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Abstract—We present an end-to-end scheme based on convo-
lutional neural networks (CNNs) for speaker joint identification
and localization. We investigate the possibility to estimate both
the direction of arrival (DOA) and the identity of the speaker
in far-field noisy and reverberant conditions using a two-channel
microphone array. The proposed CNN network is designed to
map the raw waveform of the two channels into the speaker
identity and into the DOA of its speech signal. We analyze
the identification and localization performance with simulated
experiments in noisy and reverberation conditions.

Index Terms—Convolutional neural network, end-to-end sys-
tem, raw waveform, speaker identification, speaker localization,
two-microphone array.

I. INTRODUCTION

Microphone array processing techniques retain a central

role in applications such as human-computer interaction,

teleconferencing systems, audiovisual surveillance, robotics,

automation, and in a number of applications in the speech

technology area. These include speaker localization [1], speech

enhancement [2], speaker/speech recognition [3].

Speaker identification and speaker localization are process-

ing tasks widely investigated in the past years by the signal

processing community. Speaker localization, and more in gen-

eral acoustic localization, is inherently related to multichannel

array processing and traditionally relies on measurements of

time difference of arrivals (TDOAs) across various combina-

tions of microphones [4] and on geometric considerations to

estimate the source position [5], or on steered response power

(SRP) beamformers [6]. Recently, however, the interest around

the use of machine learning methods for the source localization

has increased [7]–[10].

Speaker identification is traditionally faced by single-

channel processing techniques and pattern recognition models

[11]. However, it is recognized that multichannel processing

can be used to enhance the acoustic front-end involved in

speaker/speech recognition since it can help reducing back-

ground noise, reverberation, source-point interference, espe-

cially in distant-talking conditions [12]. Sensor array tech-

niques such as beamforming [13] and multichannel noise

reduction [14] can greatly improve the recognition accuracy in

adverse acoustic conditions. Some possibilities of exploiting

the information gathered from a multichannel system have

been discussed for example in [3], [15]–[18].

Since many decades, machine learning and neural network

methods have been successfully employed in a wide range

of speech and audio processing applications, such as auto-

matic speech recognition [19], audio forensic [20], music

information retrieval [21], sound classification [22]. However,

their use for the improvement or the new design of multi-

channel processing localization schemes has been explored

only recently [7], [8], [10], [23]–[26]. Moreover, since the

new computational and performance advances brought by the

recent developments in the field of deep neural networks

(DNNs) research, their use is now being investigated in a

variety of acoustic and speech oriented applications involving

multichannel processing, including in a few cases the specific

problem of acoustic source localization. In [9], an approach

is developed that uses a discriminative machine learning to

compute the location estimator in the frequency domain, in

which a DNN encodes the steering vectors by applying the

orthogonality principle used in the multiple signal classifi-

cation (MUSIC) method [27]. The method however resulted

ineffective in noisy and reverberant conditions. In [7], the

multichannel spectral phase information is used as input of a

convolutional neural network (CNN) for the direction of arrival

(DOA) estimation. In [10], a CNN-based scheme is proposed

to refine the multichannel fusion scheme of the minimum

variance distortionless response (MVDR) beamformer and

improves the localization of acoustic sources and speakers

in far-field noisy and reverberant environments. In [8], a

CNN-based end-to-end system is studied, that maps the raw

waveforms of a distributed microphone network to the source

position in reverberant environments.

While speaker identification and localization have been

deeply investigated as independent modules (for an overview

see [12]), the study of joint identification and localization

is rather limited in the literature. An example is the work

in [28], developed in the context of binaural applications

using an artificial head. We recently discussed joint speaker

classification and localization [29] based on the diagonal

unloading beamforming [30], [31] and using a uniform linear
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array. In both [28] and [29], the approach consists of using

different processing blocks performing localization, signal

enhancement, and speaker identification, where however each

block is connected to the others to improve their respective

performance in isolation, without the use of DNN components.

An example of multi-output model using DNNs is proposed

in [32], in which an end-to-end scheme based on a CNN

using spectral information as input provides joint output with

localization and speech/non-speech classification in noisy en-

vironments. In the field of the sound event localization and

detection (SELD), DNN-based methods using multi-output

have been recently proposed in [33], [34]. In this regard, to the

best of the authors’ knowledge, the simultaneous identification

and localization of speech signal using only a DNN-based

approach has not yet been explored.

In this paper, we discuss the performance of the joint

speaker identification and localization scheme based on CNNs.

We adopt an end-to-end design, in which the raw audio signal

is used as the input of the network, without any further acoustic

front-end processing. Moreover, we investigate the possibility

of training the CNN to both estimate the DOA and to recognize

the identity of the speaker using a two-microphone array. We

investigate the robustness of the model with respect to adverse

conditions, namely to process speech recorded in noisy and

reverberant environments.

II. RAW WAVEFORM CNN ACOUSTIC MODEL

Let us refer to a two-microphone array with an inter-

microphone distance d. Suppose that a single source impinges

upon the array and let sn(t) ∈ R denote the signal generated

by a nonstationary speech source n (n = 1, 2, . . . , N , where

n refers to the nth speaker in a dataset containing recordings

from N speakers). The outputs of the two sensors are given

by

x1(t) = (h1 ∗ sn)(t) + v1(t),

x2(t) = (h2 ∗ sn)(t) + v2(t),
(1)

where h1(t) and h2(t) are the impulse responses from the

source to the sensors, and v1(t) and v2(t) are additive noise

signals that are assumed to be uncorrelated and spatially

white Gaussian with zero mean and variance equal to σ2

for both sensors. Referring to a far-field model for the sound

source wave propagation, the source impinges upon the two-

microphone array with a DOA θ, which is given by

θ = arcsin
(cτ

d

)

, (2)

where τ is the TDOA of the wavefront at the two microphones,

and c is the speed of sound. Under the hypothesis of ideal

reflections, the impulse responses can be expressed as

h1(t) =

Q1
∑

q=0

αq,1δ(t− tq,1),

h2(t) =

Q2
∑

q=0

αq,2δ(t− tq,2),

(3)

where Qi is the number of room reflections, αq,i is an

attenuation term, δ is the Dirac delta function, and tq,i is the

time of arrival of the qth reflection. The direct-path signal is

defined as the component corresponding to q = 0. The TDOA

of the wavefront at the two microphones can be written as

τ = t0,1 − t0,2. (4)

We aim at designing a nonlinear function F (·,Θ) (Θ being

the parameters learned during the training), which maps the

input raw waveforms x(t) of the n-th speaker to the output

prediction o(t)
o(t) = F (x(t),Θ). (5)

The input corresponding to a frame of length L is a vector

composed of the signals from the two channels

x(t) = [x1(t),x2(t)] = [x1(t− L+ 1), x1(t− L+ 2), . . . ,

x1(t), x2(t− L+ 1), x2(t− L+ 2), . . . , x2(t)].
(6)

The input vector has thus dimension 2L. The multi-output con-

sists of a classification module for the speaker identification

and a regression module for the DOA of the source:

o(t) = [pn, θ], (7)

where pn is the prediction vector of length N for the classi-

fication layer.

The overall structure of the one-dimensional convolutional

CNN network F (·,Θ) is made of several convolutional layers,

followed by two outputs (speaker classification and DOA

regression) provided by a fully-connected layer. The data

undergoes a filtering and activation detection step operated

through the one-dimensional convolution,

hl = σ(wl ∗ hl−1 + bl), (8)

where hl and hl−1 are feature maps of two consecutive layers,

wl is a trained kernel, bl is a bias parameter, σ(·) is the activa-

tion function, and * denotes convolution. The rectified linear

unit (ReLU), computed by the function f(x) = max(0, x)
[35], is a common operation for generating the output of the

convolutional layer. The bias guarantees that every node has a

trainable constant value. The kernels are computed through

an optimization method, which minimizes a loss function

measuring the discrepancy between the CNN prediction and

the target. We use in this work the Adam optimizer [36].

The loss function for classification is the cross entropy and

for regression is the half-mean-squared-error. To speed up

the training of CNNs and reduce the sensitivity to network

initialization, the batch normalization is used to normalize

the data across a mini-batch, back-propagating the gradients

through the normalization parameters [37].

The output of the convolutional layers is then used as the

input of the fully connected layer, in which each neuron

is connected to all neurons of the previous layer. A fully

connected layer multiplies the input by a weight matrix and

then adds a bias vector

hl = σ(Wlhl−1 + bl). (9)



Fig. 1. Information flow of the system: a one-dimensional CNN is used to map the raw waveforms from the two channels to the speaker identification and
the DOA of the source.
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Fig. 2. The architecture of the proposed residual CNN.

III. SPEAKER IDENTIFICATION AND LOCALIZATION

Since a speech signal can vary in temporal length, we

propose a network scheme to handle variable-length signals.

Specifically, we design the CNN input using a short signal

frame of length L. Using this short-frame analysis setting,

the network results suitable to analyze speech segments. A

short frame setting is also more advantageous for the network

to identify the differences between the two channels of each

frame and to estimate the DOA. The speaker identification

and localization based on the raw waveform CNN acoustic

model is computed using a signal segment composed of B

frames of length L. The sequence of input vectors is x(t+bR),
b = 0, 1, . . . , B − 1, where R is the overlap step. Each input

vector x(t+ bR) of size 2L is processed by the CNN, which

estimates B identification prediction values and DOAs. From

B outputs, we have that o(t+ bR) = [pn(t+ bR), θ(t+ bR)],
where pn(t+ bR) and θ(t+ bR) are the prediction outputs at

time t+ bR for the identification and the DOA respectively.

The speaker identification is calculated as

n̂ = argmax
n

[

B−1
∑

b=0

pn(t+ bR)
]

, (10)

i.e., the output index providing the maximum sum prediction

value over B frames is returned as the identified speaker index.

The speaker localization is calculated by averaging the DOA

results over the B frames. Outliers are removed in the average

processing using the Chauvenet’s criterion [38]. We assume

that the source position is stationary in the B frames. The

DOA estimation can be written as

θ̂ =
∑

b

θcc(t+ bR)

Bcc

, (11)

where Bcc is the number of elements that are accepted from

the Chauvenet’s criterion, which is

θcc(t+ bR) =
{

θ(t+ bR) : erfc(η) ≥
1

2B

}

, (12)



where erfc(·) is the complementary error function, and

η =
|θ(t+ bR)− µ|

σ
, (13)

with

µ =

B−1
∑

b=0

θ(t+ bR)

B
, (14)

σ =

√

∑B−1

b=0
(θ(t+ bR)− µ)2

B
. (15)

The information flow of the raw waveform CNN acoustic

model designed for speaker identification and localization

using a two-microphone array is summarized in Figure 1.

IV. PROPOSED CNN ARCHITECTURE

In this section, the architecture of the proposed CNN will

be described in detail. The network is based on a deep residual

learning model [39]. Residual models are implemented with

double-layer skips that contain nonlinearities (ReLU) and

batch normalization in between. We carefully tune the kernel

size and the number of filters of the convolutional layers to

obtain an optimal performance. The CNN is composed of

an initial convolution layer and of 5 residual modules. Each

kernel of the convolutional layers has dimension 1× 16. Zero

padding is used to obtain equal size of the input and output.

The reduction of the feature size is achieved in each residual

module by using a stride of 2 in the first convolutional layer.

In the first residual module, the number of filters is 32, and

it is doubled for each subsequent residual module. The multi-

output consists of a classification output, a branch with a fully

connected operation of size N (the number of speakers) and

a softmax operation, and a regression output, a branch with

a fully connected operation of size 1 (the DOA response).

Specifically, we consider N = 23 speakers (12 females, 11

males) in this study.

We use here a length frame L of 1024 samples (64 ms) with

a sampling rate of 16 kHz, resulting in a raw waveform input

vector for the CNN of 2048 samples. The size of convolutional

kernel is the same for all layers. This setting allows the

increasing of the filter resolution at each consequentially

residual module due to the downsampling operated by using

a stride of 2 in the first convolutional layer of each residual

module. The size of the feature maps is hence 64 samples with

512 filters. Figure 2 shows the architecture of the proposed

residual CNN.

V. SIMULATIONS

The speaker identification and localization performance

is illustrated through a set of simulated experiments. The

simulations in noisy conditions were conducted with different

signal-to-noise ratio (SNR) levels, obtained by adding mu-

tually independent white Gaussian noise. The experiments in

reverberant conditions was simulated with an improved image-

source model [40]. The source speech signals used to generate

noisy and reverberant speech were taken from the TSP speech

database [41]. The TSP speech database consists of 1378

TABLE I
THE IDENTIFICATION PERFORMANCE IA (%) IN NOISY CONDITIONS.

SNR (dB) 30 20 10 0

Proposed 99.74 99,14 98.46 85.25
MFCC-CNN 71.72 68.38 60.93 40.36

TABLE II
THE LOCALIZATION PERFORMANCE RMSE (DEGREE) IN NOISY

CONDITIONS.

SNR (dB) 30 20 10 0

Proposed 3.28 3.32 4.17 5.53
GCC-PHAT 3.13 3.22 3.29 4.27

utterances spoken by 23 speakers (12 females, 11 males). Each

utterance has a length of about 2 s. The speech was recorded

in an acoustic anechoic room. The dataset partitioning is a

70-30 split of the number of segments in training and test

subsets. The training and the test subsets consist of 889 and

389 utterances, respectively. The performance was computed

for each utterance with an overlap step of R = 512 samples.

The number of blocks B for the test subset was in the range

[52, 103]. Each input segment of length 2L = 2048 samples

was normalized (peak normalization) before passing to the

CNN.

The model learning was conducted on the training subset

simulating different DOAs with a spatial resolution of 1 degree

in the range [-90, 90] degrees. The speaker positions were

simulated with a distance of 1 m from the center of the array.

For each utterance a random SNR in the range [0, 30] dB

and a random reverberation time (RT60) in the range [0, 0.7]

s were computed. The reverberation was computed with a

simulated room of 5 m × 4 m × 3 m. The positions of the

microphones were (0.5, 2.1, 1.3) m and (0.5, 1.9, 1.3) m. The

distance between microphones was d = 0.2 m. The training

of the CNN was computed through the Adam method. The

learning rate was set to 0.001, the gradient decay factor to

0.9, and the squared gradient decay factor to 0.999. The mini-

batch size was set to 512, and the number of epochs to 100.

We compared the performance of the speaker identification

and localization based on the proposed CNN with the speaker

identification based on the mel-frequency cepstral coefficient

(MFCC) CNN [42] using a single microphone and with the

DOA estimation based on the generalized cross-correlation

phase transform (GCC-PHAT) [4]. The MFCC-CNN was

trained with the same dataset. MFCCs vectors of length 21

were used as input (the zero-th order coefficient is excluded).

The MFCCs are calculated with a frame of 1024 samples and

they are normalized with zero mean and standard deviation

equal to 1. The GCC-PHAT was computed by averaging the

functions obtained in each frame and calculating the TDOA

and the DOA on the average GCC-PHAT. Performance is

reported in terms of the percentage of identification accuracy

(IA) and in terms of root mean square error (RMSE) for DOA

estimation.



TABLE III
THE IDENTIFICATION PERFORMANCE IA (%) IN REVERBERANT

CONDITIONS.

RT60 (s) 0.1 0.3 0.5 0.7

Proposed 94.86 89.66 88.60 87.80
MFCC-CNN 90.23 91.43 92.20 89.94

TABLE IV
THE LOCALIZATION PERFORMANCE RMSE (DEGREE) IN REVERBERANT

CONDITIONS.

RT60 (s) 0.1 0.3 0.5 0.7

Proposed 4.96 6.09 9.82 15.52
GCC-PHAT 3.95 4.67 6.96 12.12

First, a simulation in noisy conditions was conducted. The

RT60 was 0 (anechoic condition). Each utterance of the test

dataset was randomly positioned by considering a minimum

distance from the wall of 0.5 m and a minimum and a

maximum distance between source and the center of the array

of 0.5 and 3 m, respectively. Tables I and II report the results

at variation of the SNR level. Looking at the identification

results (Table I), we can observe that the robustness to noise

of the proposed method is superior if compared to the single-

channel MFCC-CNN, and that the performance degrades when

the SNR level decreases. On the other hand, the localization

accuracy of the proposed method is good and it is comparable

to that of the GCC-PHAT, although the GCC-PHAT is slightly

more accurate at low SNRs.

Next, an evaluation in reverberant conditions was per-

formed. The SNR was 30 dB. Tables III and IV show the

IA performance and RMSE localization, respectively. In low

reverberation condition (RT60=0.1 s), the proposed method has

a slightly better IA performance when compared to the MFCC-

CNN (Table III). However, when the reverberation time in-

creases, the proposed method performance degrades resulting

more sensitive to the effect of the multi-path propagation and

to the relative position between source and microphones. The

MFCC-CNN IA instead tends to increase for a RT60 of 0.3 s

and 0.5 s. We can note that the MFCC-CNN performance

in reverberant conditions is higher when compared to the

results in Table I, due to the fact that most of the samples

of the training dataset are corrupted by reverberation. The

localization performance of the proposed method is good,

but it tends to degrade at increasing of reverberation time in

comparison to the GCC-PHAT (Table IV).

Finally, the results in noisy and reverberation conditions

were reported in Table V. The SNR was 5 dB and RT60

was 0.4 s. The proposed two-microphone residual CNN model

is rather promising since it provides robustness to noise

and to reverberation. Future work includes the use of more

microphones for the DOA estimation in the entire 3D space.

TABLE V
THE IDENTIFICATION PERFORMANCE IA (%) AND THE LOCALIZATION

PERFORMANCE RMSE (DEGREE) IN NOISY AND REVERBERANT

CONDITIONS. THE SNR WAS 5 dB AND RT60 WAS 0.4 s.

IA (%) RMSE (degree)

Proposed MFCC-CNN Proposed GCC-PHAT

67.58 59.04 15.28 12.93

VI. CONCLUSIONS

We presented an end-to-end raw waveform CNN acoustic

model for joint identification and localization of a speaker. The

residual CNN architecture is designed to operate in a frame-

by-frame analysis to handle variable-length signals. We have

shown that the two-microphone proposed method provides

a good joint identification and localization performance in

adverse noisy and reverberant conditions.
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