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Abstract—How to learn a good fine-grained image represen-
tation is a key problem for fine-grained tasks. Most previous
supervised methods suffer from insufficient training data, which
require laborious annotations of fine-grained objects. In this
paper, we propose an annotation-free method for fine-grained
image representation, dubbed Multi-Grained Selection and
Fusion (MGSF). The proposed MGSF extracts two types of
visual features, i.e., fine-grained discriminative features that
highlight informative convolutional parts by spatial selection
and channel selection, and coarse-grained scene-level features
that provide context information for fine-grained objects. Ex-
tensive experiments in fine-grained image retrieval demonstrate
the superiority of our proposed representation compared with
the state-of-the-art approaches on several fine-grained datasets.

Index Terms—fine-grained image retrieval, feature fusion,
feature selection, channel selection

I. Introduction

Convolutional Neural Networks (CNNs) have been
shown to be exceptionally effective at visual representation
in computer vision, e.g., image recognition [1], [2], object
detection [3], and image retrieval [4]. However, learning a
good CNN model usually requires labeling a large number
of training data, which is extremely difficult for fine-
grained tasks [5]-[7]. To avoid fine-grained annotations,
methods with weak-supervision [8]-[11] or even no super-
vision [12]-[14] are gaining increased attention.

Owing to the availability of pre-trained CNN models [1],
[2], [15]-[17] on the large-scale ImageNet dataset [18], we
can easily transfer these models to other image data for
visual feature extraction [19]. However, it still challenges
those directly extracted CNN features to represent the
large intra-class variance and small inter-class variance
in fine-grained images. To further capture fine-grained
information, existing efforts focus on selecting salient
areas from convolutional feature maps [9], [11], [12], [20].
In such cases, the selected areas are kept the same in
all convolutional channels, where the differences between
channels are not considered. Moreover, the fine-grained
area selection ignores coarse-grained scene context for fine-
grained objects.
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Fig. 1. An illustration of channel selection. In the last pooling layer
of VGG16 [2], we select convolutional channels with more activated
areas.

To address the above issues, we propose an unsupervised
Multi-Grained Selection and Fusion (MGSF) method for
fine-grained image feature extraction by aid of a pre-
trained CNN model. The proposed MGSF consists of a
fine-grained module and a coarse-grained module. Specifi-
cally, the fine-grained module aims at selecting discrimina-
tive parts for fine-grained objects from convolutional fea-
ture maps. Different from previous works that perform the
selection in spatial units of feature maps, we also introduce
channel selection beyond that. When exploiting spatial
information to discard the backgrounds and localize object
parts for fine-grained images, we observe that frequent
patterns of channels in feature maps provide key clues for
the presence of objects. As shown in Fig. 1, not all channels
are equally activated. Most activated locations are with
semantic information of objects. Therefore, we sort the
channels according to the sizes of their activated areas, and
select those channels with more activations. Besides spatial
and channel selection, we also add a coarse-grained module
for extracting coarse-grained scene-level features without
feature selection. The complete coarse-grained features
and selective fine-grained features complement each other,
being integrated into a multi-grained representation to
better represent fine-grained images.

The main contributions of this paper are summarized
as follows:

o We propose a fine-grained feature extraction method



via highlighting discriminative convolutional chan-
nels, which selects the semantic channels and discards
the noisy ones.

o« We propose to integrate coarse-grained scene-level
features into our extracted fine-grained features for
a better image representation.

o We evaluate our proposed fine-grained image repre-
sentation on six popular benchmarks for fine-grained
image retrieval, which achieves significant improve-
ment over existing state-of-the-art methods.

II. Related Work
A. Fine-Grained Representation for Image Classification

Due to the large intra-class variance and small inter-
class variance, fine-grained image classification is more
challenging in feature representation than general image
classification. Therefore, strong supervisions like bounding
boxes of objects or part locations, are used in many
works [6], [21]. For example, Zhang et al. addressed
fine-grained image classification by extracting interested
part features through detector selection for -classifier
training [6]. Wei et al. utilized Fully Convolutional Net-
works [22] to locate the informative objects and extract
deep descriptors [21].

As supervised information, object bounding boxes or
object parts are laborious and expensive to be obtained. To
alleviate this problem, He et al. selected the semantic parts
by spatial constraints of object and part proposals [9]. Sim-
ilarly, Qi et al. exploited spatial distances between object
parts in a weakly supervised way [11]. Yang et al. proposed
a self-supervision method to localize semantic parts and
designed a novel loss function to enable localizing the most
informative regions with image-level labels [23]. Zheng et
al. learned subtle features from part proposals and distilled
fine-grained features into scene-level image features by a
teacher-student network [10]. To enable part localization
and feature learning mutually reinforcing each other for a
discriminative feature representation, Lin et al. presented
bilinear CNN representation by outer product of two CNN
features [8]. Despite the above successes, few works study
fine-grained image representation for image classification
in an unsupervised way.

B. Fine-Grained Representation for Image Retrieval

In addition to classification, fine-grained representation
is also of vital importance to fine-grained image retrieval
(FGIR). Xu et al. proposed a multi-view cross-modal
matching algorithm based on view selection for fine-
grained sketch-based image retrieval [24]. Similarly, Song
et al. introduced a spatial-semantic attention method [20].
Wei et al. localized the main object by selecting areas
with higher activation values in feature maps for fine-
grained descriptions [12] which significantly improved
the retrieval performance unsupervisedly. Recently, image
labels have been leveraged in FGIR. For example, Zheng
et al. designed a novel loss function and proposed a weakly

supervised object localization and representation [25]. In
general, most of previous works only consider spatial
relation of convolutional parts, which ignored the channel
information [12], [20]. In this paper, we focus on both
spatial selection and channel selection for fine-grained
image retrieval without any annotations.

C. Transfer Learning for Image Representation

Transfer learning and domain adaptive methods in
computer vision have a long history [26]. Deep networks
have shown impressive transferable ability by reusing
pre-trained models. The common strategy is fine-tuning
[27]-[30]. For example, Girshick et al. proposed a trans-
fer learning strategy that is to replace the input layer
of the network and continue training with task-related
data [29]. Xiao et al. applied three types of attention to
train domain-specific deep nets [30]. Furthermore, Ganin
et al. proposed a new domain adaptive representation
learning method by Domain-Adversarial Neural Network
for extracting domain-invariant features [27]. Ge et al.
selected some samples similar to the target domain from
the source training set for joint fine-tuning [28]. Our
proposed method, in contrast, has no fine-tuning, but
adopts an unsupervised manner to manipulate extracted
features by a pre-trained deep model. Specially, we study
feature selection and multi-grained fusion to produce a
better visual representation for FGIR.

ITI. Methodology

In order to learn good image representations for FGIR,
we extract and fuse two-grained visual features for each
image. Fig. 2 shows two corresponding feature extraction
modules, where the fine-grained module (green flow)
learns discriminative fine-grained features and the coarse-
grained module (yellow flow) captures the global context
information of fine-grained objects.

A. Notations

The following notations are used in the rest of this
paper. The term “feature maps” (F') denotes the results
by convolution; the term “activation maps” (A) denotes
the feature maps of one channel; the term “pools” denotes
the feature maps from operating max-pooling before fully
connected layer.

Given an input image, the feature maps through pools
can be represented as a 3D matrix Fe RT*WxC F can be
regarded as having H x W spatial units. Every spatial unit
contains one C-dimensional descriptor. Similarly, F' can be
regarded as consisting of C' activation maps A € RE*W,

B. Discriminative Fine-Grained Feature Selection

Rich details in images play an important role in fine-
grained image retrieval. We utilize VGG16 pre-trained on
ImageNet [18] to extract convolutional feature maps F' for
each input image. Since parts in an image are in general
spatially connected and activated on most channels, we
perform spatial selection and channel selection to discard
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Fig. 2. Overview of our proposed MGSF. It consists of coarse-grained and fine-grained modules. We extract the scene-level feature fs by
Avg&Max Pooling of pools feature maps F' in coarse-grained module. For fine-grained module, the transformed fine-grained feature maps
F} can be obtained by channel selection and spatial selection, which has the characteristics of discarding the background of images and
highlighting semantic information of channels. Avg&Max Pooling of F; will lead to the discriminative fine-grained feature fg. The final
image representation f is generated by weighted concatenation of fg and fs. Note that M and v are binary masks obtained from spatial
selection and channel selection, where the entry is 1 if colored red, 0 otherwise. Best viewed in color.

the background and highlight the informative channels on
F'| so as to obtain more discriminative image representa-
tions.

Spatial Selection. To localize fine-grained parts, we
follow [12] to conduct a spatial selection on F'. Specially,
we opearte sum pooling in channel direction on F', then
obtain a 2D map § € RF>XW by § = 210:1 A", where
A" is the i*" activation map in F. As shown in [12], the
areas with higher values in S are more likely to be parts
of an object. We calculate the mean value Ts of S as the
threshold to decide which descriptors are selected. If the
entry of S in the position (h,w) is lower than T, the
corresponding spatial unit of F' is set to 0, 1 otherwise.
As there may still remain small noisy parts, the maximum
connected graph is subsequently adopted. Such a spatial
selection is essentially equivalent to applying a binary
mask M € RT*XW to F.

Channel Selection. As has been shown in Fig. 1,
not all channels are equally important. There are some
channels not activated at all and even some activated
in noisy areas. For the channel activated in most of the
spatial locations, there is more likely to contain semantic
information of an object. If few positions are activated, this
channel may only contains the background. For example
in Fig. 1, in the 1*" activation map, the activated region
highlights the nose of a French bulldog. In the 199*" and
200" activation maps, the areas are activated on the head
and ears. On the contrary, background is involved in the
512" activation map and there is even no activated region
in the 2" activation map. Therefore, it is critical to select

semantic channels.

Based on this observation that the more positions
a channel activates, the more semantic information it
has, we present a novel approach for channel selection.
Concretely, we use T, = T, /C to filter out the activated
positions which results in a 3D matrix B € REXWxC
in (1), where Aj , denotes the (h,w)"™ entry of the i*"
activation map A%, and B}LM denotes the (h,w)*" entry
of the i*" slice of B.

; 1

We next sum the elements of B along the first and the
second dimension, leading to a statistical vector s € R
Then we sort the elements of s to obtain an ascending list
I. The N*" entry of I defines a threshold T' to discard N
channels with less activation areas:

Ay, 2 T,
otherwise.

(1)

T =1(N). 2)

If the j** entry of s is lower than T, the corresponding
channel is set to 0, 1 otherwise. Such a channel selection is
essentially equivalent to applying a binary mask v € R®
to F'.

Transformed Fine-Grained Feature Maps. After
spatial and channel selection on the original feature maps
F, we further integrate the selected results into the
transformed fine-grained feature maps Fy € RIXWxC
which can be formulated as:

F, = ((F*M)x*v), (3)



where (x) indicates multiplication of two matrices by
broadcasting. Therefore, F; has the effect of both spatial
selection and channel selection to highlight fine-grained
parts. Average and max pooling of F; will lead to
two discriminative fine-grained feature vectors of 512-
dimensionatliy, which are concatenated into fgq € R1024,
For convenience, we define this operation from F to fg
as Avg&Max Pooling.

C. Fusing with Coarse-Grained Features

In addition to extracting the selective fine-grained fea-
ture vector fg from the transformed fine-grained feature
maps Fj, we also extract the coarse-grained scene-level
feature vector fs from the original feature maps F by
Avg&Max Pooling.

As fgq and fs complement each other in two granu-
larities, we normalize them using /o norm for a weighted
concatenation, resulting in the multi-grained feature vec-
tor:

fd fs
af: b
[udeQ A

where « is the weighting coefficient for fs. We empirically
set a to 0.5 for all datasets except the Oxford Flowers for
which we set « to 1.0.

: (4)

IV. Experiments
A. Experimental Settings

The datasets for evaluation include:

o CUB200 [34] with 11,788 images in 200 classes.

 Standford Dogs [35] with 20,580 images in 120 classes.

 Oxford Flowers [36] with 8,189 images in 102 classes.

o Oxford Pets [37] with 7,349 images in 37 classes.

o FGVC-Aircrafts [38] with 10,000 images in 100
classes.

o Standford Cars [39] with 16,185 images in 196 classes.

We compare the following methods:

e pools+pooling: This baseline is directly from the
pools layer by Avg&Max Pooling, which generates a
1024-dimensional feature vector.

o selectFV: We use FV [40] to encode the pools fea-
tures after spatial selection, which generates a 2048-
dimensional feature vector.

e selectVLAD: Similar to selectFV, but replacing
FV [40] by VLAD [41], which generates a 1024-
dimensional feature vector.

e SPoC [31]: This method uses sum-pooling on convo-
lutional feature maps to generate a 256-dimensional
feature vector.

o CroW [32]: This method exploits space and channel
weights before sum-pooling based on SPoC, which
generates a 256-dimensional feature vector.

o R-MAC [33]: This method encodes multiple regions
on convolutional feature maps for a 512-dimensional
image representation.

o SCDA [12]: This method performs spatial selection
in pools feature maps to generate a 1024-dimensional
feature vector.

o SCDA_flip+ [12]: This method combines pools,
Relus o and image flipping based on SCDA to gen-
erate a 4096-dimensional feature vector.

B. Implementation Details

We extract feature maps F' from the convolutional layers
pooly of the publicly available pre-trained VGG16 model.
Each image is fed into the model without cropping, before
which each pixel value is subtracted by the mean of the
image. Training and test sets are divided according to the
default setting of each dataset. The training set serves
as a database to be queried and the test set provides
query images. The cosine similarity is used for nearest
neighbor search. For evaluation, we use top-1 and top-5
mean average precision (mAP).

For selectFV and selectVLAD, the number of clusters
in VLAD and the number of Gaussian components in FV
are both set to 2 following [12]. It is worth noting that we
implement the results of SCDA and SCDA_ flip+ using
the code provided by [12]. The results of pools+pooling,
selectFV, selectVLAD, SPoC [31], CroW [32], and R-
MAC [33] are from [12].

C. Comparisons with other Methods

The retrieval mAP results are reported in Tabel I.
Compared with the proposed MGSF, the retrieval per-
formance of pools+pooling is fairly low. The performance
of selectF'V and select VLLAD are also not satisfactory, and
some lower than pools+pooling in CUB200 and Standford
Dogs.

SPoC, CroW and R-MAC are originally used for general
image retrieval which are not competitive. It is because
that general image retrieval is completely different from
FGIR and general deep learning image retrieval methods
can not be directly applied to FGIR.

SCDA and SCDA_flip+ are existing state-of-the-art
methods for FGIR. SCDA produces a more compact repre-
sentation, but performs slightly worse than SCDA_ flip+.
SCDA_ flip+ is the best amongst the previous methods
on all datasets except Standford Dogs.

As shown in Table I, our proposed MGSF obtains
remarkably best performance on all datasets except Stand-
ford Cars. For CUB200, Standford Dogs and Oxford Flow-
ers, our method significantly outperforms SCDA_ flip+ by
2.23% (62.34% vs. 60.11%) , 1.59% (75.82% vs. 74.23%)
and 4.16% (81.38% vs. 77.22%) in top-1 mAP respectively,
and by a margin of 1.50%, 1.35% and 3.24% in top-5
mAP respectively. These increases are quite significant
using with only a half length of feature vector compared
with SCDA_ flip+. It shows the ability of our fine-grained
and coarse-grained modules to learn powerful represen-
tation for fine-grained image retrieval. For Oxford Pets,
although SCDA_ flip+ results in quite high performance,



TABLE I
Comparison results of different methods in fine-grained image retrieval. The best results are in bold.

CUB200 Standford Dogs  Oxford Flowers Oxford Pets FGVC-Aircrafts Standford Cars

mAP (%) mAP (%) mAP (%) mAP (%) mAP (%) mAP (%)
Method Dimension top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
pools+pooling 1,024 57.54 63.66 69.98 75.55 70.73 74.05 85.09 87.74 47.37 53.61 34.88 41.86
selectF'V 2,048 52.04 59.19 68.37 73.74 70.47 73.60 85.04 87.09 48.69 54.68 35.32 41.60
select VLAD 1,024 55.92 62.51 69.28 74.43 73.62 76.86 85.50 87.94 50.35 56.37 37.16 43.84
SPoC (w/o cen.) [31] 256 34.79 42.54 48.80 55.95 71.36 74.55 60.86 67.78 37.47 43.73 29.86 36.23
SPoC (with cen.) [31] 256 39.61 47.30 48.39 55.69 65.86 70.05 64.05 71.22 42.81 48.95 27.61 33.88
CroW [32] 256 53.45 59.69 62.18 68.33 73.67 76.16 76.34 80.10 53.17 58.62 44.92 51.18
R-MAC [33] 512 52.24 59.02 59.65 66.28 76.08 78.19 76.97 81.16 48.15 5494 46.54 52.98
SCDA [12] 1,024 59.34 65.47 74.99 79.45 75.15 77.96 87.63 89.26 53.26 58.61 38.39 45.20
SCDA_ flip+ [12] 4,096 60.11 66.29 74.25 78.83 77.22 79.65 87.90 89.84 53.98 59.63 39.90 46.52
fa 1,024 59.64 65.66 75.59 79.89 76.47 78.91 88.36 90.16 54.01 59.87 38.61 45.37
MGSF 2,048 62.34 67.79 75.82 80.18 81.38 82.89 88.80 90.60 52.69 58.31 39.14 46.16

Fig. 3. Some retrieval results of six fine-grained datasets. Each row shows a retrieval example from a specific dataset. Queries are in the first
column. Retrieval results are listed in descending order of similarities with the query. Images in red rectangle indicate incorrectly retrieved

results. Best viewed in color.

our method is still 0.9% and 0.76% better in terms of
top-1 and top-5 mAP. For FGVC-Aircrafts, the feature
representation needs to be more discriminative compared
to other datasets. This is also shown by the top ranked
incorrect retrieval result in the penultimate row of Fig.
3. The differences between the incorrect image and the
query are so slight that experts may also not be able
to distinguish the differences between them. In Standford
Cars, although not the best, fg improves 0.22% and 0.17%
compared to SCDA in top-1 and top-5 mAP respectively,
and further boosts the performance to 39.14% and 46.16%
after combining with fs, which still demonstrate the

effectiveness of channel selection and feature fusion in
our proposed MGSF. According to suggestions from [12],
we can also take feature compression methods such as
Singular Value Decomposition and Principal Component
Analysis to further improve the performance.

By comparing SCDA and fg, we can find that our
channel selection suppresses the noise of background
and highlights the discriminative channels. MGSF shows
better performance for fine-grained image retrieval in most
datasets. As shown in Fig. 3, we show one example of
the retrieval results using the proposed MGSF for each
dataset. The results of the first two rows show that our
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Fig. 4. Retrieval performance of our proposed method on six datasets with parameters a(a-c) and N(d-f).
method achieves competitive performance. The failure TABLE 11
cases in the third and sixth rows show similar appearance Ablation study on CUB200.
to the queries. For the failure case of Oxford Pets, the AP (%)
dog in the returned image has the same pose as the query Method Dimension ~ top-1 __ top-5
image. For FGVC-Aircrafts, the first image returned is fs 1,024 57.54  63.66
: . Channel selection 1,024 59.03 65.31
a.lmost .1dentlcal 'to the query except that the 1e.ft and SCDA [12] 1024 5031 6547
right sides are interchanged. But their categories are f4(SCDA [12]+Channel selection) 1,024 59.64  65.66
Boeing 737-600 and Boeing 737-700 respectively. These Channel selection+ fs 2,048 61.53  66.86
. . : : SCDA [12]+fs 2,048 61.87 67.62
errors are unavoidable, especially without any annotation MGSF 2048 62.34 67.79

information.

D. Parameter Setting

The main parameters include «, the weighting coeffi-
cient for fg in multi-grained fusion, and NN, the number
of discarded channels.

Weight for feature fusion: a. The coefficient « is
set to 0.5 for all datasets apart from Oxford Flowers. For
the training and test splits in the Oxford Flowers dataset,
the training set has 1020 images while the test set has
6149 images. Different from other datasets, the number of
training sets almost one sixth of the test set. Fine-grained
module learns discriminative fine-grained features, but fg
no longer has great influence in this case, especially in
no supervision. Therefore, we doubled the coefficient « to
1.0 for better balancing fgq and fs. Fig. 4(a-c) shows the
feasibility of our setting for a.

Number of Discarded Channels: N. We report
retrieval performance under different N in Fig. 4(d-f). For

Oxford Flowers, N is set to 200, while the best N is 50
for the other datasets. This also indicates that the Oxford
Flowers dataset is different from the other datasets, and
most of fine-grained features for flowers are encoded in a
smaller number of channels. Although setting a larger N
will miss some scene information, it can be compensated
by multi-grained fusion with another scene-level feature

Js.
E. Ablation Study

To investigate the contribution of channel selection and
multi-grained feature fusion in our proposed method, we
report the top-1 and top-5 mAP for CUB200 in Table
II. The results in the middle of the table show that the
proposed channel selection improves fine-grained image
retrieval performance of SCDA [12]. It can bring an
improvement of 0.3% (59.64% vs. 59.34%) and 0.19%



(65.66% vs. 65.47%) in top-1 and top-5 mAP respectively.
Comparing the results of the last two rows, it also
demonstrates the effectiveness of channel selection, where
our proposed MGSF with channel selection obtains a per-
formance gain of 0.47% in top-1 mAP against SCDA+ f,
without channel selection.

By comparing results of the last three rows and the
first row, we can see that multi-grained fusion achieves
great success. MGSF obtains the best results, 62.34%
and 67.79% in top-1 and top-5 mAP respectively, which
siginificantly outperforms fs. It further verifies FGIR will
benefit greatly from fusing fs and fq in our MGSF.

V. Conclusion

In this paper, we propose a novel Multi-Grained Se-
lection and Fusion (MGSF) method for fine-grained im-
age representation in an unsupervised way. Based on a
pre-trained CNN model, we higlight informative object
parts as fine-grained discriminative features by spatial
and channel selection, and combine them with coarse-
grained scene-level features for obtaining a better image
representation. Fine-grained image retrieval results show
the advantageous of our MGSF in comparsion with pre-
vious state-of-the-art methods on six fine-grained image
datasets.
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