it to imbalanced NTC, achieving good results [16].
But they also pointed out that IDGC’s computational com-
plex was relatively high [17]. Another cost-sensitive called
MetaCost [18] was used by Liu et al. and the authors demon-
strated its effectiveness under different network scenarios [19].
Furthermore, Gomez et al. made a comprehensive review
of imbalanced NTC and concluded several well-performing
methods [5]. Unfortunately, these methods haven’t considered
the characteristics of network traffic. In this paper, we design
a cost-sensitive and boosting combining method, which is fit
for the real-world network traffic for its good performance.

III. METHODOLOGY

A. Problem Definition

In a given NTC task, for its dataset D composed of n
(n ≥ 2) categories, the sample size of the ith category is
Ni. If there is a large difference in the sample size of n
categories, i.e., Ni � Nj , then D is an imbalanced dataset.
Classes with a larger sample size are called majority classes,
and other smaller classes are minority classes. The NTC
task on an imbalanced dataset is called imbalanced traffic
classification. How to improve the classifier’s performance on
minority classes while maintaining the accuracy of majority
classes in NTC tasks is our goal. In this research, we encode
the majority class as 0, which is the negative class in binary
classification, and the minority classes as 1,2,. . . ,n-1, which
corresponds to the positive class.

B. Focal Loss

In object detection tasks, Lin et al. believe the extreme
foreground-background class imbalance hinders the first-stage
detector from achieving a better performance. Therefore, they
improve the traditional cross entropy (CE) loss function and
devise Focal Loss (FL), which focuses training on hard exam-
ples, avoiding the vast number of easy negative examples from
overwhelming the detector during training [9]. Hard example
here refers to the examples in the training set that are poorly-
predicted, i.e. being mislabeled by the current version of the
classifier. Easy example is exactly the opposite.

The formula of focal loss for binary classification is as
follows:

FL (pt) = −αt (1− pt)γ log (pt) (1)

where pt and αt are defined as:

pt, αt =

{
p, α if y = 1
1− p, 1− α otherwise (2)

Fig. 1 shows the FL function with different γ. When γ=0, it
is CE loss. As can be seen, CE loss of the easy example (i.e,
pt � 0.5) is still relatively large. While with the increasing
of γ, FL values of easy examples are greatly reduced, but that
of hard examples (i.e, pt � 0.5) are reduced to a maximum
of one quarter (i.e. when pt = 0.5), making the classifier
concentrate on hard examples.



𝐶𝐸 𝑝𝑡 = −log(𝑝𝑡)

𝐹𝐿 𝑝𝑡 = − 1 − 𝑝𝑡
𝛾 ∗ log(𝑝𝑡)

easy examples

Fig. 1. Focal loss versus predicted probability under different γ values

C. Gradient boosting algorithm

Gradient boosting is also called GBDT because it is often
an ensemble model of decision trees [10]. In each iteration,
GBDT uses the negative gradient to fit the approximation of
the current loss and learn the new tree. This method achieves
state-of-the-art performances in many machine learning tasks.
However, due to its high computational complexity, it is
difficult to balance accuracy and efficiency when the data
size is large. Ke et al. proposed a novel GBDT algorithm
called LightGBM, which made a big breakthrough in terms of
computational speed and memory consumption [20]. It solves
the efficiency problem and maintains superior performance. So
we choose LightGBM as the concrete implementation of the
gradient boosting algorithm in our framework.

D. Focal Loss based Adaptive Gradient Boosting Method

Imbalanced traffic classification tasks have certain similar-
ities with the object detection scenarios described in Section
III-B. Fig. 2 visualizes a real-world network traffic dataset
used in this paper. We use TSNE to reduce the samples’
dimensions and display them in a 2D image. From Fig. 2,
most majority samples(light blue) are quite far and clearly
distinguishable from the minority samples(orange), which can
thus be considered as easy examples. The samples which
really deserve attention are those located around the decision
boundary and indistinguishable from other classes. Based on
this observation, we infer that FL may be effective to help
solve the imbalance problem in NTC tasks.

FLAGB is a hybrid method of cost-sensitive and ensemble
algorithms. Fig. 3 illustrates the framework of FLAGB. It
is mainly divided into three parts according to the different
functions and processing phases, including the data preparation
part in the middle of Fig. 3, the adaptive tuning part on the
left, and the classifier generation part on the right, of which
the latter two parts contain core technologies for mitigating
the imbalance in traffic data.

First, after the feature extraction and sample labeling, the
raw imbalanced network traffic is partitioned into a training
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Fig. 2. Visualization of imbalanced traffic data by TSNE

set and a validation set according to a certain ratio without
the need for any resampling operations. In the adaptive tuning
phase, all traffic data are put into use to find the corresponding
optimal parameters in this scenario. Then, the training set
is used to train the classifier, while the validation set is
utilized for observing and assisting the training. The size
of the validation set should not be too small to ensure the
generalization ability of the classifier.

In the framework, LightGBM is chosen to be the gradient
boosting algorithm as mentioned in III-C. Especially, the loss
function is replaced with FL, so that the model puts more
attention on few hard examples, which equates to reducing
the weight of the majority classes and mitigating the degree
of traffic imbalance in the training set.

More concretely, the default loss function of LightGBM for
binary classification tasks is CE:

CE(p, y) = −(y log p+ (1− y) log(1− p)) (3)

where y ∈ {0, 1} is the ground truth label and p ∈ [0, 1] is the
model’s predicted probability for the class with label y = 1.
Adding a modulating factor related to p and γ and a balanced
factor α to CE, FL is obtained:

FL(p, y) = −(αy + (1− α)(1− y))
· ((1− (yp+ (1− y)(1− p)))γ)
· (y log p+ (1− y) log(1− p))

(4)

For binary NTC tasks, assume that the prediction output of
LightGBM is pred. Then the corresponding probability p is
sigmoid(pred), written as s(pred) for short. Substituting p into
(4), we get:

FL(pred, y) = −(αy + (1− α)(1− y))
· (1− (y · s(pred) + (1− y) · (1− s(pred))))γ

· (y log(s(pred)) + (1− y) log(1− s(pred)))
(5)

Calculate the first-order and second-order partial derivative of
FL(pred, y) with respect to pred and take them as the return
value of objective loss function.
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Fig. 3. The framework overview of FLAGB. Its core technology is the combination of cost-sensitive and gradient boosting algorithms. Adaptive tuning
function can help find the optimal parameters and adapt the model to fit different scenarios automatically.

For multiclass classification tasks, (5) is also applicable.
We extend binary to multiple classification using the idea of
one-versus-all. Assume that the training set D has a total of
m samples and n classes, and each class is represented by
Ci. Then D = {C1, C2, ..., Cn}. The prediction output of
LightGBM for multiclass task is a (1,m ∗ n) array. Reshape
it to a m ∗n matrix, i.e. pred. In addition, encode the ground-
truth label to get the one-hot label matrix of m∗n size, which
corresponds to y in (5).

For Internet network traffic, the imbalance level varies de-
pending on the specific scenario. The adaptive tuning function
is deployed in FLAGB to adapt the model to fit different
scenarios automatically. For a given dataset, there is no need
to know about the class distribution. The user only needs to
set the ranges of all parameters in the parameters pool and
the objective metric value required by the task. Referring to
[9], the ranges of α and γ are set to be (0,1) and (0.5,5),
respectively. For a given task, select the target metric, such as
precision, recall, etc., so that the classifier attempts to reach
the highest metric result for each class. We use hyperopt and
cross-validation library in Python to search for the best α, γ
and other parameters.

After getting the optimal parameters, a classifier can be
trained on the training set. The current target metric should
be consistent with that in adaptive-tuning phase. When the
metric results are no longer promoted on the verification set,
the training is stopped and the final classifier is obtained.

IV. EXPERIMENTS

A. Dataset
In order to prove the effectiveness and versatility of our

proposed method, we select two datasets from different Inter-
net network environments, covering binary classification and

multi-classification tasks. One is a malicious cloudbot dataset
called BOT and the other is the KDD99’ dataset.

BOT dataset was collected by Guo et al. to study the
identification of malicious cloudbots [21]. It was extracted
from the raw traffic from online trading servers of a large
Internet company. BOT consists of the human-user class
and the malicious-cloudbot class, including 141-dimensional
statistical features. More information can be found in [21].

KDD Cup 1999 Data, briefly called KDD 99, is widely
used for intrusion detection and machine learning research
[22]. It consists of 5 main categories, including DOS(Denial
of Service), Probe, R2L(Root 2 Local), U2R(User 2 Root) and
Normal, among which the first four categories are abnormal.
Each sample is described by 41 features. DOS occupies
79.27% of the entire dataset, while Normal only accounts
for 19.85%. This is extremely unreasonable, so we remove
DOS class. We also remove some fine-grained classes in each
category that appear in the testing set but do not appear in
the training set. Then the second dataset used in this study is
formed, called KDD99’. Since the problem we are exploring is
the impact of class imbalance on network traffic classification,
removing some of the data mentioned above does not affect
the validity of the experimental conclusions.

B. Experiment settings
a) Imbalance level: We use imbalance ratio per label

(IRLbl) defined by (6) to measure the imbalance level of each
dataset [5]. IRLbl is the ratio between the sample size of
majority class and that of class i. It is 1 for majority class and
the fewer samples a minority class has, the larger its IRLbl
will be.

IRLbli =
Nmajority class

Ni
(6)



TABLE I
CLASS DISTRIBUTION IN KDD99’ DATASET. NORMAL IS THE MAJORITY CLASS

KDD99’ Normal(0) Probe(1) U2R(2) R2L(3)

s %s s %s IRLbl1 s %s IRLbl2 s %s IRLbl3
Training set 97278 95.80 4107 4.04 23.7 52 0.05 1870.7 104 0.10 935.4
Testing set 60593 87.81 2377 3.44 25.5 39 0.06 1553.7 5993 8.69 10.1

For BOT dataset, we set up 5 experimental groups by
randomly selecting a certain number of samples from two
original classes. We set IRLb1 to 50, 100, 200, 500, 1000
respectively to cover different imbalance level, namely BOT-
IRLbl1. Sample size of majority class (i.e. negative class) in
each training set is set to 250000. We assume that the sample
size of testing set is one-tenth of that of training set, and its
IRLb1 is consistent with the training set.

No additional operation is done for KDD99’. Each class’s
sample size(s) and its percentage(%s) are presented in Table I.

b) Performance metrics: Appropriate metrics are very
important to objectively assess the effectiveness of various
methods and compare them for combating imbalance in NTC.
Since it is hard for traditional overall accuracy to reflect the
classifier’s performance on minority classes, we use overall
metrics and individual metrics. Overall metrics can measure
the classifier on the whole dataset. While individual metrics
assess it on each class, providing us a clear observation about
if a given method strengthens minority classes.
Individual metrics: Precision (P) and Recall (R) are adopted
as metrics for individual classes. Recall is also known as
accuracy or detection rate. They are defined by (7) and (8)
separately. For class i, TPi is the number of samples correctly
predicted as class i, FPi is the number of samples misclas-
sified as class i, TNi is the number of samples correctly
predicted as non-class i, and FNi is the number of samples
that are misclassified as non-class i. Besides, F1 score defined
by (9) is also adopted in the binary classification task, which
is the harmonic mean of P1 and R1.

Pi =
TPi

TPi + FPi
(7)

Ri =
TPi

TPi + FNi
(8)

F1 = 2 · P1 ·R1

P1 +R1
(9)

Overall metrics: We choose overall accuracy (OA) and G-
mean (GM) as the overall metrics. OA is the ratio between
the number of correctly predicted samples and the total size
of the dataset, which is sensitive to class imbalance. While GM
is not sensitive to class imbalance. It is the geometric mean
of the per-class recall and treats all classes equally. They are
separately defined in (10) and (11).

OA =

∑
TPi

# Samples
(10)

GM = n

√∏
Ri (11)

c) Estimator for baseline: Decision Tree (DT) has been
widely used in NTC for its good performance and inter-
pretability. Moreover, Gomez et al. indicate that CART DT
is quite sensitive to class imbalance, which makes it a good
base estimator to assess the effects of different methods [5].
So we choose CART DT as the base learner. The results DT
generated on different datasets are baselines and all methods
in our study will be implemented on this basis.

d) Comparison methods: [5] compared 28 methods
for combating imbalance in NTC. We choose the best 9
methods in their study, which also represents the state-of-
the-art methods for imbalanced NTC, including 5 data-level
methods, 2 algorithm-level techniques, and 1 cost-sensitive
approach. Among 5 data-level methods, there are 2 oversam-
pling methods, namely ROS and ADASYNC, 2 undersampling
methods, NCR and TL, and 1 hybrid method, SMOTETL. The
algorithm-level techniques include SMOTEboost and TLboost.
The cost-sensitive approach is MetaCost. Data-level methods
are implemented by the Python library, imbalanced-learn. The
rest techniques are collected from the project published by [5]
on GitHub. Additionally, some researches prove that ensemble
algorithms can achieve better results on imbalanced NTC [3]
[13]. So we select two typical ensemble algorithms, namely
random forest (RF) and LightGBM. Their implementations are
from scikit-learn, a Python library.

C. Experiments results and analysis

a) Baseline: First, we use the base estimator, i.e., CART
DT from Python scikit-learn library, to build the baseline. We
perform 10-fold cross-validation on each experimental group
of the BOT dataset. For KDD99 ’, we perform ten repeated
experiments on the given training set and testing set to avoid
interference from some random factors. The baseline results
are averaged and shown in Table II and Table III.

From Table II, in binary NTC tasks, as the minority class’s
IRLbl (i.e. IRLbl1) increases, OA and GM show the opposite
trend. OA gradually grows, while GM decreases continuously.

TABLE II
BASELINE RESULTS ON MULTIPLE BOT GROUPS. THE RESULTS ARE

EXPRESSED IN %

Overall metric Individual metric

IRLbl1 OA GM P0 R0 P1 R1

BOT-50 98.49 80.31 99.30 99.15 60.54 65.06
BOT-100 99.04 75.26 99.51 99.51 57.12 56.91
BOT-200 99.47 70.47 99.75 99.72 47.37 49.80
BOT-500 99.69 62.77 99.86 99.83 34.09 39.47

BOT-1000 99.85 56.61 99.93 99.92 30.91 32.08
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Fig. 4. Overall and individual metrics obtained on BOT groups with different imbalance levels. The results are expressed as percentage differences with the
baseline. The red numbers additionally indicate the actual result values of FLAGB.

This is because OA is dominated by the majority class. When
IRLbl1 reaches a large value, OA will be approximately equal
to R0. However, GM is not affected by class imbalance and
does not bias towards the majority class.In terms of individual
metrics, P0 and R0 rise as IRLbl grows, while P1 and R1

decline, so does F1 score. On KDD99’, as shown in Table III,
because of the larger IRLbl of class 2 and class 3, their P and
R are very poor. Especially for class 2, its sample size is only
0.05% in the training set, far less than that of class 0, causing
its P and R to be only 1.51% and 12.82%, respectively.

The baseline results demonstrate that class imbalances can
degrade the classifier’s performance and the greater the imbal-
ance, the worse the classifier performs on minority classes.

b) Results on BOT dataset: We evaluate the compari-
son methods mentioned in Section IV-B on all experimental
groups. The best parameters for each method are used and
the results are averaged over ten experiments. Due to the
limited space, the parameters are not presented. To intuitively
show how each method improves the baseline on imbalanced
datasets, we take the difference between the results of each
method and the baseline. Positive values indicate an improve-
ment to the baseline, 0 represents the baseline, and negative
values indicate making the effect worse.

The results on series of BOT groups are shown in Fig. 4.
Fig. 4(a) illustrates the difference on OA. FLAGB shows the
highest improvement. However, the gaps between all methods
and baseline are not large, i.e., within ±1%, and it is obvious

that the improvement of FLAGB decays with the increase of
IRLbl1. The reason is that OA is mainly controlled by the
majority class, and the enhancement on minority class has little
influence on it. What’s more, the baseline OAs are all close to
1, which leads to its promotion space approaching 0. Fig. 4(b)
shows the difference on GM. (c) and (d) respectively depict
the difference on P and R of the minority class. Since the P0

and R0 do not change much, they are no longer displayed. It
is worth noting that (b) and (d) have almost the same trend.
Since GM is the geometric mean of R0 and R1 and R0 is
approximately equal to 1, GM basically represents the recall
of minority classes. It can be seen that FLAGB has the greatest
improvement on R0 when IRLbl1 ≤ 500. When IRLbl1 =
1000, ADASYNC, SMOTETL and MetaCost enhance the
baseline by 7.54%, which is higher than FLAGB’s 5.65%, and
NCR and TL preform similarly to FLAGB. However, accord-
ing to Fig. 4(c), except for FLAGB, the performance of other
methods just mentioned are not optimistic. Only MetaCost has
a 1.9% promotion, while others have lowered the baseline
to varying degrees. Interestingly, RF and LightGBM have
greatly improved P1 at the expense of severely compromising
R1. Therefore, from a comprehensive perspective, FLAGB is
the best method to solve the imbalanced binary NTC under
different imbalance levels.

More intuitively, Fig. 5 shows the difference on F1 score,
which fully measures P1 and R1 at the same time. FLAGB



TABLE III
OVERALL AND INDIVIDUAL METRICS OBTAINED BY DIFFERENT METHODS ON KDD99’. THE BASELINE RESULTS ARE EXPRESSED IN %, WHILE THE

OTHER RESULTS ARE EXPRESSED AS PERCENTAGE DIFFERENCES WITH THE BASELINE

Overall metric Individual metric

OA GM P0 R0 P1 R1 P2 R2 P3 R3

baseline 91.50 31.77 92.62 99.51 76.98 99.03 1.51 12.82 94.34 8.06
ROS -0.53 -11.63 -0.95 -0.15 1.25 0.59 3.25 -7.69 -20.01 -4.82

ADASYNC -0.15 -1.00 -0.50 -0.01 -1.16 -2.23 5.74 0.00 2.11 -0.80
NCR -0.07 7.24 -0.01 -0.01 -0.52 0.59 2.03 20.51 2.21 -1.05
TL -0.05 -0.55 -0.67 -0.02 12.95 0.55 0.01 0.00 -0.81 -0.58

SMOTETL -0.61 -2.71 -1.11 -0.05 0.00 -12.24 7.42 0.00 0.27 -1.62
SMOTEboost -3.69 -3.85 -1.31 -2.96 -21.78 -18.47 0.86 15.39 -77.72 -5.29

TLboost -2.22 -6.12 -0.61 -2.35 -9.33 -7.99 -0.94 -7.69 -55.48 1.48
RF -0.50 -11.25 -0.95 0.11 -0.16 0.63 51.82 7.69 -1.48 -7.19

LightGBM 0.29 2.19 0.03 -0.19 -1.45 0.42 6.82 -2.56 -4.20 5.06
MetaCost -0.39 -3.43 -0.01 0.03 -1.08 -0.04 -0.10 7.69 -2.51 -4.87
FLAGB 0.37 9.89 -0.09 0.01 -0.61 0.51 57.31 12.82 4.68 3.80
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Fig. 5. F1 score obtained on BOT groups with different imbalance levels

leads other methods with absolute advantage and the effect is
relatively stable. Among resampling methods, undersampling
is slightly better than oversampling. Two ensemble algorithms,
RF and LightGBM, have a slight improvement on baseline
when IRLbl1 ≤ 500, but their performances drop sharply
when IRLbl1 = 1000, indicating that highly imbalanced
data is a great challenge to classifiers. However, FLAGB’s
enhancement on F1 score is still as high as 23.3%, making it
reach 54.8%.

c) Results on KDD99’ dataset: Table III shows the dif-
ference between the results and the baseline on KDD99’. From
the perspective of overall metrics, FLAGB and LightGBM
are the only algorithms for improving the baseline on both
OA and GM. NCR slightly reduces OA but its GM is greatly
improved. In terms of individual metrics, we mainly focus on
the precision and recall of class 2 and class 3. Although class
1 is also one of the minority classes, its IRLbl is less than 25
and the baseline P1 and R1 are 77% and 99%, respectively,
which is a relatively good performance. For class 2, P2 is in
urgent need of a big upgrade as its baseline is only 1.51%.
RF and FLAGB bring more than 50% improvement to P2,

and R2 also has a good promotion, especially for FLAGB. As
for other methods, NCR has the largest enhancement on R2,
while its increase on P2 is small.

For class 3, since the training set size is far smaller than
the testing set, resulting in an inadequate learning on class
3, R3 is difficult to be significantly upgraded. However, RF
has a 7.19% drop on R3, which is catastrophic, because
the baseline R3 is only 8.06%, which means RF’s R3 is
0.87%, almost unable to recognize class 3 in testing set.
LightGBM’s improvement on R3 is the maximum among all
methods, but its promotion to class 2 is too slight. In contrast,
FLAGB takes all classes into account and makes the most
reasonable improvements. To sum up, FLAGB is the most
efficient method, followed by NCR.

d) Time consumption analysis: We also evaluate the time
consumption of several well-performing methods. According
to the above analysis, in addition to FLAGB, MetaCost, TL,
and NCR also perform relatively well in highly imbalanced
situations and multi-classification tasks. Among them, TL and
NCR are undersampling methods. Their time consumptions
during training are mainly spent in the resampling opera-
tions, i.e., the removal of samples. MetaCost, as a cost-
sensitive method, mainly consumes time in re-assigning labels
to samples according to a certain strategy. For these three
methods, we use the default parameters in the standard library
or existing implementations. For FLAGB, the early-stopping
strategy is adopted, that is, stop training when the score
on the validation set no longer continues to grow for 20
iterations. This will ensure the best classification performance
of FLAGB. We conduct multiple rounds of training and
average the time consumption for each method on BOT-1000
and KDD99’. The results are presented in Fig. 6.

On BOT-1000, FLAGB only spends 37s to obtain the well-
trained classifier, while other methods take at least 130s to
train. On KDD99’, FLAGB consumes almost the same amount
of time as MetaCost but its performance is much better than
that. Therefore, FLAGB guarantees excellent time consump-
tion while performing much better than other methods, which
makes it especially suitable for big and imbalanced traffic data



in real-world network environments.
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Fig. 6. Time consumption during training of the top 4 well-performing
methods for imbalanced traffic classification. Time on BOT-1000 corresponds
to the left ordinate while time on KDD 99’ corresponds to the right ordinate.

V. CONCLUSION

The imbalance nature of Internet traffic poses a great
challenge to the machine learning based network traffic classi-
fication, while researches in this area are not sufficient. Based
on the observation of traffic characteristics, we propose a cost-
sensitive and ensemble algorithm combination method, named
FLAGB. It imports focal loss in the process of learning, which
reduces the weight of majority samples in disguise, alleviating
the imbalance of training data. Besides, it can give the best
adaptation to different imbalanced datasets without manual
operation. The comprehensive experiments demonstrate the
effectiveness and low time-consumption of FLAGB comparing
with other state-of-the-art methods.
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