
Hessian-based Bounds on Learning Rate for
Gradient Descent Algorithms

Prayag Gowgi and Shayan Srinivasa Garani
Department of Electronic Systems Engineering,

Indian Institute of Science, Bengaluru 560012, India.
Email: {prayag, shayangs}@iisc.ac.in

Abstract—Learning rate is a crucial parameter governing the
convergence rate of any learning algorithm. Most of the learning
algorithms based on stochastic gradient descent (SGD) method
depend on heuristic choice of learning rate. In this paper, we
derive bounds on the learning rate of SGD based adaptive
learning algorithms by analyzing the largest eigenvalue of the
Hessian matrix from first principles. The proposed approach is
analytical. To illustrate the efficacy of the analytical approach,
we considered several high-dimensional data sets and compared
the rate of convergence of error for the neural gas algorithm
and showed that the proposed bounds on learning rate result in
a faster rate of convergence than AdaDec, Adam, and AdaDelta
approaches which require hyper-parameter tuning.

I. INTRODUCTION

Mathematically well-motivated adaptive learning algorithms
use non-linear processing elements (PEs) for learning data
statistics based on some optimization criterion. The gradient
descent approach is one of the most widely used optimization
techniques. In this scheme, the weight vectors associated with
PEs are updated based on the gradient of a potential function.
The PEs are optimized such that the potential function is
minimized at every iteration. Since the update rule is iterative
in nature, the analysis of convergence rate is crucial in most
of the applications. The rate of convergence is decided by the
learning rate.
Variety of techniques have been used for setting learning rates
during optimization, such as 1) adaptive procedures [1]–[3] 2)
scheduling procedure [4], [5] 3) line search procedures [6] 4)
cross validation procedure [7]. One can even fix the learning
rate static throughout the learning procedure. However, this
would result in slower convergence rate and even oscillations
during learning. A large learning rate would result in faster
convergence of error rate during first few epochs of adaptation.
However this is at the expense of oscillations during later
stages of adaptations during learning.
In most unsupervised learning algorithms [4], [5], the learning
rate is annealed slowly from a higher value (ηinit) to a
lower value (ηfinal) heuristically. This is essential for proving
convergence of the learning algorithm. Now the question
is how to choose ηinit and ηfinal? There have been some
analyses in this direction [8]. In [8] it is shown that η is
bounded by 1/|λ(R)max|, where |λ(R)max| is the maximum
eigenvalue of the data correlation matrix R. This bound
is completely dependent on the data correlation matrix and
does not consider the instantaneous error or the nature of

(

λ1; η
(1)
)

(

λ2; η
(2)
)

λ1 < λ2 < λ3 =) η(3) < η(2) < η(1)

Error surface 1 Error surface 2 Error surface 3

(

λ3; η
(3)
)

Fig. 1: Error surface and the eigenvalues of the Hessian matrix.
The eigenvalues of Hessian matrix of the error surface at a
point indicate the curvature of the surface at that point. Larger
or smaller eigenvalues indicate higher or lower curvature of
the surface at that point. This should dictate the learning rate.

the underlying algorithm. A more appropriate bound on the
learning rate should be proportional to the eigenvalue of the
Hessian matrix of potential function with respect to PEs as
it captures the curvature of the potential function surface as
shown in Figure 1. Computing eigenvalues of a Hessian
matrix is computationally expensive. However, there is a
principled approach [9] to compute the largest eigenvalue of
a Hessian matrix. Recently, various approaches have been
proposed towards adapting learning rates [1]–[3], [10]. Senior
et al. [1] proposed an approach called AdaDec which is a
variant of AdaGrad [2]. The idea in [2] is to vary each variable
of a PE considering cumulated values of sum of squares of
gradient function with respect to each variable of PE. This
cumulated value increases with time, resulting in unbounded
learning rate. Therefore, by considering only the recent past of
squares of gradient of potential function with respect to each
variable of the PE, the variation of learning rate is bounded
and this approach is AdaDec.

Zeiler [3] proposed an approach called AdaDelta and it
is an improved version over AdaGrad. AdaDelta is based
on two drawbacks of AdaGrad: 1) The denominator term in
the learning update equation (refer to equation (5) in [3])
accumulates the sum of squares of gradients, which in theory
can grow to a very large value, reducing the learning rate
to an infinitesimally small value. This problem is eliminated
by accumulating the sum of squares of gradient over a finite
window. 2) The physical units of the parameters do not match
in AdaGrad. This mismatch is corrected by modifying the
update equation of the learning rate using the inverse of a
Hessian matrix. The idea is intuitive and heuristic in nature

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

t
=

t 0

t
=

t 1

Non-linear PE

Evolution/path

t
=

t 2

t
=

t 3

t
=

t1

Cross-over point

: : :

Fig. 2: Evolution of weight vectors associated with PEs in a d-dimensional space. Imagine a thread passing through each PE
in a d-dimensional space. For two PEs to merge, the threads should cross over each other.

TABLE I: Various symbols (notations) and their meanings.

Variable Description
t Time
W i ith weight vector
V i ith input vector
G(W i, V i) Learning algorithm
d Dimension of input space
σ Neighborhood radius

F
(
W

(t+1)
i ,W

(t)
i

)
Function of weight vectors at time t and t+ 1

Ji Jacobian of F (W
(t+1)
i ,W

(t)
i)

E Potential function
Hi Hessian matrix of E
ηinit and ηfinal Initial and final learning rate
Det(.) Determinant function
‖.‖ Euclidean norm in L2 sense
P(α′(ui)) Negative half space of α′(ui)
Ps Hyper-surface of singularity
µ(.) Area measure
D(gii, Ri) Disc with center gii and radius Ri

Ci Rank one matrix
Gi Symmetric matrix with real eigenvalues bij − 1 for all i, j
(bij − 1, φj) jth eigenvalue pair of Gi

λj(Hi) jth eigenvalue of Hi

and lacks an analytic approach. Adam [10] is another approach
for varying the learning rate based on the first-order gradient,
requiring hyper-parameter tuning. Our method is completely
data driven and does not require any hyper-parameter tuning,
and it is based on maximum eigenvalue of inverse Hessian
matrix. In this work, we have compared our method with the
AdaDec, Adam and AdaDelta approaches.

Our contributions in this paper are the following: We would
like to seek solutions to the following questions: 1) Is it
possible to make the choice of η dependent on data and the
instantaneous error? (Q1) 2) Does ηfinal always guarantee that
the error has reached its minimum? (Q2) 3) Is it possible that
two PEs merge to form a single PE during learning? (Q3)
In this work, we answer questions Q1 and Q2 by analyzing

question Q3 and derive improved bounds on the learning rate.
This paper is organized as follows: In Section II we show

that the event of two PEs merging (we call merging PEs
as dead PEs) happen with measure zero. In Section III we
derive both lower and upper bounds on the learning rate
analytically, and show that it is inversely proportional to the
largest eigenvalue of the Hessian matrix. In Section IV we
compare the computational complexity of our method with
Adam, AdaDec, and AdaDelta. In Section V we compare the
rate of convergence of error of Adam, AdaDec, and AdaDelta
with our method by using the derived bounds, followed by
discussion and conclusions in Section V-C and Section VI. To
ease the readability of the further sections, a list of variables
(symbols) and their descriptions are given in Table I.

Re

Im

D(gii; Ri)

1
Ri

gii

Fig. 3: Intersection of the disc D(gii, Ri) with the point 1 on
real line. The area measure on a point is zero.

II. HYPER-SURFACE OF SINGULARITY

The general idea of this discussion is as follows: Let
{W i}Nw

i=1 ∈ Rd be the set of weight vectors associated
with Nw PEs, {V j}Nd

j=1 be the set of Nd input vectors, and
G(V ,W) be some adaptive learning algorithm based on the
gradient descent approach. We imagine the path traced by
the PEs in a d-dimensional space as a set of threads passing
through the d-dimension lattice as shown in Figure 2. For two
PEs to merge, the threads have to cross-over each other at
some point in time, making the PEs indistinguishable. One
of the two PEs is a “dead PE” as a consequence of a non-
invertible mapping f(W

(t)
) = W

(t+1)
. Now, the question is

under what conditions does the inverse mapping exist?
Define a function F (W

(t+1)

i ,W
(t)

i) as follows:

F (W
(t+1)

i ,W
(t)

i) =W
(t+1)

i −W (t)

i + ηhi∇EW i(t)
(1)

where t is the time. The reader must note that every variable
is a function of time, except the dimension d, the number of
PEs Nw, and the number of input data points Nd. hi is the
neighborhood function given by

hi = c(σ2) exp

(
−‖V −W i‖2

2σ2

)
, (2)

and ∇EW i(t)
is the gradient of the potential function E with

respect to W i(t) and σ is the neighborhood radius.
We would like to express W i(t) in terms of W i(t + 1).

This calls for the inverse function theorem (IFT) [11]. The re-
quirements for IFT are as follows: F (W

(t+1)

i ,W
(t)

i) ∈ C1 and
Det (Ji) 6= 0, where Ji is the Jacobian of F (W

(t+1)

i ,W
(t)

i)

with respect to W
(t)

i , and Det(.) is the determinant function.
Differentiating (1) with respect to W i(t), we get

Ji = 0− I+ η (hiHi +Ci) (3)

where I is a d × d identity matrix, Hi :=
[

∂2E
∂W i∂W j

]Nw

i,j=1
is

the Hessian matrix and Ci is given by

Ci =

∇EWi1(t)
∇EWi2(t)

...
∇EWid

(t)

︸ ︷︷ ︸

ui

[
∂hi

∂Wi1(t)
∂hi

∂Wi2(t) . . . ∂hi

∂Wid(t)

]
︸ ︷︷ ︸

vTi

. (4)

Let Iηhi
= diag (ηhi, . . . , ηhi) of size d× d. The matrix

Gi
T =(IηhiHi − I)

T

=(IηhiHi)
T − I

=IηhiHi − I (5)

is a symmetric matrix with real eigenvalues equal to bij − 1
for all i, j and bij is the jth eigenvalue of IηhiHi.

We know that1 Det(Ji) = Det(Gi +Ci) and

Det(Gi + uiv
T
i) = Det(Gi)

(
1 + vT

i Gi
−1ui

)
. (6)

Now we would like to find the conditions under which
Det(Ji) = 0. From Gershgorin circle theorem [12], we see
that the eigenvalues of Gi lie within at least one of the discs
D(gii, Ri), where gii is the ith diagonal element of Gi and
Ri =

∑
i6=j |gij |. Let µ(.) be the area measure. We see that

area measure of intersection of the disc D (gii, Ri) with a
singleton on the real line is zero for all i, and hence Gi is full
rank as illustrated in Figure 3. From (4) we see that Ci is of
the form xyT for some x, y ∈ Rd and hence it is a rank one
matrix. From (6), Det(Ji) = 0 if and only if vT

i Gi
−1ui = −1,

written as:

vT
i α(ui) = −1, (7)

where α(ui) = Gi
−1ui. With ‖ui‖ 6= 0, normalizing α(ui)

and vi in (7) in the L2 sense (Through out the paper ‖.‖ stands
for L2 norm.), we get

v′Ti α
′(ui) =

−1
‖α(ui)‖‖vi‖

, (8)

where ‖α′(ui)‖ = 1 and ‖v′i‖ = 1. Let P(α′(ui)) = {x ∈
Rd : xTα′(ui) < 0, ‖x‖ = 1} be the negative half-space.

Ps = {y ∈ Rd : y ∈ P(α′(ui)), y
Tα′(ui) = −1/ (‖y‖‖α′(ui)‖)}

will be the hyper-surface of singularity i.e., every element in
Ps results in singular Ji. Figure 4 illustrates the hyper-surface
of singularity with d = 3. The probability measure of Ps is
zero and hence there exists an inverse mapping F :W

(t+1)

i →
W

(t)

i with probability one.

1Let A = xyT be a rank one matrix with x, y ∈ Rd. We know that
0 is an eigenvalue with algebraic multiplicity d − 1. Also the sum of
eigenvalues of A is equal to Tr(A) = xTy. Therefore, Det(A − λI) =
(−1)dλd−1

(
λ− xTy

)
= 0. Now, put λ = −1 to get the desired result.

Fig. 4: Hyper-surface of singularity. The right side of the blue colored ring is the negative half space of α(ui). Every point
on the green colored ring results in singular Ji.

Gi (bij − 1)φi

φi

Gi +Ci

(bij − 1)φi

φi

φi1ui

Fig. 5: Geometrical interpretation of action of the matrix Gi

and Gi +Ci on the eigenvector φi and the vector (bij − 1)φi
acts as an attractor.

III. Ji OPERATING ON ANY VECTOR: A GEOMETRIC
INTERPRETATION

Let (bij − 1, φj) be the jth eigenvalue pair of Gi. Since
Ci is a rank one matrix, we see that Ciφj = φj1ui and ui is
nothing but the first column of Ci i.e.,

ui =
[
∇EW i1

(t) ∇EW i2(t) . . . ∇EW id(t)
]T
. (9)

Consider the transformation

(Gi +Ci)φj = (bij − 1)φj + φj1ui. (10)

Re

Im

D(gii; Ri)

Ri

gii

Mi = gii + Ri

Fig. 6: The eigenvalue of Gi lies within the disc D (gii, Ri)
and it is bounded by Mi = gii +Ri.

Using (10) we can derive bounds on the initial and the final
learning rates. We assume the following:

1) ‖ui(t)‖ ≤ l for some l > 0 for all i, and for t ∈ R+,
2) lim

t→∞
‖ui(t)‖ → 0,

3) ‖φj(t)‖ = 1 for t ∈ R+ (this can be done by
normalizing φj(t) for all t),

4) φj1(t)|t=0 = φj1(0),

(a) Iris dataset (R4). (b) Boston dataset (R13).

(c) Diabetes dataset (R10). (d) Digits dataset (R64).

(e) Wine dataset (R13). (f) Breast cancer dataset (R30).

Fig. 7: Convergence of error. The performance of Hessian based method is compared with Adam [10], AdaDec [1], and
AdaDelta [3]. Hessian based approach converges faster compared to other methods with a clear advantage that there is no
hyper-parameter selection and it is completely data driven.

5) ηi(t)|t=0 = ηi,init, and lim
t→∞

ηi(t) = ηi,final.

With the assumption 2, we see that the operation (Gi +Ci)
on φj is a contraction mapping resulting in (bij − 1)φj and
this is illustrated in Figure 5. Applying triangular inequality
in (10), we get

‖ (Gi +Ci)φj‖ ≤|bij − 1|‖φj‖+ |φj1|‖ui‖
≤|bij − 1|‖φj‖+ |φj1|l
≤|ηi(t)hi(t)λj(Hi)− 1|‖φj‖+ |φj1|l (11)

where λj(Hi) is the jth eigenvalue of Hi. At t = 0 we get

‖ (Gi +Ci)φj‖ ≤ |ηi,inithi(0)λ
(t=0)
j (Hi)−1|‖φj‖+|φj1(0)|l.

(12)
Suppose at t = 0 we have σ2

i (0) ≈ ‖V −W i(0)‖2, then we
can write2

hi(0) ≈ c(σ2
i (0))

1√
e
. (13)

Now (12) can be written as

‖ (Gi +Ci)φj‖ ≤

∣∣∣∣∣ηi,initc(σ
2
i (0))λ

(t=0)
j (Hi)√

e
− 1

∣∣∣∣∣ ‖φj‖
+ |φj1(0)|l. (14)

From (14), we see two cases:
Case 1 When

ηi,initc(σ
2
i (0))λ

(t=0)
j (Hi)√

e
≥ 1, (15)

(14) becomes

‖ (Gi +Ci)φj‖ ≤

Term A︷ ︸︸ ︷(
ηi,initc(σ

2
i (0))λ

(t=0)
j (Hi)√

e
− 1

)
‖φj‖

+ |φj1(0)|l. (16)

We know from the Gershgorin theorem [12] that the eigen-
values of Gi (Term A in (16)) are bounded by Mi = Ri+ gii
as shown in Figure 6. With this bound, (16) becomes(
ηi,initc(σ

2
i (0))λ

(t=0)
j (Hi)√

e
− 1

)
‖φj‖+ |φj1(0)|l ≤Mi‖φj‖

+ |φj1(0)|l. (17)

Simplifying (17) we get

ηinit ≤ min
i,j

(
(1 +Mi)

√
e

c (σ2(0))λ
(t=0)
j (Hi)

)
. (18)

Case 2 When

ηi,initc(σ
2
i (0))λ

(t=0)
j (Hi)√

e
< 1, (19)

following similar steps from (16)-(18) on (19), we get

ηinit ≥ max
i,j

(
(1−Mi)

√
e

c (σ2(0))λ
(t=0)
j (Hi)

)
, (20)

2One can even consider that ‖V −W i‖2 ≤ D for some D > 0 and for
all i and proceed with the analysis.

Algorithm 1 Algorithm to choose ηinit and ηfinal

Require: Choose the initial set of PEs {W i(0)}Nw
i=1 from

a uniform distribution in Rd and ηstart such that (18)
and (20) are satisfied, initial and final neighborhood radii
σinit = 10 and σfinal = 0.1, number of epochs Ne,
number of data points Nd, and T = 50. Let G(V ,W)
be some adaptive learning algorithm based on gradient
descent technique.

1: Compute the largest eigenvalue of the Hessian matrix
(refer to [9]).

2: Compute the mean of

ηinit ≤ min
i,j

(
(1 +Mi)

√
e

c (σ2(0))λ
(t=0)
j (Hi)

)
.

and

ηinit ≥ max
i,j

(
(1−Mi)

√
e

c (σ2(0))λ
(t=0)
j (Hi)

)
,

and assign it to ηinit .
3: for j =1 to Ne do
4: Run G(V ,W).
5: Compute the mean of

mi(ε)
− :=

1− ε
|λ(Hi)(max)|

and
mi(ε)

+ :=
1 + ε

|λ(Hi)(max)|
.

after T iterations of the algorithm and assign it to ηfinal.
6: end for

requiring Ri + hii < 1 for all i. To obtain ηfinal, consider a
finite T > 0, an ε > 0, and define

|λ(Hi)
(max)| = max

t>T
{|λ1(Hi)|, . . . , |λd(Hi)|} (21)

mi(ε)
− :=

1− ε
|λ(Hi)(max)|

(22)

mi(ε)
+ :=

1 + ε

|λ(Hi)(max)|
. (23)

The reason for selecting a finite T > 0 is to compute
the eigenvalue of the Hessian matrix after a finite number
of epochs as it would result in a stable value. Using the
assumption lim

t→∞
‖ui‖ → 0 in (11), we get

min
i

(
mi(ε)

+
)
≥ ηfinal ≥ max

i

(
mi(ε)

−) . (24)

Note that in (24) ηfinal is strictly greater than 1
|λ(Hi)(max)| .

The reason for this is that the eigenvector φj 6= 0 for all j =
1, . . . , d. We know that the larger the magnitude of eigenvalue
of a Hessian matrix, larger the curvature at that point. If the
error surface has a tight curvature at a point, the learning rate
has to be very small to avoid oscillations in the error. Similarly,
if the error surface is nearly flat or the curvature is not tight,
then the learning rate could be increased. This is captured by
the bounds given by (18), (20) and (24).

IV. COMPUTATIONAL COMPLEXITY

We compare the computational complexity per epoch of our
method with the Adam, AdaDec and AdaGrad approaches.
The computationally expensive step in Algorithm 1 is the
computation of the largest eigenvalue of the Hessian matrix
with computational complexity O(Nw). Let C(G) be the
computational complexity per epoch of the learning algorithm
G(V ,W). The resulting computational complexity per epoch
of our algorithm is C(G) + O(Nw) i.e., linear in Nw. For
example, if the learning algorithm is the neural gas algorithm
[5], C(G) = Nw logNw. Table II gives a description of
variables and their meaning and the computational complexity
is computed in terms of these variables in Table III. From
Table III, we see that the computational complexity of other
methods per epoch is a function of number of data points Nd

and the dimension of the data increasing the complexity of the
algorithm and our method is better in terms of computational
complexity.

TABLE II: Various symbols and their meanings. The compu-
tational complexity is expressed in terms of these variables.

Variables Meaning
Nw Number of PE’s
Nd Number of data points
d Dimension of the input data

τ [1] Delay constant
G(V ,W) Learning algorithm
C(G) Computational complexity per epoch of G(V ,W)

TABLE III: Comparison between our method and AdaDec
[1], AdaDelta [3], and Adam [10] approach in terms of
computational complexity.

Algorithm Computational complexity
Our method C(G) +O(Nw)
AdaDec [1] C(G) +O(NdNwdτ)

AdaDelta [3] C(G) +O(NwNdd)
Adam [10] C(G) +O(NwNdd)

V. SIMULATION SET-UP AND RESULTS

In this section, we compare the convergence of the neural
gas algorithm [5] with Adam [10], AdaDec [1], and AdaDelta
[3] by choosing initial and final learning rates according to
(18), (20), and (24).

A. Datasets

We consider six different datasets [13] with varying dimen-
sions as the input for our experiments. They are 1) Diabetes:
The dataset belongs to R10. Each data point is a diabetic pa-
tient record which consists of patients insulin level at different
time instants, physical activity of a patient etc. 2) Digits: The
dataset belongs to R64. The set consists of hand written digits
from 43 people. Each 32 × 32 image is converted into 8 × 8
matrix by using 4 × 4 non-overlapping blocks resulting in
vector in R64. 3) Wine: The dataset belongs to R13. There are
three different classes meaning three different wine samples.
The attributes represent the quantity of alcohol, magnesium,
malic acid etc. from each wine sample. 4) Breast cancer: The

dataset belongs to R30. The attributes are computed using
digitized images of a fine needle aspirate of a breast mass. The
attributes consists of patient ID number, result of the diagnosis,
and characteristics of the cell nuclei such as radius, area, and
perimeter etc. 5) Iris: The dataset belongs to R4. There are
total 150 data samples, 3 different classes and 50 samples in
each class. 6) Boston: The dataset belongs to R13. The dataset
consists of housing values in the suburb of Boston. Some of
the attributes consist of crime rate by town, average number of
rooms per house, distance from Boston employment centers
etc. We have normalized each dataset as follows:

V
′
=

V −min
(
{V }Nd

i=1

)
max

(
{V }Nd

i=1

)
−min

(
{V }Nd

i=1

) (25)

where the min
(
{V }Nd

i=1

)
or max

(
{V }Nd

i=1

)
is a vector in

which each coordinate is minimum or the maximum along
that coordinate. The reason for selecting these datasets are
1) varying high-dimension 2) sampled from different data
distributions from various applications. We have fixed the
neural gas algorithm as the benchmark.

B. Network initialization and results

We have used Nw = 15 PEs, initial and final neighborhood
radii σinit = 10 and σfinal = 0.1 respectively, and number
of epochs Ne = 10. In order to compare with our method,
we have compared our method with AdaDec 1, AdaDelta
[3], Adam [10]. Various parameters of Adam, AdaDec, and
AdaDelta are set as follows:
• Adam: β1 = 0.9, β2 = 0.999, α = 0.002, and ε = 10−8.
• AdaDec: c = 1000, r = 25, τ = 4, and γ = 0.4.
• AdaDelta: ρ = 0.95.

Figures 7(a)—7(f) show the comparison of the error con-
vergence rates for the neural gas algorithm for each of the
six data sets. In Figure 7(a), we clearly see that our method
outperforms all the other methods. From 7(b)-7(f), we see that
our method is comparable to the other methods with a clear
advantage that one need not worry about tuning any hyper-
parameter.

C. Discussion

We have addressed the three questions Q1-Q3 as mentioned
in the introduction. In particular, question Q3 only guarantees
the existence of the inverse mapping of weight vector update
equation from time t+ 1 to t with probability one. However,
finding the inverse mapping itself is a challenging problem.
As a consequence of this analysis, questions Q1 and Q2 were
addressed, making the learning rate data dependent through
the maximum eigenvalue of the Hessian matrix from first
principles. We know that instantaneous error value should
drive the update of weight vectors (because this is a feedback
path from the error surface to the weight vector update) as
opposed to learning rate driving the weight vector updates
(feed forward) and the feedback is in terms of eigenvalues of
the Hessian matrix capturing the curvature of the error surface
at a point.

VI. CONCLUSIONS

We analyzed the situation of dead PEs and showed that the
occurrence of dead PE is a measure zero event. We derived
Hessian-based lower and upper bounds on the learning rate
for gradient descent algorithms, making it data dependent.
The learning rate is driven by the curvature of the error
surface at a point, captured by the largest eigenvalue of the
Hessian matrix evaluated at that point. This guarantees a
smaller final learning rate as opposed to other algorithms that
reduce learning rate to smaller values, independent of the data.
We compared the performance of the neural gas algorithm
using the derived bounds on learning rates against Adam,
AdaDec, and AdaDelta. Using simulations, we showed that the
rate of convergence using our analytic approach outperforms
other methods, motivating the use of analytical approaches in
deciding hyper-parameters in learning algorithms.

REFERENCES

[1] A. Senior, G. Heigold, M. Ranzato, and K. Yang, “An empirical study of
learning rates in deep neural networks for speech recognition,” in 2013
IEEE Int. Conf. on Acoustics, Speech and Signal Proc., May 2013, pp.
6724–6728.

[2] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[3] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[4] T. Kohonen, “Self-organizing map,” Proc. of the IEEE, vol. 78, pp.
1464–1480, 1990.

[5] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, “Neural-gas
network for vector quantization and its application to time-series predic-
tion,” IEEE Trans. on Neural Netw., vol. 4, no. 4, pp. 558–569, 1993.

[6] S. Wright and J. Nocedal, “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, p. 7, 1999.

[7] D. Johnson, D. Ellis, C. Oei, C. Wooters, P. Faerber, N. Morgan, and
K. Asanovic, “ICSI quicknet software package,” 2004.

[8] S. Haykin, Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[9] Y. LeCun, P. Y. Simard, and B. Pearlmutter, “Automatic learning rate
maximization by on-line estimation of the Hessian’s eigenvectors,” in
Advances in Neural Inf. Process. Syst. 5, S. J. Hanson, J. D. Cowan,
and C. L. Giles, Eds. Morgan-Kaufmann, 1993, pp. 156–163.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[11] M. Spivak, Calculus on manifolds: a modern approach to classical
theorems of advanced calculus. CRC Press, 2018.

[12] S. A. Gershgorin, “Uber die abgrenzung der eigenwerte einer matrix,”
Proc. of the Russian Academy of Sciences. Mathematical Series, no. 6,
pp. 749–754, 1931.

[13] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

ACKNOWLEDGMENT

The authors acknowledge the Ministry of Human Resource
Development, Govt. of India for this work. The financial
expenses towards the conference is supported by Ericsson.

