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Abstract—We argue that symmetry is an important consider-
ation in addressing the problem of systematic generalisation and
investigate two forms of symmetry relevant to symbolic processes.
We implement this approach in terms of convolution and show
that it can be used to achieve effective generalisation in a rule
learning and a context free language task.

In the rule learning task, we find that symmetry allows us to
learn rules that abstract away from the particular symbols that
instantiate them, enabling generalisation from seen to unseen
symbols. In the language task, symmetry allows us to impose
a stack like architecture on the memory cells of a recurrent
net, which permits generalisation from simple to more complex
structures.

Index Terms—Connectionism and neural nets, Symbolic and
algebraic manipulation, Convolution

I. INTRODUCTION

Convolution has played a central role in making Deep
Neural Networks (DNNs) successful. Applying the same
set of filters across all positions in an image captures an
important characteristic of the processes that generate the
objects depicted in them, namely the translational symmetry
of the underlying laws of nature. Given the impact of these
architectures, researchers are increasingly interested in finding
approaches that can be used to exploit further symmetries [1],
[2], such as rotation or reflection. Here, we will investigate
symmetries relevant to symbolic processing.

We show that incorporating symmetries derived from sym-
bolic processes into neural architectures allows them to gener-
alise more robustly on tasks that require handling elements and
structures that were not seen at training time. Specifically, we
construct convolution-based models that outperform standard
approaches on the rule learning task of Marcus et al. [3], and
a simple context free language learning task.

Symbolic architectures form the main alternative to con-
ventional neural networks as models of intelligent behaviour,
and have distinct characteristics and abilities. Specifically, they
form representations in terms of structured combinations of
atomic symbols. Their power comes not from the atomic
symbols themselves, which are essentially arbitrary, but from
the ability to construct and transform complex structures. This
allows symbolic processing to happen without regard to the
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meaning of the symbols themselves, expressed in the formal-
ist’s motto as If you take care of the syntax, the semantics will
take care of itself [4]. Thus, we will use symbol and symbolic
to refer to representations that are processed within such a
formal scheme.

From this point of view, thought is a form of algebra [5],
[6] in which formal rules operate over symbolic expressions,
without regard to the values of the variables they contain [7].
As a consequence, those values can be processed systemati-
cally across all the contexts they occur in. So, for example,
we do not need to know who Socrates is or even what mortal
means in order to draw a valid conclusion from All men are
mortal and Socrates is a man.

However, connectionist approaches have been criticised as
lacking this systematicity. Fodor and Pylyshyn [8] claimed that
neural networks lack the inherent ability to model the fact
that cognitive capacities always exhibit certain symmetries,
so that the ability to entertain a given thought implies the
ability to entertain thoughts with semantically related contents.
Thus, understanding these symmetries and designing neural
architectures around them may enable us to build systems that
demonstrate this systematicity.

We investigate two kinds of symmetry, relating to sub-
stitutions of symbols and to equivalence between memory
slots. We use the former to assist generalisation from seen
to unseen symbols in the rule learning experiment, while the
latter permits generalisation from simpler to more complex
grammatical sequences. Implementing these symmetries using
convolutional architectures, we find that this allows us to learn
rules that abstract away from the particular symbols seen
during training and to build stack-like memory structures.

The relation between symbols and their referents is, in prin-
ciple, arbitrary, and any permutation of this correspondence is
therefore a symmetry of the system. More simply, the names
we give to things do not matter, and we should be able to get
equivalent results whether we call it rose or trandafir, as long
as we do so consistently. This should enable unseen syllables
to be processed in the same way as seen syllables, producing
effective generalisation.

Following on from that, a given symbol should be treated
consistently wherever we find it. For example, the symbol
taught occurs twice in Socrates taught Plato, who taught

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Aristotle and we want each instance to be treated as expressing
a distinct event, while maintaining its identity as a token of the
same type. Here, we will think of this as a form of symmetry
over the various slots within the data structures, such as stacks
and queues, where symbols can be stored. This will then allow
the same rules to be applied to all the instances of a given
symbol, no matter how numerous, allowing generalisation to
larger and more complex structures.

We explore these questions using two small toy problems
and compare the performance of architectures with and with-
out the relevant symmetries. In each case, we use convolution
as the means of implementing the symmetry, which, in prac-
tical terms, allows us to rely only on standard deep learning
components. In addition, this approach opens up novel uses for
convolutional architectures, and suggests connections between
symbolic processes and spatial representations.

II. RULE LEARNING

The first symmetry to be considered is the one arising from
the fact that the correspondence between referring atomic sym-
bols and their referents is entirely arbitrary, which entails that
permutations of this mapping are symmetries of the system.
In fact, Tarski [9] uses this permutation invariance to define
logical notions within mathematics. From this perspective,
logical notions are those which are invariant to permutations
of the correspondence between entities and their names.

Thus, if the mapping from entities in the world to symbols in
our language is arbitrary - i.e. the same entity could be called
either rose or trandafir - then symbolic processing should be
indifferent to those choices - i.e. we should get equivalent
results whether we use rose or trandafir. This implies that all
symbols of a given type are equivalent, in the sense that any
name is as good as any other, and that symbolic processes
should not depend on the particular symbol but only on the
structural forms they are used in. So, for example, logically
valid inferences have particular forms (e.g. modus ponens,
modus tollens, etc.) which are independent of the entity and
predicate names they contain.

This symmetry, in which any symbol is as good as any other,
is anathema to the sort of problem that neural nets are typically
applied to, in which the inputs are not arbitrary names but
specific measurement values, e.g. images or medical records.
Thus, we cannot expect to make an arbitrary remapping of,
say, blood pressure values without fundamentally changing
the way those values need to be processed. In such a case,
effective learning requires discovering correlations or decision
boundaries in terms of specific values. Imposing the strong
symmetry constraint of treating all values of blood pressure
equivalently would inhibit the process of uncovering the
relevant discriminations between them.

Nonetheless, the work of Marcus et al. [3] suggests that
this sort of symmetry may be relevant to human cognition,
even for infants as young as 7 months. In these experiments,
the infants were habituated to sequences of syllables which
obeyed a simple rule, such as ABB (e.g. la ti ti) or ABA (e.g.
la ti la). Subsequent testing on novel stimuli showed they were

TABLE I: Accuracies in Identifying Sequence Structure.

Recurrent Net Multi-layer Perceptron Convolution

50% 50% 100%

able generalise this rule to syllables not present in the training
stimuli (e.g. wo fe fe vs. wo fe wo).

In other words the representation of the learned rule allowed
it to be abstracted from the particular training stimuli and
applied to any syllable. One interpretation is that the infants
were treating the stimuli symbolically, in that one syllable was
as good as any other, and that as a consequence their behaviour
was symmetric under substitution of the syllables.

Marcus et al. [3] were unable to obtain the same behaviour
from a recurrent network architecture, because the statistical
regularities it learned were linked to the specific syllables seen
at training time and so generalisation to unseen syllables was
not achieved. Here we show that this problem can be solved
by imposing a symmetry on the architecture, that corresponds
to weight sharing between syllables.

Practically, this is implemented as a convolution of width
one, followed by max-pooling across all syllables, and a
softmax to produce output probabilities. The input consists of a
12×3 array of binary values representing the 12 syllables and 3
time steps, with two convolutional filters treating the syllables
as positions and the time steps as channels. The output of the
convolution has two channels, which after pooling become the
logits for the binary outputs.

Fig. 1 shows the input sequence wo fe wo being processed
by this architecture. The input is first encoded as activation in
the first and third channels at the wo position, and activation
in the second channel at the fe position. Convolution reduces
these three channels down to two, and pooling projects this
down to a pair of logits corresponding to the ABB and ABA
categories.

Note that this is the opposite of how convolutions are most
frequently used in application to language sequences. In that
case, invariance to time translations is achieved by weight
sharing across time steps, with the representation of each sym-
bol being encoded in the channels. Here, in contrast, weight
sharing happens between symbols and temporal information is
encoded in the channels. This means our model is not invariant
to translations in time, but is instead invariant to substitutions
of symbols, e.g. la is replaced with wo. In this way, we expect
the architecture to generalise from seen to unseen syllables.

The training and test inputs are taken from the Marcus et
al. [3] paper, and we train the model to distinguish ABB
sequences from ABA sequences. We also train a multi-layer
perceptron and a recurrent net on the same data, with the
recurrence happening over the time dimension. Both these
networks have 24 hidden units, matching the structure of the
convolutional net. Each network is trained for 1000 epochs
using Adam [10] with a rate of 0.1 and a batch size of 16.

The results on the test set in Table I show that neither the
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Fig. 1: The architecture applied to the rule learning task of [3], consisting of convolution followed by max-pooling and softmax.
In the figure, the 12× 3 grid at the bottom represents the 12 syllables within the 3 time-steps, with the first syllable at the top
and the last at the bottom. This input is convolved with the two filters, resulting in the 12×2 output above it, and max-pooling
reduces this to a single pair of values, which are the logits of the output softmax. In the example, wo fe wo is encoded at
the input as ones in the first and third channels for the syllable wo and in the second channel for the syllable fe. The same
two filters are applied to the three channels of every syllable, with the 101 filter matching the pattern of activations in the wo
position, giving a high activation value in the bottom channel at the same position in the hidden units. Max-pooling picks this
value out and uses it to predict that this is an ABA sequence.

multi-layer perceptron nor the recurrent network learn a rule
that generalises effectively to unseen syllables. This is because
the inputs associated with the test syllables are always zero in
the training set, and so the weights for these units are never
updated in these networks. However, the weight sharing in the
convolutional net requires that the same function is applied
to each syllable, giving perfect generalisation. The filter,
being applied at every position, cannot discriminate between
syllables, and instead can only respond to the information
about temporal structure in the channels. So, for example, in
the case of the sequence wo fe wo, the input channels at the
wo position take the values 101, representing the fact that the
same token occurs in the first and third temporal slots.

This is very similar to what Marcus et al. [3] suggest is
being learned by the infants: algebra-like rules that represent
relationships between placeholders (variables), such as ‘the
first item X is the same as the third item Y’. Thus, by
imposing a symmetry on the network, we learn functions that
are sensitive to an abstract structure rather than the specific
raw syllables in the input.

Although we have imposed the required symmetry on the
network in terms of convolution, we do not wish to argue
that this should be understood as providing a mechanistic
explanation of the behaviour observed in the rule learning
experiments. Not only does this architecture lack biologi-
cal plausibility, but we have also formulated the task as a
supervised learning problem when the original experiments
might be better understood as unsupervised. Consequently, the
network is only interested in distinguishing ABB and ABA
inputs, and is effectively blind to all the other features of these

sequences that the infants would have attended to.
Instead, our experiments are intended to show that consid-

erations of symmetry are important in obtaining systematic
generalisation. In particular, the arbitrariness of symbols im-
plies that symbolic systems are symmetric under substitutions
of symbols, e.g. replacing la with wo. In terms of learning,
this supports generalisation from la to wo, even if wo was
unseen during training. In this way, convolution provides a
straightforward solution to this long-standing problem [11]
using the simple expedient of sharing weights between seen
and unseen syllables.

III. CONTEXT FREE LANGUAGE LEARNING

The structures considered in the previous section are ex-
tremely simple, having only short-range sequential dependen-
cies. In contrast, the real grammars of natural languages pro-
duce long-range dependencies within hierarchical structures.
Handling such structures, in which multiple dependencies are
embedded within each other, will typically require some form
of working memory in order to keep track of the unresolved
outer dependencies until the inner dependencies are completed.
In this section we consider the role that symmetry plays in
structuring this memory. We again implement the relevant
symmetry using convolution, and this allows us to construct
a stack-like memory structure to which items can be pushed
and popped. In particular, we consider a reverse recall task
that captures a key property of how such a memory has to
operate.

For example, in the sentence The racquet is actually very
cheap the subject noun, racquet, and main verb, is, display
number agreement. In this case, both are singular, but they



S → A A→ aSa
S → B B → bSb
S → C C → cSc
S → D D → dSd

S → o

(a) Production rules for a simple CFG.
S → A
→ aSa
→ aDa
→ adSda
→ adoda

(b) Example derivation of a palindrome.

Fig. 2: The production rules and an example derivation of a
simple CFG, which produces palindromic strings.

could also have been plural, i.e. racquets and are. For this
simple sentence, noun and verb are adjacent so the span of the
dependency is minimal. However, we can, in principle, insert
as much material as we like, and this syntactic connection
persists.

In particular, we can add a relative clause to the noun: The
racquet that the tennis player uses is actually very cheap.
Now another subject noun, player, and verb, uses, intervenes
between the first pair, but the dependency, and in particular
the number agreement, between racquet and is has to be
maintained. This remains true even when we insert another
relative clause: The racquet that the tennis player we are all
in awe of uses is actually very cheap.

In this last case, the subject, we, and verb, are, are both
plural, and effective processing of the whole sentence requires
that this should not disrupt processing of the outer singular
dependencies. Moreover, the dependency between racquet and
is remains the same no matter how long it becomes. In
other words, a language user must be able to maintain a
trace of multiple open dependencies until the relevant material
is encountered. Notably, in the case of a centre embedded
construction such as the sentence above, recall has to happen
in a last-in-first-out manner as processing descends through the
hierarchy and then rises back out again. That is, the subjects
in the sentence above - racquet, player, we - are matched to
verbs in reverse order - are, uses, is.

A common model for such structures are Context Free
Grammars (CFG), which generate sentences in terms of pro-
duction rules, such as those in Fig. 2. These rules describe how
the start symbol, S, is expanded into sequences of terminals
symbols, such as adoda or ccbabdodbabcc. Each rule describes
a substitution that can be applied to a single non-terminal
symbol, i.e. S, A, B, C or D to yield a sequence of symbols.
The context free aspect of such a grammar lies in the fact the
substitutions are made without regard for the context around
the original non-terminal symbol.

In the case of the grammar described in Fig. 2, the substi-
tutions applied to the non-terminals A, B, C and D yield
a new string with the same terminal at the beginning and

TABLE II: Performance of LSTM Architectures on the Palin-
dromic Language. Values are the median proportion of strings
that are predicted correctly for each architecture across 10
different random initialisations. The differences between ar-
chitectures in the last two columns are significant (p < 0.01)
under a Mann-Whitney U test.

LSTM Architecture In-Domain Long NA > 2

Standard 100% 36% 76%
Convolutional 100% 100% 100%

the end, and the final rule inserts an o. As a consequence,
the resulting strings are palindromes with a single o at their
centre. We can think of this as a simplified form of agreement,
where instead of a singular noun agreeing with a singular verb,
an a in the first half of the string ‘agrees’ - i.e. matches -
with the corresponding a in the second half. Like the noun-
verb dependencies in the example above, these dependencies
between the first and second half of the string are nested within
each other.

Another model of such languages is a Push Down Automata
(PDA), in which hierarchical structure is handled by pushing
symbols representing the outer structures onto a stack, until
the interior structure is completed, and then popping symbols
back off the stack to move outward in the hierarchy until no
more symbols remain. Crucially, the stack has a last-in-first-
out structure that essentially returns items in the reverse order
in which they were pushed onto it.

In principle, such a system can handle sentences of un-
bounded length, containing arbitrarily long dependencies be-
tween constituents. In practice, however, language users strug-
gle with nested clauses more than two or three levels deep.
Moreover, it is generally accepted that an ordinary CFG is not
an accurate model of the grammatical structures that natural
languages display, and their grammars appear, instead, to be
mildly context sensitive [12].

However, here we focus on CFGs and the ability of Recur-
rent Neural Nets (RNNs) to learn these symbolic structures.
In particular, we investigate the ability of a Long Short Term
Memory [13] (LSTM) network to learn the simple palindromic
language over the terminal symbols a, b, c, d and o, defined by
the grammar in Fig. 2. We then show that the generalisation
failures of that architecture can be overcome by imposing the
appropriate form of symmetry.

We train the RNNs to predict the second half of strings
generated by the CFG in Fig. 2 given the initial symbols up to
the middle o. Our baseline model is a 100-unit LSTM network
which we train on 100,000 examples of strings of length 15,
17, 19, 21, 23 and 25, and then perform an in-domain test on
novel strings of the same length, and an out-of-domain test on
longer strings of lengths 29, 33, and 37. We also retrain the
LSTM after removing all strings which contain more than 4
tokens of the symbol a from the training set, i.e. those with
a derivation containing more than two nested As. This model



ci

hi

Input Embeddings
Hidden Units

Memory Cells

Outputs

a
x0

h0

c0

+ ×

∗

s0

d
x1

h1

c1

+ ×

∗

s1

o
x2

h2

c2

+ ×

∗

s2

d
x3

h3

c3

+ ×

∗

s3

a
x4

h4

c4

+ ×

∗

s4

Fig. 3: The modified LSTM architecture is shown here unrolled in time from left to right. The memory cells, c, have been
organised into a stack (illustrated vertically) which a convolutional gate, ~, controls the flow of information through, while a
standard multiplicative output gate, ⊗, and additive input gate, ⊕, read and write to the cells in the bottom of the stack. As in
a standard LSTM, the hidden units, h, are concatenated with the input embeddings, x, to form the vector that feeds into the
units that drive the various gates. The network is trained to predict the next symbol, and this results in it learning to push and
pop symbols onto the stack as in a PDA. In the example, the first symbol, a, is written to the bottom of the stack at step 0.
Encountering d at step 1, the contents of the stack are shifted upwards, and d written to the bottom. The o at step 2 indicates
the first half of the string has ended and the stack is read, giving a d prediction at the output. This prediction is confirmed
at step 3, and the stack is shifted down and a is read and predicted. At step 4, the stack is empty and the end of the string
can be predicted. Whether the net is pushing or popping is controlled by the hidden state, h, which switches after an o in the
input. The stack is controlled by a width 3 convolution, which sets the value of each cell based on the previous values of that
position and those above and below it. This allows information to be shifted up and down the stack.

is then tested only on examples from the test set containing
more than 4 tokens of the symbol a. These out-of-domain
tests are designed to evaluate whether the model has learned
merely to reproduce structures seen in the training data, or
whether the model has learned more abstract rules which can
be generalised to all instances of the same dependencies.

The first row of Table II gives the results for this evaluation
in terms of the proportion of strings that were predicted
entirely correctly given the symbols up to the central o. The
in-domain results, in the first column, make it clear that the
net has learned the structure of the grammar, and how to make
accurate predictions, at least for sequences of lengths seen at
training time. The second column, containing the results for
longer sequences, shows that generalisation outside the range
of the training set is not robust. The third column indicates
that the model has difficulty generalising to sequences where
the nesting of A symbols is deeper than at training time, even
though the actual length of sequences is unchanged.

These failures of generalisation can be seen as symptoms of
the same underlying problem. In particular, success on each
of these out-of-domain tasks simply requires extending the
application of the same rules. However, the problem arises
because the network lacks the required concept of sameness.
The LSTM cells form an unstructured memory resource, with-
out any notion of two cells containing the same information.
Nor can there be a meaning to the idea of applying the same
rule to that information. The parameters for each cell are
learned independently, and so each cell carries out its own

isolated task. During training these cells do learn to behave as a
coherent whole, achieving impressive in-domain performance,
but there is no way for the model to apply the same rule to
the nth item as it applied to the previous n− 1.

A PDA handles all strings from its grammar systemati-
cally, because its memory consists of a stack of equivalent
memory slots within which stored information can be shifted
up or down. Pushing symbols further into the stack allows
the completion of long-range dependencies to be deferred
while the innermost short-range dependencies are dealt with.
Importantly, this shifting process operates uniformly over all
the slots, which we can think of in terms of a translational
symmetry along the stack, and this uniformity is an important
element in treating all dependencies equivalently.

In contrast, each memory cell of the LSTM is free to
learn its own particular behavioral repertoire, which in many
other situations provides the flexibility the problem at hand
requires. However, in the case of the context free language,
this freedom leaves the handling of structures not encountered
during training unconstrained, and this prevents the LSTM
from generalising systematically from simple strings to more
complex ones. For example, each a symbol in the first half of
an input string has to produce a distinct trace in the memory
cells, which can later be matched to its counterpart in the
second half of the string. Each of these traces, and their
relation to the input, has to be learned independently in an
LSTM, and when the depth of nesting exceeds that seen during
training the network will typically lack the ability to extend its



behaviour in a systematic manner. Unlike the PDA, the LSTM
lacks the uniformity of operation which underlies the idea of
the same symbol being stored in multiple places in the stack
and the same rule being applied to all dependencies.

To address this shortcoming, we propose to organize the
memory cells into a linear ordered stack structure, and to
use convolutions to control the flow of information across
timesteps, replacing the forget gate. The translational sym-
metry of this convolutional layer gives meaning to the idea of
the same symbol being able to be stored in different cells and
we use a filter of width three to allow the shifting of stored
information between adjacent cells. Along with a restriction
on input and outputs only being connected to the bottom of
the stack, this turns the LSTM into a differentiable PDA. In
particular, spatial translations can be achieved in a convolution
using the filters [1, 0, 0] and [0, 0, 1] and, using such operations,
the network to learns to shift memory contents up and down
the stack in order to perform push and pop operations.

As shown in Fig. 3, each token in the input is given an
embedding, x, which is then concatenated with the current
hidden state, h. Together these values form the inputs to units
that control the flow of information into, out of and between
the memory cells, c, as in a standard LSTM. In this case,
however, the memory cells are a set of 10 one channel one
dimensional convolutional layers of 20 units each and the
forget gate has been replaced with a set of width three filters
that shape the recurrent flow of information. These filters are
the softmax outputs of units driven by the concatenated input
embeddings and hidden units, allowing the network to use the
input context to control the memory cell stack. Information is
written to and read out from only the bottom entries in the
stack, using standard input and output gates. This architecture
is described in more mathematical detail in Appendix B.

Performance of this convolutional LSTM on the same
evaluations is given in the second row of Table II. There,
all three columns show optimal performance on both the in-
domain and out-of-domain tasks, demonstrating the utility of
the convolutional layer in helping the model to generalise
robustly. More abstractly, the symmetry across the memory
cells allows the network to treat symbols stored throughout
this stack uniformly, which in turn corresponds to handling
both long and short range dependencies equivalently.

IV. RELATED WORK

Numerous authors have tackled the problem of replicating
the rule learning behaviour studied by Marcus et al. [3]
in a connectionist system, and Alhama and Zuidema [11]
give an extensive review. Many of these approaches rely on
a specific training regime to obtain the desired behaviour,
rather than our approach of modifying the architecture to
embed the appropriate capacities innately. However, our core
intention was to demonstrate the relevance of symmetry, with
convolution being a convenient and transparent means to that
end. The same end could conceivably be achieved purely
through training on appropriately structured data.

The recurrent PDA we describe in Section III is very similar
to a number of other architectures. Sun et al. [14] proposed
a neural network pushdown automata. Grefenstette et al. [15]
proposed architectures for a number of data structures: queues,
dequeues and stacks. Joulin and Mikolov [16] proposed a re-
current stack structure, which in practice, is almost equivalent
to our proposal. However, none of these works discuss the role
of symmetry or the connection to convolution.

Symmetries beyond spatial translation have been discussed
by a number of authors. Cohen and Welling [1] propose a
generalisation of convolution for arbitrary discrete symmetries,
such as reflections and rotations. The role of invariances in
disentangled representations is discussed by Higgins et al. [2],
and Bloem-Reddy and Teh [17] investigate the application
of probabilistic symmetries to neural network architectures.
Practical examples of symmetries supporting extrapolation
and generalisation beyond the training set are discussed by
Mitchell et al. [18].

Permutation invariance is relevant to a number of repre-
sentational strategies, such as bag-of-words approaches [19]
or Deep Sets [20]. However, the relevant symmetry in these
cases is usually over permutations on the order of inputs, e.g.
a symmetry between wo fe fe and fe wo fe. In our case, the
permutation is over the identity of the symbols, i.e. a symmetry
between wo fe fe and la ti ti.

V. DISCUSSION

One way to address the criticisms of distributed approaches
raised by Fodor and Pylyshyn [8] has been to focus on methods
for binding and combining multiple representations [21]–[25]
in order to handle constituent structure more effectively. Here,
we instead examined the equally important role of symmetry in
the systematicity of how those representations are processed,
using a few simple proof-of-concept problems.

We showed that imposing a symmetry on the architecture
was effective in obtaining the desired form of generalisation
when learning simple rules, and simple grammars. In partic-
ular, we discussed two forms of symmetry relevant to the
processing of symbols, corresponding respectively to the fact
that all atomic symbols are essentially equivalent and the fact
that any given symbol can be represented in multiple places,
yet retain the same meaning. The first of these gives rise
to a symmetry under substitutions of these symbols, which
allows generalisation to occur from one symbol to another.
The second gives rise to a symmetry across memory locations,
which allows generalisation from simple structures to more
complex ones.

On both problems, we implemented the symmetries using
convolution. From a practical point of view, this allowed us
to build networks using only long-accepted components from
the standard neural toolkit. From a theoretical point of view,
however, this implementation decision draws a connection
between the cognition of space and the cognition of symbols.

The translational invariance of space is probably the most
significant and familiar example of symmetry we encounter
in our natural environment. As such it forms a sensible



foundation on which to build an understanding of other
symmetries. In fact, Tarski [9] uses invariances under various
spatial transformations within geometry as a starting point for
their definition of logical notion in terms of invariance under
all permutations. Moreover, from an evolutionary perspective,
it is also plausible that there are common origins behind the
mechanisms that support the exploitation of a variety of dif-
ferent symmetries, including potentially spatial and symbolic.
In addition, recent research supports the idea that cerebral
structures historically associated with the representation of
spatial structure, such as the hippocampus and entorhinal
cortex, also play a role in representing more general relational
structures [26], [27].

Thus, our use of convolution is not merely a detail of
implementation, but also an illustration of how spatial sym-
metries might relate to more abstract domains. In particular,
the recursive push down automata, discussed in Section III,
utilises push and pop operations that relate fairly transparently
to spatial translations. Of course, a variety of other symmetries,
beyond translations, are likely to be important in human
cognition, and an important challenge for future research will
be to understand how symmetries are discovered and learned
empirically, rather than being innately specified.

A common theme in our exploration of symmetry, was the
ability it conferred to separate content from structure. Impos-
ing a symmetry across symbols or memory locations, allowed
us to abstract away from the particular content represented
to represent the structure containing it. So, for example the
grammar rule learned by our network on the syllable sequences
of Marcus et al. [3] was able to generalise from seen to
unseen syllables because it represented the abstract structure of
ABB and ABA sequences, without reference to the particular
syllables involved.

We explored how this ability could also be exploited on
a grammar learning task, but it is likely that there are many
other situations where such a mechanism would be useful.
Future work will examine how this approach can be applied
more widely beyond the simple toy problems considered here.
Particular attention is needed to the problem of robust learning
within noisy and complex environments.

APPENDIX A
SYMMETRY

Informally, a symmetry of a system is a mapping of the
system onto itself which preserves its fundamental properties.
In the case of translation symmetry in the visual domain, we
have input images, x, and output labels, y, and we want to
learn a function, f(x), which predicts these labels, and is
invariant to spatial translations, T . That is, we want f to obey
f(Tx) = f(x).

Typically, we achieve this by composing two types of
function: equivariant convolutions, c, and invariant poolings, p.
Equivariant here means that the output from a translated input
is itself the translation of the original output: c(Tx) = Tc(x).
While invariant means the output is unchanged by input
translations: p(Tx) = p(x).

When the width of the convolution is reduced to one, the
function, c(), becomes equivariant to all permutations, S, not
just translations: c(Sx) = Sc(x). Permutation equivariance
also arises, for example, in formal logic, where the rules
of deduction depend not on the particular names within an
expression, but on its logical structure. So, Socrates is mortal
follows from Socrates is a man and All men are mortal not
because of the meaning of Socrates or mortal, but because
the syllogism has the right form. Thus, if x represents the
premises and y represents the conclusions, then the process
of deduction d(x) = y should be equivariant under any
substitution, S, of names. That is, we should be able to reach
an equivalent conclusion even if we rename Socrates as Bob,
and so d(Sx) = Sd(x).

Symmetries also arise in computational processes. For
example, Fleck [28] discusses how the symmetries of an
automata are related to those of its associated language.
In the case of our palindromic language, the translational
symmetry of the PDA relates to the recursive nesting of the
grammar. Thus, if π(S) is the sequence of states the PDA
traverses in processing the palindrome S and πx(S) is the
states traversed when S is preceded by x, then there is a
mapping φx between the two sets of states. In other words,
π(xSx) = π(x) + πx(S) + πxS(x) and φx(π(S)) = πx(S).
Here, φx corresponds to pushing the symbol x onto the
stack, allowing the inner dependencies in S to be processed.
Moreover, recursion allows nesting of any finite depth. So, for
example, in the context xySyx, the sequence of states while
processing S is φx(φy(π(S))). Translational symmetry of the
stack corresponds to the fact that whenever the same symbol,
x, is pushed onto the stack, the same mapping, φx, applies.

APPENDIX B
CONTEXT FREE LANGUAGE LEARNING

Fig. 3 gives a visual overview of the architecture we apply
to learning the simple palindromic language. This is essentially
a modified LSTM in which the forget gate has been replaced
with convolutional filters. We define this explicitly below.

Each token in the input is given an M-dimensional embed-
ding, x, which is concatenated with the current N-dimensional
hidden state, h, to give a vector, g, representing the current
context.

gt = ht ⊕ xt (1)

This controls N single channel width three filters, f , each
of which is the output of a softmax.

fn,t = softmax (Wf,ngt + bf,n) (2)

As in a standard LSTM, values written to the cells are the
outputs of tanh units gated by a sigmoid.

it = σ (Wigt + bi) ◦ tanh (Wcgt + bc) (3)

And the output gate is also a sigmoid function.



ot = σ (Wogt + bo) (4)

Recurrence between the cells in each of the N memory
stacks is based on one-dimensional convolution and controlled
by the filters f .

cn,t = fn,t ~ cn,t−1 (5)

The 0th values in each stack are updated using the values
of i.

cn,t,0 = cn,t,0 + it,n (6)

And the new hidden state are also read out from the 0th

values, gated by tanh units.

ht+1,n = ot,n · tanh (cn,t,0) (7)

The final outputs, to predict a one hot vector representing
the next symbol, apply a softmax to these new hidden states.

st = softmax (Wsht+1 + bs) (8)

The loss is the cross entropy over the second half of the
sequence, and for this task M and N are both 10, with the
memory stack having a depth of 20. We train the network for
100 epochs with batch size 128 using the Adam [10] optimiser
with a rate of 0.001. The network weights are re-initialised and
training restarted if the validation accuracy has not exceeded
0.9 by the end of the fourth epoch.
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