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Abstract—Real-time surgical tool segmentation and tracking
based on convolutional neural networks (CNN) has gained
increasing interest in the field of mini-invasive surgery. In fact,
the application of this novel artificial vision technologies allows
both to reduce surgical risks and to increase patient safety.
Moreover, these types of models can be used both to track the
tools and detect markers or external artefacts in a real-time video
stream. Multiple object detection and instance segmentation can
be addressed efficiently by leveraging region-based CNN models.
Thus, this work provides a comparison among state-of-the-art
multi-backbone Mask R-CNNs to solve these tasks. Moreover,
we show that such models can serve as a basis for tracking
algorithms. The models were trained and tested with a data-set
of 4955 manually annotated images, validated by 3 experts in
the field. We tested 12 different combinations of CNN backbones
and training hyperparameters. The results show that it is possible
to employ a modern CNN to tackle the surgical tool detection
problem, with the best-performing Mask R-CNN configuration
achieving 87% Average Precision (AP) at Intersection over Union
(I0U) 0.5.

I. INTRODUCTION

Real-time surgical tool segmentation based on CNNs has
gained increasing interest in the field of mini-invasive surgery
(MIS). MIS is adopted to reduce patient pain and post-
operative complications. However, due to limited operating
space and insufficient feedback, the risk to cause damage
to surfaces and internal organs is concrete. For this reason,
considering the impressive results previously achieved with the
use of deep learning in various tasks in the biomedical field
[1]-[3], surgical tool detection and tracking based on CNN are
applied to provide an augmented perception to the surgeon,
thereby reducing surgical risks and preserving patient safety.
Therefore, real-time tool detection is an essential component
to avoid operative and post-operative complications [4]. First,
advanced computer vision approaches could be useful to detect
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external objects, such as surgical markers, and they can help
solving the problems of identifying and localizing artefacts
of different nature [5]-[12]. Second, hiding objects from the
background by segmenting multiple objects is an important
task in diagnostics and image-based investigations. In fact, if
the region of interest is partially occluded by the presence
of surgical instruments, it is possible to remove these tools
from the frames. For example, this is particularly useful in two
types of registration, which are volume-to-surface or surface-
to-surface alignment problems [13], and in 3D soft tissue
reconstruction tasks [14]. Third, the segmentation of multiple
objects could provide proximity measurements between the
left and right robotic tools or between them and the back-
ground, by predicting their overlap and possible collisions
[15]. To address these tasks, even if several CNN-based models
(e.g. U-Net [16]) have been adopted, as far as we know, a
comparative study on Mask R-CNN [17] models has never
been conducted in this area of medical imaging. While models
like U-Net perform semantic image segmentation, that is they
are able to segment foreground and to classify it into different
classes, the main advantage of employing Mask R-CNN-
like models relies in their ability to perform object instance
segmentation, that is identifying separate object instances of a
target class and predicting their segmentation mask separately;
so, while U-Net would only be able to detect pixels belonging
to the “surgical tools” class, Mask R-CNN is also able to
distinguish among different instances of such tools. In turn,
this can be useful as a basis to track each of the tools.

The main contribution of this work is a comparison among
different configurations of the state-of-the-art Mask R-CNN
detectors for recognizing and segmenting endoscopic surgical
tools. Moreover, we evaluate the robustness of these models
under challenging conditions, such as low-resolution videos.
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Fig. 1: Pipeline of the implemented system, which consist of two main parts: model training phase, and prediction phase.
The bounding boxes and masks output by the Mask R-CNN model were also used as input to a simple tracking algorithm to
evaluate the potential of implementing a full tracking pipeline using this model.

In particular, our work suggests that it is possible to train
a high-performance model for detection and segmentation of
surgical tools in endoscopic images, and that it can also serve
as a base for a tool tracking algorithm.

The organization of this paper is as follows. In Section II
the dataset collection, pre-processing and hand curated image
labelling procedures are described. Section III, after a descrip-
tion of the employed model, is divided into two sub-sections:
sub-section III-A discusses the training procedure, while sub-
section III-B describes the data augmentation procedure. In
Section IV the experimental results are discussed and a simple
tracking algorithm is presented to evaluate the potential of
using the model as a base for a tool tracking pipeline. Finally,
Section V sums up the results of this study and possible future
directions of research.

II. DATASET

To build our dataset, we obtained a total of 4198 selected
video frames with a resolution of 1920 x 1080 pixels, from
13 high-quality endoscopic/laparoscopic videos, plus an ad-
ditional 757 frames from a low-resolution video (384 x 192
pixels). In particular, some of them contain noise in the form of
superimposed written text or minimal graphical user interfaces.
We chose to keep those noisy frames, as they can be useful
to analyze if the models are able to generalize on unseen
conditions and unfiltered noisy frames.

The dataset is divided into three parts: 3195 images for
the training set and 290 images for the validation set were
extracted from different sections of the same videos. To further
test the generalization capabilities of the model, 713 frames
from an unseen video have also been extracted and used as
a test set. Finally, a low-resolution dataset (757 images) was
used as a second test set to evaluate the model robustness
to drastic changes in resolution. The images were manually
annotated by marking each visible tool with a binary mask
[18]-[20]. The annotation procedure was performed using
VIA (VGG Image Annotator) [21], [22], and validated by 3
experts in the field. Figure 2 shows the annotation process
of a single sample frame. The annotation process involved
manually drawing the polygons delimiting each of the tools
in every video frame. The class label “Tool” was assigned to

every polygon, which represented a foreground mask during
the training process. The rest of the image was considered
background.

(b) Foreground annotation sample.

Fig. 2: Manual annotation of a example sample from the
endoscopic dataset (2a) and its resulting annotated mask (2b).
The process was performed by using VIA (VGG Image
Annotator) [21].

III. MODELS AND METHODS

Since deep neural networks are the most effective tech-
niques currently available to solve object detection and in-
stance segmentation tasks [23]-[27], we chose to employ the
Mask R-CNN architecture [17] to detect and segment surgical
tools. The Mask R-CNN model is an evolution of Faster R-
CNN [28]. In addition to predicting the bounding boxes con-
taining each instance of the target class(es) and a confidence
score for each box, it can also compute a segmentation mask



for each object instance. The Mask R-CNN architecture can be
implemented using various backbone network structures, with
varying number of layers and complexity. For this study, we
chose to use three different backbone architectures: ResNet-
50, ResNet-101 and ResNet-152 [29], where 50, 101 and 152,
respectively, indicate the number of convolutional layers in the
network. More information about the ResNet backbones (such
as kernel and output sizes) can be found in the original ResNet
article [29].

A. Training procedure

For the training procedure, we exploited transfer learning
[30] by initializing the network with pre-trained weights that
were obtained on the COCO dataset [31]. The original clas-
sification head was replaced by a 2-class classification head
(background vs. surgical tools). To evaluate the best model
training procedure and backbone architecture, we trained the
models by varying different networks and hyperparameters:
i) the backbone network employed, ii) regularization parame-
ters, iii) number of epochs, iv) use of data augmentation. In
particular, as already mentioned, we used ResNet-50, ResNet-
101 and ResNet-152 as backbone networks. Training was
performed using Stochastic Gradient Descent (SGD) with
learning rate 0.001 and momentum 0.9. We tested two val-
ues for the L2-regularization parameter [32] (0.0001, weaker
regularization, and 0.001, stronger regularization) and for the
number of epochs (25 or 30) [33]. The different experimental
setting combinations are shown in Table II, where Exp is
the Experiment number, Bb is the number of layers of the
ResNet backbone, Reg is the regularization parameter, Ep is
the number of epochs, Aug is the number of augmented images
generated for each original training image (see Section III-B),
PC Spec is the hardware used for each training/test procedure
(see Section IV).

The model ability to generalize, the accuracy and perfor-
mance analyses are assessed on the validation set and tested
on the two test videos. The goodness of the model is evaluated
using the well-known Average Precision metric (AP), as it is
described in Section IV.

B. Data augmentation

The segmentation accuracy has been improved by applying
data augmentation [34], a well-known technique adopted in
real-world problems to improve models accuracy and reduce
overfitting to the training set by presenting variations of the
same image to the network during training. This helps the
model to generalize unseen images, thereby improving its
performance on external data [35]. In this work, the following
augmentation techniques have been applied: 1) rotation ii) scal-
ing iii) flipping iv) perspective changes and v) linear contrast
changes. More details about the augmentation parameters are
provided in Table I. The efficiency of data augmentation is
proved by training the models with different backbones both
with and without data augmentation. In Table II, a value
of Aug = 0 indicates the absence of data augmentation,
while a value of Aug = 2 means that the training was

performed by adding to the dataset 2 augmented images for
each original image in the training set, effectively growing
the number of training images from 3195 to 9585. Each
augmented image was generated by sequentially applying
the previously described augmentation techniques, randomly
selecting a value for each transformation parameter listed in
Table I. As we will see, in our endoscopic/laparoscopic image
dataset, data augmentation turns out to be relevant for an
improved detection and segmentation accuracy for our best
performing model.

TABLE I: Data augumentation parameters

Technique Details

Rotation 10° clockwise and counterclockwise
Scaling Range [0.8, 1.2]

Flipping Vertical and horizontal

Perspective change Range [0.01, 0.1]

Range [0.8, 1.2]

Linear contrast change

IV. EXPERIMENTS AND RESULTS

As explained in the previous section, a set of experiments
were performed using three versions of Mask R-CNN, trained
with different hyperparameters (see Table II). Furthermore, af-
ter the train and validation sets, two independent test sets were
used. The former has high-resolution images (1920 x 1080px),
but presents visual artefacts, specifically a navigation bar under
the images. The latter has no virtual artefacts (such as surgical
machine logos, medical notes, virtual markers) but is made of
low-resolution images (384 x 192px). This was done to test
the robustness and generalization capabilities of the trained
models.

TABLE II: Hyperparameter sets

Exp Bb Reg Ep Aug PC Spec
Train Val Test
1 101 L2 0.0001 25 0 1 1 2
2 101 L2 0.0001 25 2 1 1 2
3 101 L2 0.0001 30 2 1 1 2
4 101 L2 0.001 30 2 2 1 2
5 50 L2 0.0001 25 0 1 1 2
6 50 L2 0.0001 25 2 1 1 2
7 50 L2 0.0001 30 2 2 1 2
8 50 L2 0.001 30 2 2 1 2
9 152 L2 0.0001 25 0 2 1 2
10 152 L2 0.0001 25 2 1 1 2
11 152 L2 0.0001 30 2 2 2 2
12 152 L2 0.001 30 2 2 2




Fig. 3: Example of bad prediction (3a) and good prediction results (3b). The quality of the prediction is determined by the
type and conditions of the analyzed image and the quality of the trained model.

A. Implementation details

All the processes and experiments were developed in Python
3.7. The following packages are used to implement Mask R-
CNN and for image processing: OpenCV [36], MaskRCNN
[17], Tensorflow-GPU [37], Keras [38] and imgaug [39]. The
pycocotools package was used for evaluation [31].

All the experiments were performed on machines with two
different hardware configurations: 1) CPU Intel Core 17-8700,
16GB of Ram, GPU Nvidia GTX 1060 and 2) CPU Intel Core
17-8700, 16GB of Ram, GPU Nvidia GTX 1070. The PC
Spec column in table II specifies which machine was used
for each experiment. The training and inference times thus
varied among experiments, according to the backbone and PC
used. The fastest model was ResNet-50, as expected, given its
lower number of layers, with an inference time of around 0.4
seconds per image on the fastest machine, while the inference
time reached 0.6 second per image when using ResNet-152,
when using the 1920 x 1080 px dataset. While, this is still
not enough for real-time performance on high-quality video, it
shows encouraging results for its use in real-time applications
in the near future on more specialized hardware.

B. Metrics

To evaluate the performance of all the trained models, the
AP [40] was used, both for the bounding boxes and for the
masks, as it is common practice in the object detection and
instance segmentation tasks [17], [27], [41]. We followed the

COCO evaluation protocol and computed the AP at varying
levels of bounding box/mask overlap (IOU). In particular, for
each results table, we list six different metrics: AP is the
Average Precision at bounding box IOU threshold 0.50, while
APY is the AP at bounding box IOU threshold 0.75; AP
indicates the average AP computed at different IOU threshold
levels, from 0.5 to 0.95, increasing in steps of 0.05. AP%‘”’“,
APZsk and AP™?*F work similarly, but using mask IOU
instead of bounding box IOU, in order to evaluate the mask

network branch accuracy.

C. Results and discussion

The results of the analysis are shown in Table III for the
validation set, Table IV for the high-resolution test set, and
Table V for the low-resolution test set.

According to the presented results, on all considered
datasets, the Mask R-CNN with ResNet101 backbone obtained
the best performance in the segmentation of surgical tools in
endoscopic/laparoscopic images, reaching 92% AP on both
boxes and masks at IOU threshold 0.50 on the validation set,
and 87% on the high-resolution test set. The ResNet152 back-
bone also presented good performance on the high-resolution
test set, reaching 86% AP at IOU threshold 0.50 with both
boxes and masks. We also notice that the AP on boxes and
masks are usually highly correlated, showing that whenever
a box is correctly identified on a given tool, the mask is
also often correctly predicted. As expected, the AP is lower
at higher IOU threshold, but still relatively good, reaching,



TABLE III: RESULTS ON THE VALIDATION SET

Experiment | AP®® | APY | APBY | APmask | Apmask | Apmask
(DRNIOI | 063 | 090 | 072 | 058 0.90 0.70
() RNIOI | 0.68 | 092 | 0.80 | 0.64 0.92 0.79
()RNIOI | 052 | 067 | 061 | 048 0.67 0.58
(4)RNIOI | 046 | 058 | 053 | 042 0.58 0.51
(5) RN50 045 | 056 | 053 | 042 0.56 0.51
(6) RN50 042 | 053 | 049 | 039 0.52 0.48
(7) RN50 041 | 050 | 048 | 038 0.51 047
(8) RN50 040 | 049 | 047 | 037 0.49 0.45
(9) RNI52 | 039 | 049 | 046 | 037 0.48 045
(10)RNI52 | 039 | 048 | 046 | 036 0.48 0.44
(IHRN152 | 039 | 048 | 045 | 036 0.48 0.44
(12)RNI52 | 039 | 048 | 045 | 036 0.48 045

TABLE IV: RESULTS ON THE HIGH-RESOLUTION TEST
SET

Experiment | AP®® | AP | APR2 | Apmask | Apmask | Apmask
()RNIOI | 057 | 086 | 071 | 055 0.85 0.68
(2)RN101 | 059 | 087 | 076 | 057 0.87 0.70
(3)RNIOL | 050 | 071 | 0.64 | 046 0.71 0.57
(4)RNIO1 | 043 | 059 | 054 | 039 0.59 0.49
(5) RN50 040 | 056 | 050 | 037 0.55 045
(6) RN50 035 | 052 | 043 | 034 0.52 042
(7) RN50 037 | 054 | 045 | 036 0.55 045
(8) RN50 033 | 047 | 039 | 032 0.48 0.39
(9 RN152 | 056 | 086 | 0.67 | 052 0.86 0.65
(10)RN152 | 058 | 085 | 073 | 052 0.85 0.64
(1) RN152 | 048 | 066 | 058 | 043 0.65 0.55
(12)RN152 | 045 | 061 | 056 | 040 0.60 0.52

TABLE V: RESULTS ON THE LOW-RESOLUTION TEST
SET

Experiment | AP® | APY | APR2 | Apmask | ppmask | ppmask
()RNIOL | 0.18 | 040 | 0.10 | 0.09 0.28 0.04
(2)RN101 | 026 | 049 | 025 | 024 0.47 0.22
(3)RN101 | 024 | 042 | 026 | 021 0.39 0.21
(4)RNIOL | 022 | 039 | 024 | 020 0.37 0.20
(5) RN50 022 | 039 | 025 | 020 0.37 0.20
(6) RN50 022 | 039 | 024 | 020 0.37 0.20
(7) RN50 022 | 038 | 023 | 020 0.37 0.20
(8) RN50 021 | 038 | 023 | 020 0.37 0.21
(9 RNI52 | 021 | 038 | 022 | 020 0.37 0.20
(10) RN152 | 021 | 037 | 022 | 020 0.36 0.20
(IDRNI52 | 021 | 036 | 024 | 0.19 0.35 0.19
(12)RNI52 | 021 | 035 | 024 | 0.19 0.34 0.19

when the IOU overlap threshold is set to 0.75, 80% and 76%
on boxes on validation and high-res test sets respectively, and
79% and 70% on masks.

Despite presenting visual artefacts, the results on the high-
res test set show that Mask R-CNN is able to generalize well
and excludes those artefacts from the segmentation. At the
same time, the performance on the low-res test set degraded
for all the models, with the highest AP2} being 49%, and the
highest API%* reaching 47%. While those scores are worse
on the other datasets, they are still acceptable and show once
again that the network trained in experiment 2 did not overfit
the training set.

In general, we found that the quality of the prediction varies
depending on the scene, quality of the image, position of
the tools (e.g. tool occlusions), getting the worst results in
situations that were not present in the training set, such as
crossing tools or when an organ or tissue in the image has
a similar color and shape as a tool. In figure 3, examples of
good and bad predictions are shown. The most common errors
include predicting wrong elements as tools, and the prediction
of overlapped tools.

(b)

Fig. 4: Mask R-CNN prediction examples vs ground truth.
True Positives: cyan, False Positives: magenta, False Neg-
atives: yellow, True Negatives: green. Image 4a shows the
output from the model trained in experiment number 2 (best
performance), while image 4b shows the output from model
number 11 (worst performance on validation set).

In Figure 4 it is possible to observe the slight difference
between the mask predictions and the ground truth on the
same image for two different models. True/false positives and
true/false negatives are highlighted in the image.

Regarding data augmentation, by comparing the results of
experiments 1-2, 5-6 and 9-10 we can see that the ResNet101-



based model shows an improvement on all datasets using
a training dataset with augmented images, highlighting the
importance of this technique. The other models did not benefit
from data augmentation. By comparing experiments 3-4, 7-8
and 11-12, we can also see that all the models seem to prefer
a weaker L2 regularization parameter of 0.0001.
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Fig. 5: The pipeline to track the tools in consecutive frames
is shown here. The process is performed by computing the
similarity among the binary masks of the tools and with
between-frames positional center similarities. In a) the Eu-
clidean distances between the bounding box centers are com-
puted. Then in b) a test with the Structural similarity index
(SSIM) between the masks of the tools is computed. If the
test is not passed, the tool is then compared to the last 5
saved tools (c), like in a) and b). The tools are considered the
same and are visualized with the same colors if and only if
the Euclidean distance between the centers is below a certain
threshold (150 px in our case) and the SSIM is greater than
or equal to a second threshold (0.95 in our example). When a
new tool is found, it is buffered to the saved pool of tools.

D. Segmentation qualitative analysis as a base for tracking
methods

In order to evaluate the possibility of employing the seg-
mentation output as a basis for surgical tool tracking, a
basic tracking algorithm is implemented. Since annotations

for the tracking task are not currently available, a qualitative
analysis is performed by experts on the output of the tracking
algorithm. The implemented tracking procedure is based on a
two-phase comparison: i) evaluation of the proximity of the
bounding boxes, ii) the computation of the structural similarity
index (SSIM) [42] between the two frame-adjacent masks. The
between-frames bounding box proximity is computed between
adjacent frames and it is a necessary condition for applying
segmentation-based tool similarity comparisons.

In particular, for each tool in a new frame, a comparison
is made with the tools detected in the previous frame. If the
Euclidean distance between the centers of the bounding boxes
is less than a certain threshold (empirically fixed to 150 pixels
in the high-resolution image case) on both axes, the selected
boxes’ masks are compared with SSIM against a specific
threshold. In our case, the bounding boxes are considered to
outline the same segmented tool only if SSIM (my,ms) >
0.95, with m, and mgy being the two compared masks. If the
tool is not found in the previous frame, it is compared to a
pool of previously encountered tools, in order to recover the
identity of tools that have disappeared in the previous frames
(or that have not been detected by the Mask R-CNN). The two
previously-described comparisons are then repeated using the
previously saved bounding boxes and masks to try to find a
match. If a match is not found, the tool is considered a new
tool and is added to the pool of saved tools. We decided to
limit the size of the pool to 5. Both the Euclidean distance
threshold and the SSIM threshold were chosen empirically.
The choice of using the SSIM was inspired by recent works
that employed it in other segmentation tasks [43] and by its use
in some tracking algorithms [44]. The SSIM was computed
using the function compare_ssim, available in the skimage
Python package.

In short, the tracking algorithm recognizes the shape of
similar segmented tools that are close in space in adjacent
frames and assigns the same identity to such tools. In Figure
6 a sequence of surgical tools is segmented and tracked
by applying this methodology. A different color is used to
distinguish the different tools. In this specific scene, four
different tools are show up at a different time in the sequence.
The identities of the masks have been observed along the
whole sequences by three experts and the tracking output was
judged to be of good quality. A quantitative tracking evaluation
is planned to be performed in the future.

V. CONCLUSION

We have proposed the use of Mask R-CNN to detect and
segment surgical tools into endoscopic/laparoscopic images.
We trained and evaluated Mask R-CNN with different back-
bone structures (ResNet50, ResNet101 and ResNet152) along
with different data augmentation techniques and hyperparam-
eter tuning. After evaluation, the proposed approach shows
good potential for use in endoscopic surgical tools detection
and segmentation, as well as being a solid base for the
implementation of a tracking algorithm. The best results on our
dataset were obtained training the network with a ResNet101
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Fig. 6: Example of results of the tracking algorithm, each tool is recognized and segmented using a specific color. From figure
6a to figure 6d two objects are recognized (in gray and purple), the same objects are correctly recognized in frame 6f and 6h.
In figure 6e and 6g. two equal tools are alternated with the previous tools and different colors (black and green) are assigned.

backbone for 25 epochs. Moreover, we showed that the trained
model was robust to image artefacts and could still work
reasonably well on low-resolution images. However, the model
still presented some limitations and failure cases, opening
the way to possible future improvements, such as the use of
a bigger and richer training dataset. A quantitative tracking
evaluation, along with more complex tracking algorithms,
should also be explored in future research.
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