
Improving the Performance of Neural Networks
with an Ensemble of Activation Functions

Arijit Nandi1, Nanda Dulal Jana2, Swagatam Das3
1,2Department of Computer Science and Engineering, National Institute of Technology Durgapur-713209, India

3ECS Unit, Indian Statistical Institute, Kolkata- 700108, India
1an.17p10354@mtech.nitdgp.ac.in, 2nandadulal@cse.nitdgp.ac.in, 3swagatam.das@isical.ac.in

Abstract—Activation functions in the neural networks play
an important role by introducing non-linear properties to the
neural networks. Thus it is considered as one of the essential
ingredients among other building blocks of a neural network.
But the selection of the appropriate activation function for the
enhancement of model accuracy is strenuous in a sense; the
performance of the NN-model is influenced by a proper selection
of activation function for a dataset. Proper activation function
selection is still a trial and error method for which the model
accuracy improves for classification. As a solution to this problem,
we have proposed an activation function ensembling by majority
voting that has significantly improved the model accuracy in
a classification context. The proposed model is tested on four
benchmark datasets such as MNIST, Fashion MNIST, Semeion,
and ARDIS IV datasets. The result shows that the performance
of the proposed model is appreciably better than other traditional
methods such as Convolutional Neural Network (CNN), Support
Vector Machine (SVM), Recurrent Neural Network (RNN).

Index Terms—Neural Network, Activation function, Multi
classifier ensemble, Ensemble Learning, Activation function en-
semble.

I. INTRODUCTION

Classification is one of the most frequently encountered
decision-making tasks of human activity; the problem occurs
when an object needs to be assigned into a predefined group or
class based on several observed attributes related to that object
[1]. According to the No free lunch theorem for optimization
[2]–[4], no single algorithm can produce the most appropriate
learning model for all problems in any domain, which enforces
to introduce the ensemble methods. One technique that univer-
sally increases accuracy is by ensembling multiple predictive
models [5]. In [6], the author explained the advantages of using
multiple classifier models rather than a single model. The
general idea behind combining multiple pattern classifiers is
the use of a methodology to produce a final decision given on
the output of the learners [7]. In 1959, the first learning model
of a system with multiple experts was developed [8]. Based on
the multiple expert models, different studies were made such
as a committee, classifier fusion, combination, aggregation, a
mixture of experts, etc. to solve pattern recognition problems
[9]–[11]. Recently, researchers and practitioners are employing
ensemble learning concepts in the task of a multi-classifier
pattern recognition system. In the world of statistics and
machine learning, ensemble learning techniques attempt to
make the performance of the predictive models better by
improving their accuracy.

The ensemble of classifiers is a set of learning models
where decisions are combined to enhance the performance of
the pattern recognition system. The relevant and appropriate
patterns, as well as inadequate patterns for the ensembling
method, has been studied experimentally and theoretically
in [12]. Most of the studies demonstrated that the classifier
ensembling technique for classification problems are often
more appropriate than the individual based learner. Some-
times, it can be found that a weak classifier is capable of
outperforming on a classification problem that was proposed
in [13]. Neural network-based classifiers that are unstable for
a problem were stabilized by using a multi-classifier system
[14]. Moreover, the problem of handling noisy data can be
processed better by the ensemble of classifiers, which increases
the robustness of the decisions [15]. The ensemble-based
mechanism developed in [16] reveals that many classifiers
have the potential to improve the accuracy and speed based
on ensemble techniques.

Artificial Neural Network (ANN) is a valuable tool and
widely used for classification problems as well as in function
approximation for optimization problems. From the ANN
literature, it can be observed that the activation function is
an essential component of the neural network architecture and
paying a significant impact on the performance of classifica-
tion accuracy. It has also seen that for one particular data-set,
one activation is giving better results, but others are giving a
poor performance. This leads to the employment of different
activation functions in neural architecture for different classifi-
cation problems. The various activation functions started from
sigmoid to ReLU have shown their potential advantages in
learning while solving a problem. However, there is a lack of
deficiency in choosing an appropriate activation function for
a particular classification problem.

The recent advancements of the study of ANN’s mainly
focused on the research areas such as network architecture
[17], [18], optimization method (AdaDelta) [19] and batch
normalization [20], activation functions and objective func-
tions for loss surface [21]. In the case of neural architecture,
Highway Network [22], Residual Network [23], Memory
Network [24], etc. have been developed for enhancing the
performance of classification accuracy on different complex
classification problems. The ground breaking work is done
by proposing an activation function named Rectified Linear
Unit (ReLu) [25], [26], which revolutionizes the way of ANN

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

working principle. Before ReLu, the most widely used popular
activation functions are sigmoid and hyperbolic tangent (tanh).
Unfortunately, these are incapable in case of training deep
neural architecture due to gradient vanishing problem. On the
other hand, the ReLu activation function has a problem when
the value becomes negative, and its gradient becomes zero
imply no further training (weight updating) is possible for
Deep Neural Network (DNN). The drawbacks of ReLu activa-
tion is overcome by a variant of ReLu known as LeakyRelu.
Therefore, researchers are focused on the development of
new activation functions for DNN and incorporating ensemble
learning mechanisms on activation functions to select appro-
priate one rather single one for solving complex classification
problems.

In [27], researchers have utilized softplus units for DNNs
in acoustic modeling for context-independent phoneme recog-
nition tasks. They have revisited the Restricted Boltzman Ma-
chine (RBM) in which the pre-training and dropout strategies
are applied to improve the performance of softplus units.
Their experiment shows that DNNs with softplus units have
performed significantly better performance, and convergence
speed is improved as compared to standard sigmoid units and
ReLUs. Most of the cases, while training DNN, the trainable
parameters are weights and biases. But the proper selection
of activation functions is set across the DNN by trial and
error methods. In [28], the authors applied a technique called
trainable activation function for DNN. They approximated
conventional nonlinear activation functions for a Taylor Se-
ries, and the coefficients were retrained simultaneously with
other parameters. In their experiment, the nonlinear activation
functions are sigmoid, tanh, ReLu, and softplus. Convolution
Neural Network (CNN) is a special kind of DNN comprises
of many filters for automatic feature extraction from the
image and classifying those images. In [29], researchers have
proposed a new activation function called hyperbolic linear
units (HLUs) for deep CNN. They have experimented on
three popular CNN architectures, LeNet, Inception network,
and ResNet on various benchmark datasets such as MNIST,
CIFAR-10, and CIFAR-100. According to the result, their
proposed activation function speeds up the learning process
in deep CNN with better performance in image classification
tasks. In [29], researchers have proposed a new computation-
ally efficient activation function called SQNL for Multi-Layer
Perceptron to make faster convergence. In [30], researchers
have proposed an activation function called Hexpo. According
to them, this activation function is vanishing proof. Hexpo
activation function can scale the gradient and to overcome the
vanishing gradient problem. Researchers have tested their pro-
posed approach MNIST hand recognition dataset and CIFAR-
10 tiny image recognition data-set. Their proposed activation
function outperforms the rectified linear unit family (rectified
linear unit and exponential linear unit) by the classification
accuracy and speed of training. Also, for CIFAR-10, Hexpo
outperforms ReLu but performs similarly as ELU. There is a
plethora of work for developing the best activation functions
in deep neural network research. Even though the development

of DNN is advance but choosing a proper activation function
is still a bottleneck in the DNN research community.

In [5], the activation ensemble idea is combined in each
activation function at every neuron in the network. In the
proposed activation ensemble, extracted features are capture
by various activation functions and ensembling techniques to
achieve the best feature combination, which is available in
the classification. The proposed approach was experimented
on four benchmark data sets such as MNIST, CIFAR-100,
ISOLET, and STL-10 and provided results with and without
ensemble methods. The author claimed that their proposed
approach is significantly better than original models in terms
of better classification accuracy. From the literature of the
activation functions, it can be summarized that most of the
works are related to the improvement of the classification
accuracy. More precisely, the mechanism proposed in [5], can
be achieved more easy way. The paper is focused on the
ensembling of activation functions which is entirely different
from [5] for solving image classification data sets.

In this work, activation functions ensemble at decision-level
fusion (called AFE) is proposed. The idea is to ensemble
various activation functions at decision level by majority
voting based ensembler. In the majority voting based en-
sembler, the output from each of activation is ensembled to
generate the final output class for classification, making sure
an increment in classification accuracy and prediction rate.
The effectiveness of our proposed approach is examined with
four well-known benchmark data-sets such as MNIST, Fashion
MNIST, Semeion, and ARDIS IV. The obtained results are
compared with five different activation functions and favoring
significant performance improvement of the proposed meth-
ods. Moreover, the proposed method is compared with some
state-of-the-art models such as Convolutional Neural Network
(CNN), Support Vector Machine (SVM), Recurrent Neural
Network (RNN) on the same data sets.

The rest of the paper is organized as follows: section II
discusses the preliminaries. Section III presents the proposed
model for the activation function ensemble. In section IV,
experimental results are described, including the benchmark
data-sets, experimental settings of different activation func-
tions and comparison with the state-of-the-art classification
models is presented. Finally, conclusions are summarized and
future work is highlighted in section V.

II. PRELIMINARIES

A. Feed-forward Neural Network (FFNN)

FFNN is a type of artificial neural network consisting of
many connected layers of neurons. The first layer is the input
layer (IL) because it takes the input features of observation,
the last layer is the output layer (OL) because it brings the
output class associated with the input feature. The layers in
between IL and OL are called hidden layers (HL). Each layer
consisting of a different number of artificial neurons. Each
neuron consists of activation function which introduces non-
linearity in data. In the hidden and output layers, a bias term is
associated with each neuron for adjusting the threshold value

of the activation function. The simple FFNN is depicted in
Figure 1.

Input
layer

Hidden
layer

Output
layer

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Ouput

Fig. 1. Feed Forward Neural Network

Suppose, an FFNN consists of a single hidden layer of
size Q and output layer size R, the input vector xp with I
dimension. Then the mathematical calculation for the output
will be as follows:

yq,p = afyq

(
I+1∑
i=1

wq,ixp, p

)
,∀q ∈ {1, 2,, Q} (1)

Or,p = afOr

(
Q+1∑
q=1

wr,qyq, p

)
,∀r ∈ {1, 2,, R} (2)

where yq is the qth hidden unit, wqi is weight from input value
xp to hidden layer unit yq . Or is the rth output unit and wrq

is the weight from hidden unit to output unit. afyq
and afOr

are the activation functions for hidden unit and output unit
respectively.

B. Activation Functions

As discussed in earlier section that each layer consists
of artificial neurons, which are the processing and central
unit of a neural network. Each neuron comprises of two
functionalities, first is the net input or summation of weighted
input’s (

∑
) and another is activation function or transfer

function (af(.)). The activation functions are used to introduce
non-linearity in the input signal so that the mapping from
input signal to the output will be perfect. The most popular
activation functions used in the study are discussed as follows:
• Sigmoid: This activation function is widely used with

FFNNs [1]. The mathematical representation is given
below.

af(x) =
1

1 + e−x
(3)

The function is differentiable, monotonically increasing
and produces output in (0, 1).

• Hyperbolic Tangent (Tanh): The mathematical repre-
sentation of this function is as follows:

af(x) =
ex − e−x

ex + e−x
(4)

The property of hyperbolic tangent is similar to sigmoid
function. This function has larger output range in (-1, 1).

• Rectified Linear Unit (ReLu): The ReLu is simple
activation function and is given by [31]:

af(x) = max(0, x) (5)

It has lower bound and used to represent data in range in
(0,∞). Relu is successfully applied in the areas of Deep
Neural Neworks (DNNs).

• Exponential Linear Unit (ELU): It is an another ac-
tivation function. It is designed to rectify the problems
of ReLu activation function. It has better tendency to
converge cost to zero and produce better result [32]. The
activation function is defined as follows:

af(x) =

{
x x > 0

α.(ex–1) x <= 0
(6)

• Leaky Rectified Linear Unit (LeakyRelu): LeakyRelu
is a variantion of ReLU activation function. LeakyReLU
allows a small, non-zero, constant gradient α (Normally,
α = 0.01). This activation function is defined as follows:

af(x) =

{
x x > 0

αx x <= 0
(7)

C. Stochastic Gradient Descent

This section discusses the training algorithm (Supervised
Learning) for FFNN. In case of the supervised learning, each
sample S represent as a pair (x, y) comprises of input x and
a scalar output y. A loss function or cost function L(ŷ, y)
is consider which measures the difference (cost) between
predicted output(ŷ) and the actual output y. A family F of
functions fw(x), which is parameterized by weight vector
w. It is needed that the function f ∈ F minimizes the loss
Q(S,w) = L(fw(x), y) averaged on samples.

En(f) =
1

n

n∑
i=i

L (f(xi), yi)

En(f) is the empirical risk, which needs to be minimized. It
measures the performance of a model on training set.

The empirical risk En(f) is often minimized by the gra-
dient descent(GD) method. In GD, each iteration updates the
weights w on the basis of the gradient of En(f). The weight
vector can be updated as follows:

wt+1 = wt − η
1

n

n∑
i=1

∇wQ(Si, wi)

where η is the learning rate or step size. It is to be noted
that large η increases the chances of overshooting the global
minima, on the other side small η converges too slow. So, in
practice η is usually selected with experiments.

The gradient descent algorithm may be infeasible when the
training data-set is huge. Then the stochastic version of the
gradient descent algorithm called stochastic gradient algorithm
(SGD) is used. In SGD, instead of calculating the gradient of

En(f) exactly, each iteration estimates this gradient on the
basis of single randomly picked sample Si.

wt+1 = wt − ηt∇wQ(si, wi)

The stochastic process {wt, t = 1,} depends upon on
randomly picked examples in each iteration.

D. Ensemble Learning

The term ensemble resembles a group that is working for an
overall result. In general, the idea behind ensemble learning
is to combine multiple learners (base or weak learners) in
an appropriate or meaningful way to enhance the accuracy
of a decision-making process (e.g., Classification) [33]–[35].
The first underlying theoretical foundation of the combination
methods can be found in the political science field, known as
Condorcet’s Jury Theorem in 1785 ([36]). In [37], has given
three reasons (Statistical, computational ,and representative)
for supporting ensemble learning methods. Fig. 2 depicts the
general ensemble process.

Fig. 2. Traditional ensemble process.

1) Majority Voting/Hard voting: It is a meta-classifier for
combining similar or computationally different classifiers for
classification via majority or plurality voting. This is simplest
case of majority voting. Let consider, a classification problem
with class label l = {l1, l2,, lm} and N number of
classifier set M = {C1, C2,, CN}. For each instance i
let consider,

χlk(Cj(i)) =

{
1 if Cj(i) = lk with lk ∈ l
0 if Cj(i) = lq with lk, lq ∈ l and q 6= k

(8)
then, combining N classifiers decision with a majority vote,
i,e. the ensemble predictions can be defined as:

Pens = argmax

N∑
j=1

χlk(Cj(i)) (9)

In this case all N classifiers’ votes are having same priority
for the ensemble prediction.

III. PROPOSED MODEL

In this section, the proposed AFE approach is discussed.
In the AFE method, instead of different classification models,
one FFNN structure is trained with five different activation
functions as compared to the traditional ensemble methods.
Where each activation function is fixed throughout the whole
network (i,e input layer, hidden layer, and output layer are hav-
ing the same activation function) while training. After training,
the base model is tested, and the results are stored unless all
activation functions from the activation pool are over. Then
from each of every predicted class by each activation function
is passed through the majority voting ensemble approach,
which picks up the major class labels from the predicted labels
to declare the final class for the particular observation. The
proposed approach is presented in Fig. 3.

Fig. 3. Activation function ensemble model

For the experimental purpose of the proposed method, five
activation functions are considered for ensembling. In Fig. 3,
af1, af2, ..., af5 represents five activation functions where
af1 is Sigmoid, af2 is Relu, af3 is hyperbolic tangent, af4
is ELU and finally af5 is LeakyRelu. An SGD optimizer is
utilized for training the FFNN (Fig. 1) with different activation
functions. When a particular activation function is selected, it
is the same for all layers in FFNN while training. It goes
on until the activation function set (af) is empty. And when
an activation function is selected and used for training, that
activation function is removed from the activation function set
(af). P1, P2, .., P5 are the predicted outputs of af1, af2, af3,
af4, and af5 activation functions applied to the same FFNN,
respectively. The final predicted class labels for the testing data
(Pf) is generated after applying voting based (Majority voting)
ensemble technique in all the predicted outputs. The pseudo-
code of the proposed AFE method is presented in Algorithm
1.

Algorithm 1: AFE pseudo code
Result: Pf : final class prediction
Initialization;
1. Activation function set: af = {af1, af2, ..., af5} ;
2. ANN model define ;
3. K-fold cross divition of dataset: folds{dataset};
4. Prediction result matrix: P [|af |][|folds|] ;
Part 1: Model fitting ;
for i← 1 to |af | do

for j ← 1 to |folds| do
1. Train ANN model afi ;
2. Test ANN model;
3. Store class predictions in Pi,j ;

Part 2: Ensembling (Majority voting);
1. Final class prediction(Pf)= majorityvote(P) ;
2. Test ensemble model.;

IV. EXPERIMENTAL RESULTS

A. Dataset Description:

In this experiment, four different datasets are used. The
details of data sets are mentioned Table I:

TABLE I
DETAILS OF SIX DATASETS USED FOR THIS EXPERIMENT

Dataset Instances Attributes Classes
Semion

Handwritten
digit [38]

1593 256 10

MNIST [39] 70000 785 10
Fashion MNIST [40] 70000 785 10

ARDIS dataset IV [41] 7600 785 10

For the sake of simplicity, the experimented data-sets are
aliased as: Semion Handwritten digit as D1, MNIST as D2,
Fashion MNIST as D3 and ARDIS dataset IV as D4.

B. Experimental setup

This experiment is done in Python 3.6 and the packages
used to develop FFNN are Tensorflow 1.15, Keras [42] and
sklearn 22.1. The machine configuration is Ubuntu 18.04 64
bit OS, processor core-i7-7700HQ with RAM 8Gb 2400MHz
and 4Gb-Nvidia GTX-1050 graphics.

C. Neural Network structure

For unbiased comparisons of the proposed method, the 5-
Fold cross-validation method is considered throughout the
experiment. The training batch size is set as 32 and the epoch
is set to 100 for every data-set. The network size is having
input layer (number of neurons is equal to feature size), four
hidden layers with size (hidden layer 1 is having 300 neurons,
hidden layer 2 is having 100 neurons, hidden layer 3 is having
200 neurons) and output layer (number of neurons is equal to
the class size).

D. Performance metric

The proposed classifier is evaluated using standard metrics
such as Precision (Pre), Recall (Rec), average Accuracy (Acc)
and F-Measure (FM) for multiclass classification measures
[43]. There is micro and macro averaging for those perfor-
mance metrics in multiclass classification. For our case, we
have considered the macro-averaging because it indicates how
good a classifier performs in each class equally. These metrics
with macro-averaging for multiclass classification are shown
in Eq. 10, Eq. 11, Eq. 12 and Eq. 13 respectively [43].

Premacro =

|l|∑
i=1

TPi

TPi+FPi

|l|
(10)

Recmacro =

|l|∑
i=1

TPi

TPi+FNi

|l|
(11)

Acc =

|l|∑
i=1

TPi+TNi

TPi+FNi+FPi+TNi

|l|
(12)

FMmacro = 2 ∗ Premacro ∗Recmacro

Premacro +Recmacro
(13)

• |l| is the number of classes.
• True positives (TPi): actual class is positive and pre-

dicted class is positive.
• True negatives (TNi): actual class is negative and

predicted class is negative.
• False positives (FPi): actual class is negative and pre-

dicted is negative.
• False negatives (FNi): actual class is positive and

predicted is negative.
Where FMmacro is the weighted average of Precision and
Recall. Therefore, this score takes both false positives and
false negatives into account. In this experiment, FMmacro and
Acc metrics are prioritised to establish the effectiveness of the
proposed approach.

E. Results and Discussions

Table II and Table III represents the average F-measure
and classification accuracy comparison among five activation
functions with the proposed AFE technique for improving
classification accuracy.

TABLE II
FMmacro-MEASURE(%) COMPARISON TABLE

Dataset Activation Functions

Sigmoid ReLu Tanh ELU Leaky
Relu AFE

D1 4.60 92.40 92.55 92.28 92.43 98.53
D2 93.18 96.71 96.22 97.23 96.76 99.46
D3 85.84 88.74 88.32 88.87 88.71 98.05
D4 18.70 92.99 91.01 92.56 92.64 98.64

TABLE III
ACCURACY(%) COMPARISON TABLE

Dataset Activation Functions

Sigmoid ReLu Tanh ELU Leaky
Relu AFE

D1 12.68 92.40 92.58 92.27 92.46 98.55
D2 93.18 96.74 96.25 97.25 96.79 99.47
D3 85.91 88.75 88.32 88.89 88.69 98.06
D4 27.91 92.99 91.02 92.57 92.64 98.64

Table II and Table III reported the results of the mean
F-measure and accuracy for the data-sets over 100 epochs
with 5-fold cross validations. From the F-measure table, it
can be depicted that the proposed approach is capable to
outperform all the activation functions individually in terms
of F-measure. Also in accuracy comparison AFE has achieved
significantly better accuracy than other activation functions.
The possible reason for this significant accuracy as well as
FMmacro improvement is because of taking majority voting
of class label decisions from those different base classifiers
(activation functions) to make the final class label instead of
relying on a single one.

While experimenting, we have set the epoch is 100, and
the batch size is 32 for all activation functions. In D2 and
D3, the 70000 data samples are adequate for stable training of
the models. The model with the sigmoid activation function,
therefore, has shown better performance. But in D1 and D4,
the data samples are only 1593 and 7600, respectively. Thus,
due to the availability of comparatively less data samples with
the same epoch and batch size, the model is prone to fail over
capturing the intricate pattern in those two datasets [44]. This
leads the neural network model with the sigmoid activation
function to have an under-fitting phenomenon for D1 and D4
dataset only, resulting poor performance in terms of Acc and
FMmacro measures.

F. Comparison with state-of-the-art literature

The propose method is compared with recent models present
in the state-of-the-art literature [5] and [41] to demonstrate the
potential capability for solving the classification problem.

1) Comparison with [5]: For MNIST dataset, the re-
searchers have used CNN and FFN. From their article,
the FFN structure is 784 (input layer neurons)−400 (first
hidden layer)−400 (second hidden layer)−400 (third hid-
den layer)−10 (output layer neurons) with an accuracy of
98.37% (activation ensemble scheme) and the epoch size
is 82. AdaDelta is used for training the neural network
with a learning rate of 1.0. They have not mentioned
any cross-validation technique. In the AFE experiment,
network size is 784 (input layer neurons)−300 (first
hidden layer)−100 (second hidden layer)−200 (third
hidden layer)−10 (output layer neurons) with an average
accuracy of 99.34% (5-fold cross-validation) and 50
epochs are used for training. The optimizer is SGD with
a learning rate of 0.1. The comparison is shown Table
IV.

TABLE IV
ACCURACY(%) COMPARISON WITH RECENT MODELS PRESENT IN

LITERATURE [5].

Method

MNIST dataset
(D2)

recognition
accuracy (%)

CNN 99.18
FFN 93.78
AFE 99.34

From the comparison, it is noted that the proposed
approach AFE is significantly better in terms of classifi-
cation accuracy and outperforms CNN and FFN.

2) Comparison with [41]: Another comparison with recent
literature is presented in Table V.

TABLE V
ACCURACY(%) COMPARISON WITH RECENT MODELS PRESENT IN [41]

Method

MNIST dataset
(D2)

recognition
accuracy (%)

ARDIS dataset
(D4)

recognition
accuracy (%)

CNN 99.18 98.60
SVM 93.78 92.40

HOG–SVM 97.82 95.50
kNN 97.31 89.60

Random forest 94.82 87.00
RNN 96.95 91.12
AFE 99.47 98.64

From the comparison, it is also clear that the proposed
approach AFE has significantly achieved better accuracy
improvement than several traditional methods and outper-
forms them all in the MNIST dataset. AFE has achieved
similar accuracy in comparison to CNN in the ARDIS
dataset.

V. CONCLUSION

One activation function can not be able to deliver more in-
depth insight into the data to make the correct classification.
But applying many diverse activation functions for a particular
can understand the data better, and their opinions about the
classification put together can deliver the correct class label.
Which is beneficial for correct class label prediction instead of
relying on one activation function. In this work, the activation
function ensemble at decision-level for final class prediction is
proposed to increase classification accuracy. The experiment
results show that the proposed approach AFE can increase the
classification and outperforms each activation function along
with outperforming state-of-the-art classification models.

Future research will involve investigating the effects of
each activation function’s contribution and importance to make
final class label prediction in classification. Also, the impact
on classification using activation function ensembles with the
consideration that the activation functions will differ in hidden
and output layers. Lastly, the diverse behavior of ensemble
methods will be investigated.

REFERENCES

[1] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451–462, Nov 2000.

[2] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, April 1997.

[3] D. H. Wolpert and D. H. Wolpert, “What the no free lunch theorems
really mean; how to improve search algorithms,” 2012.

[4] Y. Ho and D. Pepyne, “Simple explanation of the no-free-lunch theorem
and its implications,” Journal of Optimization Theory and Applications,
vol. 115, no. 3, pp. 549–570, Dec 2002.

[5] M. Harmon and D. Klabjan, “Activation Ensembles for Deep Neural
Networks,” arXiv e-prints, p. arXiv:1702.07790, Feb 2017.

[6] C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and
Applications. Springer Publishing Company, Incorporated, 2012.

[7] Pattern Classification Using Ensemble Meth-
ods, pp. 1–15. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/9789814271073

[8] O. G. Selfridge, “Neurocomputing: Foundations of research,” J. A.
Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press,
1988, ch. Pandemonium: A Paradigm for Learning, pp. 115–122.

[9] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition:
A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp.
4–37, Jan. 2000.

[10] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp.
226–239, Mar. 1998.

[11] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Comput., vol. 3, no. 1, pp. 79–87,
Mar. 1991.

[12] G. Brown and L. Kuncheva, ““good” and “bad” diversity in majority
vote ensembles,” 04 2010, pp. 124–133.

[13] L. I. Kuncheva, J. C. Bezdek, and R. P. Duin, “Decision templates
for multiple classifier fusion: an experimental comparison,” Pattern
Recognition, vol. 34, no. 2, pp. 299 – 314, 2001.

[14] F. A. Breve, M. P. Ponti-Junior, and N. D. A. Mascarenhas, “Multilayer
perceptron classifier combination for identification of materials on noisy
soil science multispectral images,” in XX Brazilian Symposium on
Computer Graphics and Image Processing (SIBGRAPI 2007), Oct 2007,
pp. 239–244.

[15] M. P. Ponti and N. D. A. Mascarenhas, “Material analysis on noisy mul-
tispectral images using classifier combination,” in 6th IEEE Southwest
Symposium on Image Analysis and Interpretation, 2004., March 2004,
pp. 1–5.

[16] M. P. Ponti and J. P. Papa, “Improving accuracy and speed of optimum-
path forest classifier using combination of disjoint training subsets,” in
Multiple Classifier Systems, C. Sansone, J. Kittler, and F. Roli, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 237–248.

[17] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, “Spatial
transformer networks,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 2017–2025.

[18] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio, “Noisy activation
functions,” in Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48, ser. ICML’16.
JMLR.org, 2016, pp. 3059–3068.

[19] M. D. Zeiler, “ADADELTA: an adaptive learning rate
method,” CoRR, vol. abs/1212.5701, 2012. [Online]. Available:
http://arxiv.org/abs/1212.5701

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[21] Ç. Gülçehre, M. Moczulski, F. Visin, and Y. Bengio, “Mollifying
networks,” CoRR, vol. abs/1608.04980, 2016. [Online]. Available:
http://arxiv.org/abs/1608.04980

[22] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” CoRR, vol. abs/1507.06228, 2015. [Online]. Available:
http://arxiv.org/abs/1507.06228

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[24] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in
3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1410.3916

[25] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, ser. ICML’10.
USA: Omnipress, 2010, pp. 807–814.

[26] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, G. Gordon, D. Dunson, and M. Dudı́k, Eds., vol. 15.
Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.

[27] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng
Li, “Improving deep neural networks using softplus units,” in 2015
International Joint Conference on Neural Networks (IJCNN), July 2015,
pp. 1–4.

[28] Hoon Chung, Sung Joo Lee, and Jeon Gue Park, “Deep neural network
using trainable activation functions,” in 2016 International Joint Con-
ference on Neural Networks (IJCNN), July 2016, pp. 348–352.

[29] A. Wuraola and N. Patel, “Sqnl: A new computationally efficient
activation function,” in 2018 International Joint Conference on Neural
Networks (IJCNN), July 2018, pp. 1–7.

[30] S. Kong and M. Takatsuka, “Hexpo: A vanishing-proof activation
function,” in 2017 International Joint Conference on Neural Networks
(IJCNN), May 2017, pp. 2562–2567.

[31] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, ser. ICML’10.
Madison, WI, USA: Omnipress, 2010, p. 807–814.

[32] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” CoRR, vol.
abs/1511.07289, 2015.

[33] L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms:
Second Edition, 01 2014, vol. 47.

[34] R. Polikar, Ensemble Learning. Boston, MA: Springer US, 2012, pp.
1–34.

[35] G. Valentini and F. Masulli, “Ensembles of learning machines,” in
Proceedings of the 13th Italian Workshop on Neural Nets-Revised
Papers, ser. WIRN VIETRI 2002. London, UK, UK: Springer-Verlag,
2002, pp. 3–22.

[36] C. Zucco, “Multiple learners combination: Cascading,” in Encyclopedia
of Bioinformatics and Computational Biology, S. Ranganathan, M. Grib-
skov, K. Nakai, and C. Schönbach, Eds. Oxford: Academic Press, 2019,
pp. 539 – 541.

[37] T. G. Dietterich, “Ensemble methods in machine learning,” in MULTI-
PLE CLASSIFIER SYSTEMS, LBCS-1857. Springer, 2000, pp. 1–15.

[38] I. h. Tactile Srl, Brescia, “Semeion handwritten digit data set,”
https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit, 1994.

[39] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[40] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[41] H. Kusetogullari, A. Yavariabdi, A. Cheddad, H. Grahn, and J. Hall,
“Ardis: a swedish historical handwritten digit dataset,” Neural Comput-
ing and Applications, pp. 1–14, 2019.

[42] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[43] M. Sokolova and G. Lapalme, “A systematic analysis of performance

measures for classification tasks,” Information Processing Management,
vol. 45, no. 4, pp. 427 – 437, 2009.

[44] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, Y. W. Teh and M. Titter-
ington, Eds., vol. 9. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15
May 2010, pp. 249–256.

