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Abstract—In this paper, we address the problem of the con-
current detection of multiple infant cries by using microphones
located in the cribs of a Neonatal Intensive Care Unit (NICU). We
term this task as infant cry diarization in resemblance with the
“speaker diarization” task related to the speech signal: instead of
determining “who spoke when”, here the problem is determining
“who cried when”. The proposed algorithm consists of a fully-
convolutional neural network (Conv-DetNet) that processes si-
multaneously all the audio signals acquired from the microphone
in each crib and detects if the infants cried or not. The neural
network takes as input Log-Mel coefficients and it is composed
of stacked dilated convolutional blocks with increasing dilation
factors. Each block is composed of pointwise and depthwise
convolutional layers that replace standard convolutions with
a mathematically equivalent but more efficient operation. The
architecture has been compared to its single-channel equivalent
and to single and multi-channel architectures presented in a
previous work, composed of standard convolutional layers and
fully-connected layers. The experiments have been conducted on
a synthetic dataset that simulates the acoustic environment of the
Salesi Hospital NICU located in Ancona (Italy). The results have
been evaluated in terms of Area Under Precision-Recall Curve
(PRC-AUC) and they showed that the proposed multi-channel
Conv-DetNet achieves the highest performance with a PRC-AUC
equal to 87.58%, outperforming all the comparative methods.

Index Terms—Infant Cry Detection, Deep Neural Networks,
Dilated Convolutions, Fully-convolutional networks

I. INTRODUCTION

The acoustic analysis of infants’ vocalizations provides
valuable support to the medical staff for monitoring the health
status of an infant and for detecting specific pathologies [1].
An advantage of this approach is its low level of intrusiveness
since monitoring is performed by using contact-less sensors
(i.e., microphones).

Infants’ vocalizations can be analyzed at multiple abstrac-
tion levels, depending on the specific aspect the interest is
on. A possible classification divides the different approaches
in cry detection, pathology detection, pathology identification,
and cause identification. Cry detection consists of determining
the time boundaries of a vocalization [2], [3], and it can help
the medical staff to determine the general health status of
an infant by evaluating the total amount of crying activity
in a period. Moreover, cry detection can be a pre-processing
step that segments the audio signal, which is then analyzed
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by pathology detection, identification, or cause identification
algorithms [4]. Pathology detection is a binary classification
task where a cry is classified as normal or pathological [5],
[6]. Pathology identification, on the other hand, analyses the
cry signal for determining the type of pathology an infant
is affected by (e.g., perinatal asphyxia) [7]–[9]. Differently,
cause identification aims at discovering the underlying reason
that elicited the cry (e.g., hunger, pain) [10]–[12].

The focus of this paper is on cry detection, specifically ad-
dressing the acoustic environment typically found in Neonatal
Intensive Care Units (NICUs). In the literature, several works
have been proposed for detecting infant cries, both in domestic
environments and in hospital wards. Early works were based
on pure signal processing methods [13]–[15]. In [13], the
algorithm is based on the short-term energy measure of the
audio signal, and a cry is detected if the value exceeds a
certain threshold. A similar approach has been also adopted
in [14]. A different method has been presented in [15], where
the authors detected cry utterances by using Cepstral-based
acoustic analysis.

More recent works are based on machine-learning methods
that learn to identify cry signals directly from data. Mel-
frequency cepstral coefficients (MFCCs) and k-nearest neigh-
bors have been used in [16] to classify cry and non-cry units
and to alert parents when infants are being left alone (either
in apartments or vehicles). Abou-Abbas et al. [17] proposed
Hidden Markov Models (HMMs) to detect and classify the
inspiratory and expiratory phases of the cry. Gaussian Mixture
Model (GMM) classifier and HMMs have been proposed in
[3] along with short-time Fourier transform, empirical mode
decomposition (EMD), and wavelet packet transform. Naithani
et al. [2] discriminated the expiratory and inspiratory phases
of a cry, and a third class including all other noises by
using HMMs. Raboshchuk et al. [18] explicitly addressed the
robustness of vocalization detection algorithms against noise.
The authors proposed a pre-processing pipeline composed
of Non-Negative Matrix Factorization (NMF) and spectral
subtraction algorithms to reduce undesired disturbances. The
paper evaluated a GMM and a Support Vector Machine (SVM)
classifier, and the experiments demonstrated the superiority of
the SVM-based solution.

Convolutional Neural Networks have been used in [19]–
[21]. In [19], the authors proposed a neural network for cry
detection in domestic environments composed of three con-
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volutional layers and one fully-connected layer. The method
provided significantly better results compared to a logistic
regression classifier. The authors of [22] presented a solution
targeted at low-power devices and proposed a novel set of
features. Deep neural network (DNN) and support vector data
description (SVDD) classifiers were evaluated by using a
dataset composed of various recordings collected from public
websites. Chang et al. [4] described a two-stage algorithm with
the first stage devoted to the detection of cry segments. The
method consists of pre-emphasizing the input signal and then
in calculating the short-time Fourier transform. Cry detection
is performed by using a network composed of 6 convolutional
layers and one fully-connected layer. In our previous work
[20], we presented a cry detection method that uses eight chan-
nels of a circular microphone array. The algorithm comprised
a linear-constraint minimum-variance (LCMV) beamformer
followed by an optimally-modified log-spectral amplitude
(OMLSA) post-filter for reducing the noise contributions of
the acoustic environment. Cry detection, then, was performed
by using a neural network composed of three convolutional
layers followed by one fully-connected layer. In our later work
[21], the study was extended and the method presented in [20]
was compared to different single-channel and multi-channel
neural networks. Moreover, the feature extraction stage was
modified in order to consider the spectral characteristics of the
NICU acoustic environment, and the acoustic scene simulation
strategy was adopted to train the network and reduce the
need for real data acquired in NICUs. The results showed
the superiority of pure DNN approaches and evidenced the
effectiveness of the acoustic scene simulation strategy.

The case study explored in this paper is similar to the
one considered in [21], where we addressed cry detection in
NICUs by using a single crib equipped with a microphone.
NICUs, however, represent a particularly challenging environ-
ment since multiple cribs are present and the possibility that
several infants cry simultaneously is high. Here we address
the problem by considering the case where multiple cribs in
the NICU are equipped with a microphone for detecting the
cries of the infants located in them. Differently from [21],
thus, here the task consists in the simultaneous detection of
the cries coming from every crib equipped with a microphone,
i.e., in determining “who cried when”. From here on, we will
term this task as infant cry diarization in resemblance with the
“speaker diarization” task [23] for the speech signal, where the
objective is to determine “who spoke when”.

For this task, we propose a fully-convolutional neural
network composed of multiple stacked dilated convolutional
stages that operate at increasing dilation factors. The network
uses Log-Mel coefficients as input extracted from the micro-
phone signals of all the cribs equipped with a microphone, thus
exploiting the information in all the acquired audio signals. In
the final layer, the network gives as output if a cry is present
or not in each audio signal.

For training the network and evaluating the performance
we created a new synthetic dataset that simulates the acoustic
environment of the NICU located in the Salesi Hospital
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Fig. 1. Plan of the NICU of the Salesi Hospital (Ancona, Italy). Target
cribs are highlighted in blue. Other cribs, medical equipments, and persons
represent possible sources of interference.

(Ancona, Italy). Differently from [21], the dataset used in
this paper simulates the presence of two microphones lo-
cated in two target cribs. The proposed approach has been
compared to single and multi-channel architectures composed
of standard convolutional layers and fully-connected layers,
and to the single-channel architecture presented in [21]. In-
stead of operating on all the acquired audio signals, single-
channel architectures operate on the signals of each crib
individually. Apart from the architecture presented in [21], the
hyperparameters of all the networks have been determined by
performing a Bayesian search [24] and 4-fold cross-validation.
The results show that the proposed approach outperforms all
the comparative methods in terms of Area Under Precision-
Recall Curve (PRC-AUC).

The outline of the paper is the following. Section II de-
scribes the case study and the infant cry diarization task.
Section III describes the proposed algorithm for cry detection.
The comparative method is briefly introduced in Section IV-C,
whereas Section IV presents the experiments performed to
evaluate the proposed approach, and the obtained results.
Finally, Section V concludes the paper and presents future
developments.

II. CASE STUDY

In this paper, we consider a NICU environment where
multiple cribs are present, and a subset of them is equipped
with a microphone. Fig. 1 shows the plan of the NICU of the
Salesi Hospital located in Ancona, Italy, where two cribs are
equipped with a microphone. The figure shows also possible
sources of noise, such as medical equipment, persons, or other
cries we are not interested in recognizing. Fig. 2 shows the
scheme of a crib and the position of the microphone. In this
scenario, the interest is on detecting when the infants located
in the cribs equipped with a microphone are crying or not,
i.e., “who cried when”.

III. PROPOSED METHOD

The method proposed here for infant cry diarization is
depicted in Fig. 3. The figure shows D audio signals coming
from the cribs equipped with a microphone that are processed
individually by a Log-Mel extraction stage. Log-Mels are then
concatenated and used as input to the neural network (Conv-
DetNet), that, for each signal, outputs a 1 if it detected a cry



Infant

 

60 cm

52°

Fig. 2. Scheme of the recording setup.
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Fig. 3. Block diagram of the proposed infant cry diarization method. For each
audio signal, the network outputs a 1 if a cry is detected, or a 0 otherwise.

and a 0 otherwise. The remainder of this section describes
in detail the feature extraction stage and the architecture of
Conv-DetNet.

A. Feature Extraction

The audio signals acquired from the microphones in the
cribs are sampled at 16 kHz, and Log-Mel coefficients are
then calculated by dividing them in frames 20 ms long and
overlapped by 10 ms. After calculating the Fast-Fourier Trans-
form of each frame, the signal is filtered by using a triangular
filter-bank composed of 20 filters equally spaced in the mel-
frequency space. The frequency range of the filter-bank is
4 kHz-8 kHz, thus discarding the spectral components below
4 kHz. This choice derives from our previous work, where
we showed in NICUs the majority of the energy of the noise
signals is concentrated below 4 kHz [21]. The final feature
vector is obtained by calculating the energy in each sub-band,
and then by applying the logarithm operator. For each frame,
a vector of 20 coefficients is therefore obtained. Log-Mel co-
efficients are calculated for each audio channel independently.
The Log-Mel feature vector related to the microphone of crib
i extracted at the time-frame k will be denoted as x

(i)
k in

the following. The feature vector has dimension N × 1, with
N = 20 in this case.

B. Multi-Channel Conv-DetNet

The neural network architecture used here for infant cry
diarization is inspired to the Conv-TasNet proposed in [25],
and will be referred to as Conv-DetNet from here on. Conv-
TasNet is a fully-convolutional network that processes the
raw audio waveforms and it is used for single-channel audio
source separation. The network is composed of an encoder
that extracts higher-level features from the raw audio signal,

a separation stage that estimates a set of multiplicative masks,
and a decoder that converts the higher-level representation
back to the audio domain. Differently from [25], in the
proposed method the encoder and the decoder are not present,
and the final layers have been modified to output the decision
on the presence of infant cries.

Details of the architecture of the network are shown in
Fig. 4. Supposing that D cribs are equipped with a micro-
phone, the input to the network is composed by concate-
nating the Log-Mels of all cribs to create the feature vector
xk = [x

(1)
k , . . . ,x

(D)
k ] ∈ R1×D·N . Then, C vectors preceding

and following xk are concatenated to form the final feature
matrix:

Xk =



xk−C

xk−C+1

...
xk

...
xk+C−1

xk+C


∈ R(2C+1)×D·N . (1)

Concatenating 2C vectors preceding and following the Log-
Mel coefficients extracted from the k-the frame allows to
exploit the temporal information of the surrounding features.

As shown in Fig. 4, the first processing stage of the network
is layer normalization on Xk and it is performed as follows
[26]:

X̃k =
Xk − E[Xk]√
V ar[Xk] + ε

� γ + β, (2)

E[Xk] =
1

2N(2C + 1)

∑
2N(2C+1)

Xk, (3)

V ar[Xk] =
1

2N(2C + 1)

∑
2N(2C+1)

(Xk − E[Xk])
2, (4)

where ε is a small constant that avoids division by zero, and
(γ, β) are trainable parameters.

After normalization, X̃k is processed by a convolutional
layer with kernel size 1 and B channels (1×1-Conv), then by
several groups of stacked 1-D dilated convolutional blocks (1-
D Conv). The architecture of these blocks is shown in Fig. 5
[27], and it consists of a 1×1-Conv layer with H channels fol-
lowed by Parametric Rectified Linear Unit (PReLU) activation
function [28], layer normalization, depthwise convolution (D-
Conv), PReLU, Dropout, layer normalization, and two 1× 1-
Conv blocks at the end. D-Conv and 1 × 1-Conv blocks are
used to form the so-called depthwise separable convolution
operation. This has been proposed in the literature since it is
mathematically equivalent to standard convolution, but it re-
quires a significantly less number of trainable parameters [29].
The D-Conv block performs a dilated convolution operation
with kernel size P . Details on depthwise separable convolution
are reported in [25], [29].

Referring to Fig. 5, the left output is a skip-connection
with dimension (2C + 1) × Sc that is summed to the skip-
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Fig. 4. Architecture of the neural network used for infant cry detection. 1-D
Conv blocks in the same row have increasing dilation factors, while blocks
with the same colors in different rows share the same factor. The symbol “σ”
represents the sigmoid activation function. The notation (X,Y ) indicates that
the dimension of the matrix at the input or the output of a block is X × Y .

connections of all the 1-D Conv blocks. The right output is a
residual path with dimension (2C + 1)×B, and it is used as
input for the following 1-D Conv blocks. 1-D Conv blocks are
stacked with increasing dilation factors, allowing the network
to exploit the information of the temporal context. As in [25],
dilation factors are increased exponentially 1, 2, 4, . . . , 2M−1,
where M is the number 1-D Conv block, and each group of
M 1-D Conv blocks is repeated R times. In the final stages,
the sum of the skip-connections of all the 1-D Conv blocks is
processed by a PReLU activation function, and by D 1 × 1-
Conv layers followed by a sigmoid activation function the
produce the final output. Note that the input is padded so
that the output of each block has the same time dimension
(2C + 1).

The network has been trained by using the binary cross-
entropy loss for each output and the Adam optimizer [30].

C. Single-Channel Conv-DetNet

Along with the multi-channel architecture presented in the
previous section, a single-channel solution has also been
evaluated. In this case, instead of having a single network
that processes all the microphone signals, D separate networks
process individually the signals coming from the cribs. The
architecture of single-channel networks is similar to the one
shown in Fig. 4: in this case, however, each network is given
as input a feature matrix composed of only the Log-Mel
coefficients extracted from a single microphone. Moreover,
in the output layer, only a single branch is present after the
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Fig. 5. Architecture of the 1-D Conv blocks.

PReLU activation function, since the network outputs a single
value.

IV. EXPERIMENTS

The proposed method has been implemented by using Keras
with TensorFlow as back-end and librosa [31] for Log-Mel
extraction. In the following, we will describe the adopted
datasets, the experimental setup, the comparative methods, and
discuss the obtained results.

A. Dataset

The experiments have been conducted by using a synthetic
dataset similar to the one presented in [21]. Compared with
the one presented in [21], here we did not simulate a circular
microphone array, but a single omnidirectional microphone.
Moreover, in [21] only one crib is equipped with a microphone
whereas in this case two target cribs have been considered.
As in [21], the synthetic datasets simulate the acoustic envi-
ronment of the Salesi Hospital NICU (Fig. 1). The impulse
responses between an audio source and the microphones
located in the blue cribs shown in Fig. 1 have been created by
using Pyroomacoustics [32].

In addition to the cries of the target cribs, we have consid-
ered the presence of the following sources of interference:

• human speech: it considers the presence of persons (par-
ents, medical staff) in the NICU;

• infant cry: it considers the presence of other infants that
are not monitored (gray cribs in Fig. 1);

• “beep” sound: it represents the typical noises of a medical
equipment;

• fan noise: it considers the presence of a Heating, Venti-
lation and Air Conditioning system;



TABLE I
DETAILS OF THE DATASET. FOR EACH SCENARIO, THE TABLE SHOWS THE
TYPE OF NOISE, THE LENGTH IN MINUTES OF THE CRY SIGNALS FOR THE
TARGET CRIBS, AND THE AMOUNT OF OVERLAP WITH THE NOISE SIGNAL

AND BETWEEN THE TWO TARGET CRIBS.

Cry Length (min) Overlap (%)
Scenario Noise Crib 1 Crib 2 Noise Crib 1&2

1 Interferent Cry 29.67 29.71 58.25 66.34
2 Beep 44.57 44.38 43.34 58.94
3 Speech 44.49 44.38 51.57 58.31
4 Fan, Oxygen 44.53 44.61 100.00 58.44

• oxygen concentrator: it considers the presence of an
oxygen concentrator.

Human speech, infant cry, beeps are coherent noise sources
placed in the positions shown Fig. 1. The speech signals have
been extracted from the WSJ0 dataset [33], which contains
mono clean speech signals of American English sentences.
Infant cries and the other noise sources have been collected
from different web sources1,2. All signals are sampled at
16 kHz.

The total number of cry recordings is 64, and they belong
to 29 different subjects. Based on the acoustic environment
depicted in Fig. 1, and the different noise types mentioned
above, 4 scenarios at SNR 0 dB and 5 dB have been devised.
For each scenario multiple audio sequences of 30 s have been
created, each differing for the positions of the noise source
in the room and the combination of cry sequences appearing
in the target cribs. The sequences have been created so that
the simultaneous presence of the same subject in more than
one crib is avoided. The resulting 352 sequences have been
divided into two sets of 176 elements each. The first half has
been used to carry out a 4-fold cross-validation, the second
half has been used to test the network performance.

B. Experimental setup

The experiments have been conducted by using a 4-fold
cross-validation, and the topology of each architecture and
the related hyper-parameters have been determined by using
Bayesian optimization with Hyperopt-Keras [24]. Table III
shows the hyper-parameters search space used in the single
and multi-channel Conv-DetNet Bayesian optimization. After
this phase, the determined architectures have been evaluated
in the test set of the dataset described previously.

The performance has been evaluated by means of the
Area Under the Precision-Recall Curve (PR-AUC) which is
calculated as follows:

PR-AUC =
∑
n

(Rn −Rn−1) · Pn, (5)

where Rn and Pn are respectively the Recall and Precision for
the threshold n. Precision and Recall are calculated from the

1http://www.freesound.org
2http://www.youtube.com

true positives TP , the true negatives TN , the false positives
FP , and the false negatives FN as follows:

R =
TP

TP + FN
, P =

TP

TP + FP
, (6)

where the subscript n has been omitted for simplicity.

C. Comparative Methods

The performance of the proposed method has been com-
pared to architectures similar to the ones presented in our
previous work [21]. Specifically, we evaluated the Half-band
1Ch-DNN topology identified in [21], and we determined
an additional single-channel topology (1Ch-DNN) by using
Bayesian optimization. The Half-band 1Ch-DNN architecture
is composed of 3 convolutional layers and 3 fully-connected
layers (details of the hyper-parameters values are shown in
Table II). The 1Ch-DNN architecture was determined by using
the search space shown in Table II, and it is composed of 2
convolutional layers, each followed by batch normalization,
rectifier linear unit (ReLU) activation function, max-pooling,
and dropout. The second part is composed of two fully-
connected layers followed by a single neuron with a sigmoid
activation function, that outputs the probability of the central
frame being a cry. Details on the final hyper-parameters values
are shown in Table II.

In addition to single-channel architectures, we evaluated
a two-channel network (2Ch-DNN) which processes all the
audio signals coming from the target cribs as the proposed
multi-channel Conv-DetNet. As the 1Ch-DNN architecture,
the hyperparameters of the networks have been determined
by performing a Bayesian search [24] (Table II). The final
architecture is composed of a separate branch for each audio
channel, with each branch composed of 1 convolutional layer,
followed by batch normalization, ReLU activation function,
max-pooling, and dropout. The output of each branch is
then concatenated and processed by a convolutional layer
followed by batch normalization, ReLU activation function,
max-pooling, and dropout. For each output branch, the second
part is composed of two fully-connected layers each followed
by a dropout layer and a single neuron with sigmoid activation.

D. Results

Table IV shows the results obtained for the single and
multi-channel Conv-DetNet (respectively 1Ch-Conv-DetNet
and 2Ch-Conv-DetNet) as well as for the comparative methods
in the 4-fold cross-validation phase. As shown in the table,
the PRC-AUC of the Half-band 1Ch-DNN presented in [21]
is 69.93%, i.e., about 13 percentage points lower than the
score achieved over the previous synthetic dataset (see Table 3
in [21]). From this result, it is possible to conclude that cry
detection in the current dataset is more challenging. Since in
this case we consider 2 target cribs, the overlap between the
two targets cries occurs in every sequence, even in scenarios
that do not include the interfering cries from not monitored
subjects.

The 1Ch-DNN architecture is similar to Half-band 1Ch-
DNN, but it has been obtained by performing a Bayesian



TABLE II
HYPERPARAMETERS EXPLORED IN THE BAYESIAN SEARCH FOR THE 1CH-DNN AND THE 2CH-DNN ARCHITECTURES. “U”: UNIFORM DISTRIBUTION;

“logU” UNIFORM DISTRIBUTION IN THE LOG-DOMAIN.

Parameter (Distribution) Range 1Ch-DNN 2Ch-DNN Half-band 1Ch-DNN
Batch size (U ) {64, 128, 256} 64 256 512

Learning Rate (logU ) [5.14 · 10−6, 45.54 · 10−53] 2.94 · 10−5 3.05 · 10−5 2.18 · 10−3

CNN layers
Nr. of CNN layers (U ) {1, 3} 2 1 3

Kernel shape (U ) [1, 10]× [1, 10] 6×8, 1×10 9×6 1× 1, 1× 1, 1× 1
Kernel number (logU ) [16, 64] 46, 42 37 63, 18, 19

Strides (logU ) [1, 10]× [1, 10] 4×8, 1×10 6×6 2×4, 5×1, 4×1
Pooling Shape (U ) [1, 10]× [1, 10] 4×3, 1×1 2×7 2×1, 2×2, 2×1
Pooling Strides (U ) [1, 10]× [1, 10] 2×1, 1×1 2×2 1×2, 1×2, 1×2
Dropout Rate (U ) [0, 0.5] 0.21, 0.22 0.42 0.1, 0.2, 0.3

Last CNN Layer
Kernel shape (U ) [1, 10]× [1, 10] - 1×3 -

Kernel number (logU ) [16, 64] - 53 -
Strides (logU ) [1, 10]× [1, 10] - 1×3 -

Pooling Shape (U ) [1, 10]× [1, 10] - 1×4 -
Pooling Strides (U ) [1, 10]× [1, 10] - 1×2 -
Dropout Rate (U ) [0, 0.5] - 0.31 -

Fully-connected layers
Nr. of fully-connected layers (U ) {1, 3} 2 2 3

Units logU [100, 1024] 101, 65 227, 131 154, 113, 107
Dropout Rate (U ) [0, 0.5] 0 0.31, 0.48 0.5, 0.5, 0.5

Number of trainable parameters - 32,831 220,969 49.570

TABLE III
HYPERPARAMETERS EXPLORED IN THE BAYESIAN SEARCH FOR THE 1CH-CONV-DETNET AND THE 2CH-CONV-DETNET ARCHITECTURES. “U”:

UNIFORM DISTRIBUTION; “logU” UNIFORM DISTRIBUTION IN THE LOG-DOMAIN.

Parameter Distribution Range 1Ch-Conv-DetNet 2Ch-Conv-DetNet
Batch size U {32, 64, 128} 128 2048

Learning rate logU [1.01 · 10−3, 9.99 · 10−3] 4.73 · 10−3 4.06 · 10−3

Hidden channels (H) U [20, 40] 31 34
Skip channels (Sc) U [20, 40] 30 30

Kernel size (P ) U [1, 5] 2 4
Dropout rate U [0, 0.5] 0.12 0.16

Nr. of blocks (M ) U [1, 5] 2 2
Nr. of repeats (R) U [1, 5] 2 3

Number of trainable parameters 9,749 25,002

TABLE IV
PR-AUC (%) FOR THE PROPOSED AND THE COMPARATIVE METHODS

(4-FOLD VALIDATION).

Algorithm Crib 1 Crib 2 Average
Half-band 1Ch-DNN [21] 67.83 72.03 69.93

1Ch-DNN 70.74 70.17 70.45
2Ch-DNN 78.80 79.46 79.13

1Ch-Conv-DetNet 69.31 73.76 71.54
2Ch-Conv-DetNet 83.08 84.56 83.82

TABLE V
PR-AUC (%) FOR THE PROPOSED AND THE COMPARATIVE METHODS

(TEST).

Algorithm Crib 1 Crib 2 Average
Half-band 1Ch-DNN [21] 55.86 55.25 55.56

1Ch-DNN 54.44 54.30 54.37
2Ch-DNN 81.52 80.06 80.79

1Ch-Conv-DetNet 57.04 55.68 56.36
2Ch-Conv-DetNet 86.46 88.69 87.58

optimization on the dataset used in this paper. The related
score is 70.45%, and although higher compared to the Half-
band 1Ch-DNN architecture, the improvement is very limited

(0.5 percentage points), demonstrating the difficulty of the task
for this type of single-channel topologies. In the case of the
1Ch-Conv-DetNet, the achieved score is about 71.54%, i.e.,
about 1 percentage point above the score of the 1Ch-DNN
architecture. In spite of the slight improvement, given the same
setup, the 1Ch-Conv-DetNet is a much smaller network than
the 1Ch-DNN, hence resulting a much less computationally
intensive solution. Nonetheless, it is possible to conclude that
with the use of a single microphone, the cry detection task
might become more challenging whenever the overlap of cries
from close subjects occurs.

On the other hand, the use of multiple input channels pro-
vides additional information, which might help to discriminate
between the cries of subjects. Concerning this, the 2Ch-DNN
configuration scores a PR-AUC of about 79.13%. With respect
to the results from the single-channel networks, the score has
increased of about 9 percentage points showing that the use of
multiple input channels provides an edge toward the discerning
abilities of the network. In fact, a single channel network has
limited information and, therefore, might lack the ability to
discern whether a specific intensity of cry depends on the
subject or the distance of the infant from the microphone.

In the same scenario, however, the 2Ch-Conv-DetNet
achieves a score of about 83.82%, thus outperforming the 2Ch-



DNN of about 4.69 percentage points, thus proving to be fairly
robust against overlapping cries. Additionally, the 2Ch-Conv-
DetNet is about 8.8 times smaller than the 2Ch-DNN, since its
number of trainable parameters is 25,002 compared to 220,969
of the 2Ch-DNN (see Table II and Table III), resulting in a
more computationally efficient approach to the cry diarization
task. To exemplify the results for each network over a single
sequence, one of the sequences of the set used in the 4-
fold cross-validation has been selected. This sequence includes
the cries of the two subjects and the fan noise at SNR 5 dB
(Scenario 4 in Table I). The energy profile of this sequence
has been computed by calculating the sum of the energy
values of the 20 mel bands of the filter-bank, thus frequency
components below 4 kHz are not present. The profile is shown
in Fig. 6 in blue together with the ground-truth and output
of each network in orange. Concerning the energy profile,
it should be noted that since the spectral components below
4 kHz have been discarded, the noise level is quite low with
respect to the energy cry. Observing the plots reveals that in
the case of both 1Ch-DNN and 2Ch-DNN, the detected cry
sequences are larger than the one present in the ground truth
revealing the presence of false positives. Moreover, few fairly
large cry sequences are missed around samples 500, 1250. The
1Ch-DNN network detects a false positive after sample 2500.
Whenever detection errors occur, the value switches frequently
from high to low meaning that the network identifies a few
samples but not the entire sequence. In the case of 2Ch-Conv-
DetNet and 1Ch-Conv-DetNet the cry detection appears more
accurate. The length of cry sequences resembles more the
ground truth. In this case, a sequence has been missed around
sample 600. In the case of 1Ch-Conv-DetNet non-existent cry
detections appear at sample 0, and above sample 2500.

The results on the test set reported in Table V, further
confirm that cry overlaps strongly impairs the detection ability
of the single-channel configurations. Specifically, the score of
the Half-band 1Ch-DNN is 55.56%, whereas 1Ch-DNN and
1Ch-Conv-DetNet achieve 54.37 and 56.36 respectively, hence
all the single-channel configurations show a performance drop
of roughly about 15 percentage points compared to their
respective score in the 4-fold cross-validation. On the other
hand, the 2Ch-DNN and the 2Ch-Conv-DetNet show improved
performance. Indeed, the 2Ch-DNN configuration achieves a
score of about 80.79%, 1.66 percentage points higher than
the score of the 4-fold cross-validation. The 2Ch-Conv-DetNet
scores 87.58%, hence 3.76 additional percentage points with
respect to the 4-fold cross-validation. Overall the 2Ch-Conv-
DetNet improves the score of the 2Ch-DNN of about 6.79
percentage points. From a different angle, the test shows
an increased performance gap between the scores of single
channels networks and 2 channel networks, thus proving
the trend shown by the 4-fold cross-validation scores. The
behavior of the 2-channels networks can be explained by
considering that they are trained by using all the dataset used in
the cross-validation phase (i.e., 176 sequences). On the other
hand, in the cross-validation phase, single-channel networks
seem to overfit on the validation set. The consequence is the

(a) Ground truth.

(b) 1Ch-DNN.

(c) 2Ch-DNN.

(d) 1Ch-Conv-DetNet.

(e) 2Ch-Conv-DetNet.

Fig. 6. Cry detections for different network types against cry signal energy
from the 4-fold cross-validation training set with fan noise and SNR 5 dB.

poor generalization capabilities when evaluated on the test set.

V. CONCLUSION

This paper presented an infant cry diarization method based
on dilated fully-convolutional networks for NICU environ-
ments. The objective is to determine “who cried when”, i.e.,
the portions of the audio signal where each infant cried in a
scenario where multiple cribs are equipped with a dedicated
microphone. The proposed method consists of a feature ex-
traction stage that calculates Log-Mel coefficients for all the
acquired audio signals and determines the presence of cries by
using concurrently the Log-Mels of all signals. The proposed
neural network, named Conv-DetNet, is composed of stacked
dilated convolutional blocks with increasing dilation factors,
and each block comprises pointwise and depthwise convo-
lutional stage that guarantee computational efficiency. Along
with the multi-channel Conv-DetNet, a single-channel archi-



tecture operating individually on the microphones of each crib
has been evaluated. Conv-DetNet has been also been compared
to single and multi-channel architectures composed of standard
convolutional and fully-connected layers (respectively 1Ch-
DNN and 2Ch-DNN) and to the single-channel architecture
presented in our previous work (Half-band 1Ch-DNN) [21].
The experimental evaluation has been conducted on a syn-
thetic dataset that simulates the acoustic environment of the
NICU of the Salesi Hospital located in Ancona, Italy. The
dataset considers six cribs, two equipped with a microphone
and four possible sources of interferent cries. Moreover, the
dataset comprised multiple acoustic scenarios where the noises
commonly found in NICU have been simulated. The results
showed that the multi-channel architectures achieve the highest
performance and that the proposed approach outperforms the
2Ch-DNN network by 6.79 percentage points.

Future works will explore different neural network architec-
tures such as attention mechanism [34], and transfer learning
methods such as domain adaptation [35] to adapt networks
trained on synthetic datasets to real NICU environments.
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