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Abstract—Rigorous mathematical investigation of learning
rates used in back-propagation in shallow neural networks has
become a necessity. This is because experimental evidence needs
to be endorsed by a theoretical background. Such theory may
be helpful in reducing the volume of experimental effort to
accomplish desired results. We leveraged the functional property
of Mean Square Error, which is Lipschitz continuous to compute
learning rate in shallow neural networks. We claim that our
approach reduces tuning efforts, especially when a significant
corpus of data has to be handled. We achieve remarkable
improvement in saving computational cost while surpassing
prediction accuracy reported in literature. The learning rate,
proposed here, is the inverse of the Lipschitz constant. The
work results in a novel method for carrying out gene expression
inference on large microarray data sets with a shallow architec-
ture constrained by limited computing resources. A combination
of random sub-sampling of the dataset, an adaptive Lipschitz
constant inspired learning rate and a new activation function,
A-ReLU helped accomplish the results reported in the paper.

Index Terms—Lipschitz Constant, Adapative Learning, mi-
croarray expression data, A-Relu, Mean Square Loss, Mean
Absolute Error.

I. INTRODUCTION

Gene expression patterns are studied by microbiologists
extensively to determine the genetic behaviour of cells. This
is conventionally done via gene expression profiling, which
is used to obtain and examine cell behaviour patterns in
various scenarios such as drug treatment and disease. The
CMap (connectivity Map) project was launched with the intent
of creating a reference collection of patterns [1]. There are
approximately 22,000 genes across the entire human genome.
However, it has been discovered that most of them are highly
correlated. Accordingly, regulatory and target genes have been

identified. Researchers from the LINCS program, analyzing
the CMap data found that around 80% of the data can
be captured using a set of 1000 carefully selected genes.
This inspired the development of the L1000 Luminex bead
technology, which is able to measure the expression profiles
of these approximately 1000 genes, called landmark genes at
a significantly lower cost [2]. Using this data, the expression
profiles of the other roughly 21,000 “target genes” can be
inferred computationally. This computational inference is,
however, challenging. Several techniques have been employed
in the past for similar problems, such as Linear regression
used by the LINCS researchers [3] and Kernel machines [4].

In recent years, due to the rapid growth of deep learning
and neural networks, there have been several attempts to apply
deep learning approaches to this problem. A recent significant
work is D-GEX, a multi-task, multi-layer feedforward neural
network, employing deep learning techniques such as dropout
and momentum [5]. The authors compared the performance
of this model to other machine learning methods such as
k-NN regression and linear regression and show that deep
learning achieves more accurate target gene predictions for
gene expression. The best results of this model were obtained
when an overwhelming 27,000 neurons were used across three
hidden layers.

In contrast, we present a neural network that uses a substan-
tially smaller number of neurons in a single hidden layer. It
is reasonable to believe that the reduction in computing units
will limit the representational power of the network. In order
to counter this limitation, we employ an adaptive learning rate
based on the Lipschitz constant and an activation function(A-
ReLU) [6] that is more suitable for the given task. Drawing

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



inspiration from the D-GEX paper, we utilize the microarray
expression data from the GEO [7] project.

A. Motivation & Contribution
A gene expression profile consists of thousands of genes.

Even a set of landmark genes consists of several hundreds.
While deep learning architectures with several thousands of
neurons are able to satisfactorily solve such problems, they
are computationally intensive and prohibitively expensive. The
authors of D-GEX [5] used an NVIDIA GTX TITAN Z
Graphics card with dual GPUs to train. Such computing
infrastructure is scarce and orthogonal to the philosophy of
Parsimonious Computing, propagated in our work. Our goal
is to show that a much smaller neural architecture can be
used for the same task without suffering from unacceptable
prediction error and can be trained with much smaller com-
puting infrastructure requirements. The following theoretical
contributions help in solving the gene inference problem
with minimal computing infrastructure, called Parsimonious
Computing model proposed in our work.

a) Lipschitz constant adaptive learning rate
The magnitude of the learning rate plays a huge role in
determining the time a neural network will take to converge.
Too small a learning rate results in a very small rate of
convergence and possible premature convergence at a local
minima, while a learning rate which is too large may not
be able to converge at all. To counter this, adaptive learning
rate schedulers have been proposed, so that the learning rate
is adequately large when away from the global minima, and
appropriately small when the network is close to it. Here we
propose a learning rate scheduler which is calculated from the
following formula:

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
1

m
(Ka + ‖y‖)Kz (1)

where,
• Ka denotes the maximum of the activation in the final

layer of the network
• Kz denotes the maximum of the activation in the penul-

timate layer
• y denotes the target values
• m is the number of training examples
b) A-ReLU as an activation function

The original D-GEX network utilizes tanh as an activation
function. Though quite effective, activation functions such as
tanh and sigmoid suffer from the vanishing gradient problem
as the gradient is squashed between a small range of values.
ReLU overcomes this issue by providing a constant gradient
value for all inputs. However, ReLU has issues of its own,
as it is non-differential at 0. In this work, we use A-ReLU
as an activation function, a relatively new activation function
defined by the equation{

kxn x ≥ 0

0 x < 0

We show experimentally that it performs better than other
classical activation functions in this regression task. We claim
to have established the following major items.
• Detailed proof of Lipschitz Adaptive Learning Rate

(LALR) for Mean Square Loss (MSE) in training a
shallow neural network.

• A novel activation function, A-ReLU to demonstrate
better performance compared to established activation
units

• Propose Parsimonious Computing, a philosophy that ad-
vocates practice of frugality in computing resources, by
leveraging deep mathematical insights; in particular, a
combination of the above two items.

• Provide empirical evidence that the effect of Lipschitz
learning is equivalent to dropping one hidden layer of
9000 neurons in the deep learning architecture used in the
base paper [5], while maintaining comparable prediction
accuracy. In other words, a shallow network of 2 hidden
layers of 9000 neurons, powered by Parsimonious Com-
puting model matches the performance of a deep neural
net with 3 hidden layers of 9000 neurons, twice as large
as our shallow neural network. Table I provides evidence
in support of this claim.

II. LITERATURE SURVEY

The field of micro-array bioinformatics has witnessed
tremendous growth with a large focus on gene expression
profiling. Gene expression profiling was used to identify bio-
markers for Parkinson’s disease in [8]. Molecular information
obtained from Micro-Array data is leveraged to predict if
a tumour is cancerous or not in a supervised setting. The
same information is used to discover new types of tumours in
an unsupervised setting in [9]. A comprehensive comparison
of applying different machine learning techniques like SVM,
RBF multi-layer perceptron, Random Forest etc. and feature
selection methods like chi-squared and CSF for classification
on micro-array gene expression data was given in [10]. Cor-
relation between gene profiles is exploited by gene regulatory
networks [11] to identify landmark and target genes. This
paved the way for research in building computational inference
models to predict target gene profiles using landmark genes. A
computational model based on linear regression was proposed
by [3], but was not complex enough to capture intrinsic
non-linearity present within micro-array data. The number of
independent regulatory modules between the landmark and
target genes are inferred from the rank of their connectivity
matrix and then is used as a low rank regularisation constraint
to formulate gene expression inference as a multi-target linear
regression problem in [4]. Recent emergence of deep learning
methods has led to its application as a diagnostic tool for gene
expression analysis. DeepCC [12], a deep learning framework
for cancer molecular sub-type classification, outperforms all
traditional machine learning methods on 13 independent data
sets based on Affymetrix platforms. A 3 layer feed-forward
neural network named D-GEX is used to predict gene expres-
sion values of target genes in [5]. This method outperforms all



previous methods by a large margin and is used as a baseline
for our work.

A fundamental problem faced by neural networks is that
of finding optimal values for its learning rate. Recent works
agree that a non-monotonic learning rate scheduling system
would offer faster convergence [13], [14]. Of late, there has
been some development in finding novel ways to adaptively
change the learning rate of a neural network. The results have
theoretical, intuitive and empirical support and rely on non-
monotonic scheduling of the learning rate. The method we use
here, also yields a non-monotonic learning rate, but does not
follow any predefined shape. Contrary to the trend of using
deeper neural networks for regressing gene expression values,
we exploit wider shallow neural networks. We claim these are
as effective as their deep counterparts with the added benefit of
cheap training due to the reduction in number of parameters.

The remainder of the paper is organized in the following
manner: Section III describes data and and its handling by
constrained computing resources. This is followed by Parsimo-
nious Computing in section IV, the motivation behind tackling
such a corpus of data in a cost effective way. Section IV, thus,
describes the methods which help accomplish Parsimonious
Computing goals, in other words make cheap training a
feasible option. Section V discusses experimental settings and
interventions, followed by detailed results in section VI.

III. DATASETS

GEO (Gene Expression Omnibus) is a public functional
genomics data repository from which The Broad Institute
produced the GEO expression data. The data set consists of
129,158 gene expression profiles or samples obtained from
the Affymetrix microarray platform. Each profile is associated
with 22,268 gene probes, Out of which 978 are landmark genes
and the remaining 21,290 are target genes whose values are to
be predicted. Authors in the base paper [5] processed the data
into a simpler and easier to handle format, by implementing
first quantile normalization of the data into a numerical range
between 4 and 15, followed by removing any duplicates. The
final, ready-to-use data has 111,009 profiles.

The GEO dataset is enormous, with just the training data
consuming more than 3GB of space. Given that all training
was carried out using a single GPU with 4GB ram, we used
random subsampling along with the 50:50 split employed by
the D-GEX authors [5].

In order to represent the entire GEO-tr dataset appropriately
while ensuring that the computing infrastructure utilized can
handle the scale of data used, the network is trained on six
random sub-samples of the data set, each containing 20,000
data points or slightly less than 1/5th of it. A representative
MAE was obtained by averaging the MAE obtained across
each individual subsample. This average is considered so that
any disparity among sub-samples could be taken into account.

IV. PARSIMONIOUS COMPUTING: OUR CONTRIBUTION IN
CHEAP TRAINING

In this section we discuss the methods used in our model
that enable us to achieve results very close to those reported by

the D-GEX method [5] but without requiring the same amount
of compute power. All experiments were carried out on a
laptop with an Intel i5 processor and an NVIDIA GTX-1050Ti
graphics card. The GPU utilized has 4GB RAM associated
with it.

A. Lipschitz Adaptive Learning Rate

Recently, there has been a lot of work on finding novel
ways to adaptively change the learning rate. These have both
theoretical [15] and intuitive, empirical [13], [14] backing.
These works rely on non-monotonic scheduling of the learning
rate. Authors in [13] argue for cyclical learning rates. Our
proposed method also yields a non-monotonic learning rate,
but does not follow any predefined shape. we propose a novel
theoretical framework to compute large, adaptive learning
rates for use in gradient-based optimization algorithms. We
start with a presentation of the theoretical framework and
the motivation behind it, and then derive the mathematical
formulas to compute the learning rate on each epoch.

Our results show that, compared to standard choices of
learning rates, our approach converges quicker and achieves
better results. Our approach exploits functional properties of
the loss function, and only makes two minimal assumptions
on the loss function: it must be Lipschitz continuous [16] and
(at least) once differentiable. Commonly used loss functions
satisfy both these properties. We argue that the use of Lipschitz
constants to determine learning rate greatly improves conver-
gence in comparison with standard learning rate choices. We
present empirical evidence of our claims in the results section.
This is a departure from the approach of manually tuning
learning rates.

1) Theoretical Framework: For a function, the Lipschitz
constant is the least positive constant L such that

‖f(w1)− f(w2)‖ ≤ L ‖w1 − w2‖ (2)

for all w1, w2 in the domain of f . From the mean-value
theorem for scalar fields, for any w1,w2, there exists v such
that

‖f(w1)− f(w2)‖ = ‖∇wf(v)‖‖w1 − w2‖
≤ sup

v
‖∇wf(v)‖‖w1 − w2‖

Thus, sup
v
‖∇wf(v)‖ is such an L. Since L is the least such

constant,

L ≤ sup
v
‖∇wf(v)‖ (3)

In this paper, we use max‖∇wf‖ to derive the Lipschitz
constants. Our approach makes the minimal assumption that
the functions are Lipschitz continuous and differentiable up to
first order only 1. Because the gradient of these loss functions

1Note this is a weaker condition than assuming the gradient of the
function being Lipschitz continuous. We exploit merely the boundedness of
the gradient.



is used in gradient descent, these conditions are guaranteed to
be satisfied.

By setting α = 1
L , we have ∆w ≤ 1, constraining

the change in the weights. We stress here that we are not
computing the Lipschitz constants of the gradients of the
loss functions, but of the losses themselves. Therefore, our
approach merely assumes the loss is L-Lipschitz, and not
β-smooth. We argue that the boundedness of the effective
weight changes makes it optimal to set the learning rate to the
reciprocal of the Lipschitz constant. This claim, while rather
bold, is supported by our experimental results.

2) Significance of Lipschitz constant (LC): The Lipschitz
constant (LC) has found a variety of uses in computing
and applications. The central condition to the existence and
uniqueness of solutions to first order system of differential
equations of the form y′(t) = f(t, y(t) is LC of f . The
existence of LC guarantees contraction and eventually a fixed
point i.e. solution to the above system [17] and saves the
trouble of computing an analytical solution to the system
above. Finding an LC is equivalent to to the fact that the
function, f possesses Lipschitz continuity. Given, f : R −→ R,
there exists an L such that

‖f(x)− f(y)‖ ≤ L ‖x− y‖

Consequently,
‖f(x)− f(y)‖
‖x− y‖

≤ L

This is equivalent to stating that computing a LC of a function
(loss function, in our case) is identical to computing the
maximum of the derivative of f , via the Mean Value theorem.
For loss functions which are differentiable, we can easily
compute LCs and therefore find the bound on the derivatives
to be used in deep neural network training. Mean Square Loss
(MSE) satisfy the conditions of differentiability and hence
Lipschitz continuity. We compute the LC of MSE enabling
us to arrive at adaptive learning rate formulation, Lipschitz
Adaptive Learning rate (LALR).

3) Deriving the Lipschitz constant for neural networks:
For a neural network that uses the sigmoid, (or A-ReLU), or
softmax activations, it is easily shown that the gradients get
smaller towards the earlier layers in backpropagation. Because
of this, the gradients at the last layer are the maximum among
all the gradients computed during backpropagation. If w[l]

ij is
the weight from node i to node j at layer l, and if L is the
number of layers, then

max
h,k

∥∥∥∥∥ ∂E

∂w
[L]
hk

∥∥∥∥∥ ≥
∥∥∥∥∥ ∂E

∂w
[l]
ij

∥∥∥∥∥∀ l, i, j (4)

4) Least-squares cost function: For the least squares cost
function, we will compute the Lipschitz constant for linear
regression where the output is continuous. We will then prove
the equivalence of the general result with regression in neural
networks and derive the former as a special case of the latter.

5) Linear regression: We have,

g(w) =
1

2m

m∑
i=1

(
x(i)w− y(i)

)2
Thus,

g(w)− g(v) =
1

2m

m∑
i=1

(
x(i)w− y(i)

)2
−
(

x(i)v− y(i)
)2

=
1

2m

m∑
i=1

(
x(i)(w + v)− 2y(i)

)(
x(i)(w− v)

)
=

1

2m

m∑
i=1

(
(w + v)T x(i)T − 2y(i)

)(
x(i)(w− v)

)
=

1

2m

m∑
i=1

(
(w + v)T x(i)T x(i) − 2y(i)x(i)

)
(w− v)

The penultimate step is obtained by observing that (w +
v)T x(i)T is a real number, whose transpose is itself.

At this point, we take the norm on both sides, and then
assume that w and v are bounded such that ‖w‖ , ‖v‖ ≤ K.
Taking norm on both sides,

‖g(w)− g(v)‖
‖w− v‖

≤ K

m

∥∥XTX
∥∥+

1

m

∥∥yTX
∥∥

We are forced to use separate norms because the matrix
subtraction 2KXTX− 2yTX cannot be performed. The RHS
here is the Lipschitz constant. Note that the Lipschitz constant
changes if the cost function is considered with a factor other
than 1

2m .
6) Regression with neural networks: Let the loss be given

by

E(a[L]) =
1

2m

(
a[L] − y

)2
(5)

where the vectors contain the values for each training example.
Then we have,

E(b[L])− E(a[L]) =
1

2m

((
b[L] − y

)2
−
(

a[L] − y
)2)

=
1

2m

(
b[L] + a[L] − 2y

)(
b[L] − a[L]

)
This gives us,

‖E(b[L])− E(a[L])‖
‖b[L] − a[L]‖

=
1

2m
‖b[L] + a[L] − 2y‖

≤ 1

m
(Ka + ‖y‖) (6)

where Ka is the upper bound of ‖a‖ and ‖b‖. A reasonable
choice of norm is the 2-norm.

By equation (13) (please see the subsection below, Equiva-
lence of the constants), the second term on the right side of the
equation is the derivative of the activation with respect to its
parameter. Notice that if the activation is sigmoid or softmax,
then it is necessarily less than 1; if it is ReLU type, it is either
0 or 1. Therefore, to find the maximum, we assume that the



network is comprised solely of ReLU type activations, and the
maximum of this is 1.

From (13) and ’equivalence of constants’ calculations, we
obtain

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
1

m
(Ka + ‖y‖)Kz (7)

The Learning Rate to be used is hence a reciprocal of this
calculated value. For example, in one of our experiments, after
initialization, the values of the constants turned out to be the
following:
Kz = 983.88; Ka = 142.86 & y = 4329.24. Substituting these
values in the equation and scaling down by multiplying by a
factor of 0.3, we arrive at a learning rate of approximately
1.36×10−4. The scale-down factor is intuitive and considered
”on-the-fly” to mitigate a likely exploding gradient problem by
A-ReLU.

7) Equivalence of the constants: The equivalence of the
above two formulas is easy to see by understanding the terms
of (7). Let us define

Kz = max
j

∥∥∥a[L−1]j

∥∥∥ (8)

In any layer, we have the computations

z[l] = W [l]Ta[l−1] + b[l] (9)

a[l] = g(z[l]) (10)

a[0] = X (11)

Thus, the gradient with respect to any weight in the last layer
is computed via the chain rule as follows.

∂E

∂w
[L]
ij

=
∂E

∂a
[L]
j

·
∂a

[L]
j

∂z
[L]
j

·
∂z

[L]
j

∂w
[L]
ij

=
∂E

∂a
[L]
j

·
∂a

[L]
j

∂z
[L]
j

· a[L−1]i (12)

This gives us

max
i,j

∣∣∣∣∣ ∂E∂w
[L]
ij

∣∣∣∣∣ ≤ max
j

∣∣∣∣∣ ∂E∂a
[L]
j

∣∣∣∣∣ ·max
j

∣∣∣∣∣∂a
[L]
j

∂z
[L]
j

∣∣∣∣∣ ·max
j

∣∣∣a[L−1]j

∣∣∣ (13)

Because a linear regression model can be thought of as a neural
network with no hidden layers and a linear activation, and from
(11), we have,

a[L−1] = a0 = X

and therefore

Kz = max
j

∥∥∥a[L−1]j

∥∥∥ = ‖X‖ (14)

Next, observe that Ka is the upper bound of the final layer
activations. For a linear regression model, we have the “acti-
vations” as the outputs: ŷ = WTX. Using the assumption that
‖W‖ has an upper bound K, we obtain

Ka = max
∥∥∥a[L]

∥∥∥ = max
∥∥WTX

∥∥ = max‖W‖·‖X‖ = K‖X‖
(15)

Substituting (14) and (15) in (7), we obtain

max
i,j

∥∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥∥ =
1

m
(Ka + ‖y‖)Kz

=
1

m
(K‖X‖+ ‖y‖) ‖X‖

=
K

m

∥∥XTX
∥∥+

1

m

∥∥yTX
∥∥

B. A-ReLU

We have employed the use of the activation function A-
ReLU [6] in our experiments. A-ReLU is a continuous and
differentiable approximation of the ReLU Activation function,
proven to be differentiable at 0 too, thereby alleviating the
problem of undefined gradients in the neighbourhood of 0
faced by ReLU. Moreover, it is straightforward to show that
• A-ReLU does not suffer from local minima problems
• A-ReLU does not admit of saddle points
• A-ReLU admits of a fixed point (easy to show by virtue

of Intermediate Value Theorem) thereby ensuring optima.
• The exploding gradient is easy to control

What needs to be considered is the lack of tuning efforts
activation functions usually need. This was accomplished
using approximation techniques and Hausdorff distance. ReLU
is an offshoot of SBAF [6]. Let us consider the activation
function, SBAF:

y =
1

1 + kxα(1− x)1−α
(16)

α + β =1 where α > 0 and β > 0. We show the k, α
values for which SBAF approximates to A-ReLU activation
function. k = 1, α = 1; SBAF becomes 1

1+x which upon
binomial expansion (restricting to first order expansion as-
suming 0 < x < 1) yields y = 1 − x = 1 − ReLU.
Approximate ReLu (A-ReLu) is motivated by the fact it is
a least square approximation of ReLu such that AReLu is
continuous and differentiable at x = 0 unlike ReLu and could
also be derived from the generic family of activation functions
detailed in [6]. Therefore, least square optimization is the way
forward to determine the optimal parameters of A-ReLU. This
is presented below.
Consider the function f(x) = kxn. We know that the ReLU
activation function is y = max(0, x). We need to approx-
imate the values n and k such that f(x) approximates to
the ReLU activation function over a fixed interval. Define,
Relative error = ||f(x)−y||

||y|| . Let the minimum tolerable error
be ε < 10−3.Thus, assuming a error threshold,

||f(x)− y||
||y||

<= ε < 10−3

||f(x)− y|| ≤ 10−3||y||
||f(x)|| ≤ ||y||(10−3 + 1)

||f(x)|| ≤ 1.001||y||

Since f(x) = kxn approximates the positive half (i.e., when
x > 0) of the ReLU activation function, y = max(x, 0),



the value of y when x > 0 can be written as: ||y|| = ||x||.
Using this value in the error calculation, we rewrite the error
approximation as,

||kxn|| ≤ 1.001||x||
||kxn−1|| ≤ 1.001

The above is an optimization problem i.e. min
∥∥kxn−1∥∥

subject to the constraints k > 0, n > 1,−10 < x < 10.
We obtain the following bounds on k and n:

0 < k < 1; 1 < n < 2

Therefore, we obtain the following continuous approximation
of ReLU: {

kxn x ≥ 0

0 x < 0

where 0 < k < 1, 1 < n < 2,−10 < x < 10. More precisely,
the approximation to the order of 10−3 is k = 0.54, n =
1.3. We used the parameter values k, α in the ballpark range
while training the network. This ballpark range agrees with the
Mathematical notion of ε− neighborhood of the theoretically
computed values.

V. EXPERIMENTS AND RESULTS

The variables in our experiments are the type of activation
function used, the number of hidden layer neurons, the number
of epochs and the type of learning rate policy used. For each
experiment, we choose one activation function from a pool of
four (Sigmoid, Tanh, ReLU, A-ReLU), either 500 or 1500 or
3000 hidden neurons, one among fixed learning rate policy,
the Decay Factor based Scheduler employed in [5] and the
Lipschitz learning rate policy for 200 epochs. In [5], the
authors used a pair of bounds on the higher and lower values
of the learning rate (5×10−4) and (1×10−5). We use the same
pair of bounds in our training. We only use a single hidden
layer in most experiments as opposed to upto 3 (with upto
9000 hidden neurons in each layer) used in the D-GEX(D)
architecture [5] which uses a decay factor based scheduler
to vary the learning rate, and report a MAE which is very
close to the one reported by the base paper authors. Hence our
proposed model can effectively perform as well as the deep
model but with a much smaller number of parameters.Due to
the shallowness of the model used, it can be trained on low
compute hardware, as shown in our experiments. We train our
model for 100 iterations every epoch with a batch size of
200 on a single Nvidia 1050Ti GPU. From here onwards we
will refer to the models using a Decay based LR(Base paper),
Lipschitz Adaptive LR(Our proposed model) and fixed LR(for
comparison) as D-GEX(D), D-GEX(L) and D-GEX(F). All
experiments carried out for the aforementioned models and
results obtained are without dropout.

We trained our modified D-GEX(L) architecture on GEO-tr
using random sub-sampling and tested on the GEO-te data.
The tables below indicate the MAE and standard deviation
between subsamples, obtained by each model.

A. Performance

Our best performing model uses the Lipschitz Adaptive
Learning Rate along with the A-ReLU activation function,
and is trained for 200 epochs. The results are summarized
in Tables I,II,III and IV. For the A-Relu activation function,
we use k = 0.6 and n = 1.2. The learning rate in the fixed
LR experiments is set to 5× 10−7. The starting value for the
Lipschitz Adaptive LR depended on the random initialization
of the network weights.

TABLE I
MAE COMPARISON: OUR MODEL TRAINED ON GOOGLE COLAB VS

D-GEX: BOTH MODELS ARE TRAINED ON ENTIRE CORPUS OF TRAINING
DATA. OUR MODEL DOES BETTER THAN D-GEX WITH CONSTRAINED

INFRASTRUCTURE (ONE HIDDEN LAYER LESS)

Training on the Entire data set
Model MAE
D-GEX(D)
3-layer architecture
9000× 3 0.3240
D-GEX(L)(A-ReLU)
2-layer architecture
9000× 2 0.3213

TABLE II
COMPARISON OF THE SMALLEST D-GEX(D) ARCHITECTURE TRAINED

ON ENTIRE DATASET AND D-GEX(L) TRAINED ON RANDOM
SUBSAMPLES(LESS THAN 1/5 SIZE: D-GEX(D) PERFORMS MARGINALLY
BETTER BUT HELD THE ADVANTAGE OF TRAINING OVER THE ENTIRE DATA

SET.)

Epochs D-GEX(D)
(3000)

D-GEX(L)
(500)

D-GEX(L)
(1500)

100 – 0.380709 0.367214
200 0.3421 0.378030 0.364621

TABLE III
COMPARISON OF MAE ON D-GEX(L) VS D-GEX(D): BOTH MODELS

ARE TRAINED ON IDENTICAL SUBSAMPLES: OUR MODEL D-GEX(L)
PERFORMS BETTER.

Training on sub-sampled datasets
Epochs D-

GEX(D)
(500)

D-
GEX(D)
(1500)

D-
GEX(L)
(500)

D-
GEX(L)
(1500)

100 0.421837 0.399483 0.380709 0.367214
200 0.388720 0.396381 0.378030 0.364621

0.0001 ≤ σ ≤ 0.0007

TABLE IV
MEAN ABSOLUTE ERROR WHEN TRAINING D-GEX(D): TRAINED ON

SUBSAMPLES

MAE after training with D-GEX(D) with different choices of activations
Number
Of
Neurons

Number
of
Epochs

Sigmoid Tanh ReLU A-ReLU

500 200 0.438009 0.396381 0.390081 0.394212
1500 200 0.389272 0.388720 0.381064 0.378030

0.00008 ≤ σ ≤ 0.0003



TABLE V
MEAN ABSOLUTE ERROR WHEN TRAINING D-GEX(L): TRAINED ON

SUBSAMPLES

MAE after training D-GEX(L) with different choices of activations
Number
Of
Neurons

Number
of
Epochs

Sigmoid Tanh ReLU A-ReLU

500 200 0.389381 0.388309 0.381064 0.378030
1500 200 0.374043 0.376105 0.368724 0.364621

0.0001 ≤ σ ≤ 0.0006

TABLE VI
MEAN ABSOLUTE ERROR WHEN TRAINING D-GEX(F):TRAINED ON

SUBSAMPLES

MAE after training with D-GEX(F) with different choices of activations
Number
Of
Neurons

Number
of
Epochs

Sigmoid Tanh ReLU A-ReLU

500 200 0.422051 0.395568 0.387693 0.387512
1500 200 0.402797 0.380132 0.370924 0.370296

0.00004 ≤ σ ≤ 0.0004

Fig. 1. Lipschitz Adaptive Learning Rate is always significantly higher,
than the Decay Based Learning Rate employed in [5] allowing much faster
convergence

As expected, reflecting the base paper, the larger among the
two architectures used performed the best, as larger architec-
tures generally allow for a richer representation of features.

1) The effect of Lipschitz adaptive learning rate: It is appar-
ent that in all configurations, architectures employing the use
of the LALR, (D-GEX(L)) converge better than those using
a fixed learning rate. Using a Lipschitz adaptive scheduler
allows the learning rate to be appropriately large away from the
minima, allowing it to converge faster, and adequately small
so as to not overshoot the minima when in its vicinity.

As seen in Figure 1, the learning rate while using the
scheduler showcases a seemingly exponential reduction while
training, and is significantly larger than the learning rate
obtained while using the Decay Factor based scheduler used
by the authors in [5], while not being too large. This allows
a much faster convergence.

Given the difficulty of the problem, the Lipschitz adaptive
learning rate allows much faster convergence and makes it
possible to carry out training even with minimal computing
infrastructure with a reasonable training time.

Fig. 2. Learning Rate using Lipschitz adaptive LR over 2000 epochs. The
learning rate showcases an exponential decrease

Fig. 3. MAE from 0 to 200 epochs

Fig. 4. MAE from 125 to 200 epochs

The two plots above indicate how the A-ReLU activation function
allows the network to converge to smaller errors than other, more
conventional activation functions in this task

2) The effect of using A-ReLU: Another interesting obser-
vation is the success of A-ReLU as an activation function when
training in conjunction with Lipschitz scheduler. The original
D-GEX paper trains the network for 200 epochs using the Tanh
activation function. Comparing the performance of standard
activation functions, and for the same number of epochs, we
observe that A-ReLU performs the best.

VI. DISCUSSION AND CONCLUSION

We demonstrate that neural network learning of computa-
tional biology tasks like gene expression inference from huge
Genomic data sets can be achieved with limited computational
resources, specifically only one GPU with 4 GB RAM. We



also present evidence that a combination of a shallow neural
network and an adaptive learning rate achieve better perfor-
mance than deeper nets.

We divide the GEO dataset into smaller random sub-samples
in order to handle the massiveness of the training data. To
ensure that no bias due to the exclusion of samples because
of the random nature of sub-sampling, the reported results
are obtained by averaging the MAEs corresponding to each
one of six sub-samples. In order to accelerate training, an
adaptive learning rate based on the Lipschitz constant has
been utilized. The performance is also subjected to different
activation functions to capture significant deviation, if any.
A-ReLU is found to outperform several other, better known
activation functions.

We obtain similar results to the original D-GEX architecture
[5] with a neural network containing a single hidden layer
with 1500 neurons and trained on data, 1/5th the size of the
original data set. This is reported in Table II. However, when
the original D-GEX architecture and model was employed on
smaller subsets of data, it is observed that our methods perform
better (please see Table III). In order to establish the merit of
our contribution further, we ran a final set of experiments on
the entire training corpus, on Google COLAB, with a Tesla
K80 GPU having 12 GB RAM. We show, in Table I, that we
have again accomplished better performance in comparison
with the base paper [5]. Apart from one,all the architectures
used in this work consist of a single hidden layer, with a
maximum of 1500 neurons. The largest architecture utilized
in [5] was composed of three hidden layers of 9000 neurons
each. As opposed to NVIDIA TITAN Z GPUs used in the
base paper [5], all training in this work was done using an
NVIDIA GeForce 1050Ti GPU possessing upto 4 GB RAM,
on a laptop, except for one case which shows that our methods
can be used at-scale.

The learning rate computed and used in training in this
paper is truly adaptive and the term is not loosely used.
The new learning rate at every iteration is computed by the
formula presented in section IV. This is done without manual
intervention and any sort of camouflaged supervision. Such
Lipschitz adaptive learning rate is, of course, dependent on the
choice of loss function and will vary based on the loss used
in training and provided that the loss function is continuous
and smooth up to the first order i.e. Lipschitz. The remarkable
outcome of developing a LALR based training is evident in
larger architectures as well; In Table I we demonstrate that,
our network of 2 hidden layers of 9000 neurons beats the per-
formance of a deeper neural net with 3 hidden layers of 9000
neurons each, hence performing better than a network with an
entire additional layer. Furthermore, the best results produced
in [5] uses a total of 27, 000 neurons whereas we have made
use of only 18000 neurons in one experiment, and a maximum
of 1500 neurons in all others. Our results are embellished with
multiple runs on the data set with demonstrated insignificant
standard deviation between MAEs computed for each run.
Thus, we establish our claim of accomplishing impressive

results via Parsimonious Computing. 2
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leur application aux équations intégrales. Fundamenta Mathematicae,
3(1):133–181, 1922.

2Our code can be found at: https://github.com/ShaileshSridhar2403/Parsimony-
Computing-Gene-Expression-Inference-with-LALR




