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Abstract—Functional Magnetic Resonance Imaging (fMRI) is
a commonly used technique to evaluate brain activity, and
can be used to distinguish patients from healthy controls in
a variety of diseases. In this work, we present a two-step
approach to discriminate healthy subjects against those affected
by either Autism Spectrum Disorder or Schizophrenia on the
basis of their connectivity patterns. We exploited the property
that connectivity patterns described by positive definite matrices
define a Riemannian manifold. In this framework, to generate
a vector representation used in the classification task, we per-
formed a geodesic clustering of the connectivity matrices. Cluster
centroids were then used as a dictionary allowing to encode
all subjects graphs as vectors of geodesic distances. A linear
Support Vector Machine was then used to classify subjects. To
show the advantage of using geodesic distances for this problem,
the same analysis was conducted using a Euclidean metric.
Experiments show that employing Euclidean distances leads to a
lower classification performance and possibly to the definition of
the wrong number of clusters, whereas geodesic clustering results
in a significantly improved accuracy.

Index Terms—static functional connectivity, geodesic clus-
tering, k-means clustering, connectomes, SVM, SPD matrices,
Riemannian manifold

I. INTRODUCTION

The study of connectivity between different regions of the
brain is known as “connectomics”, which is a relatively recent
research field that allows neuroscientists to investigate the
interplay between different regions of the brain by modeling it
as a network or “connectome”. At the whole-brain scale, func-
tional processes are commonly investigated through resting-
state functional Magnetic Resonance Imaging (rs-fMRI). In

particular, a functional connectome is usually constructed
by computing Pearson correlation between averaged time-
series of brain regions defined through an appropriate atlas.
A network can be obtained by defining nodes as atlas regions
and links as functional connectivity (FC) between pairs of
these regions during rest. Nowadays FC plays a vital role
to characterize brain connectivity in many psychiatric and
neurodegenerative disorders. In turn, this representation can be
used to discriminate healthy controls (HC) from those affected
by such disorders.

To this aim, recently, different methods have been proposed
to classify groups of subjects using the geometrical properties
of symmetric positive definite (SPD) matrices. The set of all
SPD matrices of the same size forms a Riemannian manifold,
so several approaches have been developed to leverage this
manifold structure during the analysis. In [1], a probabilistic
model for covariance matrices was used to distinguish post-
stroke patients from HC. In [2] manifold transportation of
covariance matrices was applied in longitudinal studies to
determine changes in FC after a task. In [3] a kernel based
classification approach has been deployed which analyzed the
FC matrices using Log-Euclidean Gaussian kernel and Stein
Gaussian kernels. In [4], an approach based on Grassmanian
geometry and low-rank graph Laplacian has been used for a
classification task exploiting a set of sub-networks that was
then used to identify connectivity biomarkers.

Support Vector Machines (SVM) can be used to directly
perform classification of vectorized brain graphs, selecting
time-series correlation as features [5], [6]. However, this ap-
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proach partly misrepresents the real geometry of the problem,
as it attempts to adopt Euclidean metrics to describe data
which, in fact, lie in a Riemannian manifold. Correctly taking
into account the properties of positive semi-definite matrices
allowed to classify sub-connectivity patterns [7], functional
states generated from auditory stimuli [8] or mild cognitive
impairment [9].

In this work, we employ a geodesic clustering algorithm
which uses geodesic metrics on a Riemannian manifold to
cluster FC matrices. The computed centroids are then used
to generate a representation allowing to discriminate between
classes. More specifically, using a two-fold approach, func-
tional connectivity matrices of brain activity during rest are
clustered and, in a second step, the geodesic distances of the
connectivity matrices from the cluster centroids are used as
features to train a linear-SVM.

The proposed method has been tested on two different
problems: HC vs. subjects affected by Autism Spectrum
Disorder (ASD), and HC vs. subjects affected by Schizophre-
nia (SCHZ). To show the benefit of using the Riemannian
properties, the same experiments have been done using the
Euclidean metrics, comparing the results in terms of both
clustering and classification performance. Moreover, we have
also compared the results from our approach versus state-of-
the-art methods [3], [4]. Results showed that analysis of FC
matrices by using our approach gives better results in term of
classification accuracy.

Organization: Following the brief introduction and back-
ground information given above, Section II describes the
public dataset used for this experiment and the proposed
method for the classification. Section III reports the results
of experiments done, while Section IV concludes with a
discussion on the proposed method and the results obtained.

II. MATERIAL AND METHOD

A. Data Acquisition and Pre-Processing

In this work, to test our method, we have used two publicly
available functional connectivity datasets. The first dataset is
from the ASD connectome database released by UCLA [10].
This dataset is composed of the rs-fMRI of 37 HC and 42
ASD patients. Further details of acquisition and pre-processing
are described in [11]. FC matrices were obtained from the
Power atlas, which defines 264 regions of interest (ROIs) in the
brain [12]. These 264x264 FC matrices are estimated for each
subject by computing the pairwise Pearson correlation between
average time-series of brain ROIs. Furthermore, we analyzed
the FC dataset released by the Network Based Statistic (NBS)
toolbox. It is composed of 15 HC and 12 SCHZ subjects [13].
In this dataset, FC matrices were built using a subset of regions
from the AAL atlas (90 ROIs without cerebellum) using the
same pairwise Pearson’s correlation approach. In our method,
we are considering the whole connectivity matrix including
negative values.

Fig. 1. The difference between Euclidean distance and Euclidean mean of two
points (green straight line and star) and the corresponding geodesic distance
and geodesic mean (red curve and star along the manifold).

B. Manifold Representation of SPD Matrices

Let Xρ = {ρ1, . . . , ρn} be the set of correlation matrices
describing the brain functional connectivity of all N subjects.
The correlation matrices are symmetric and positive semi-
definite in nature and can be easily regularized into SPD
matrices by adding a small constant to the main diagonal
(ρi = ρi+λI, with λ very small, e.g., λ = 10-5). The set of all
SPD matrices of the same size form a Riemannian manifold,
which allows the analysis of such matrices on a manifold
space. To take the full advantage it is recommended to use
the notion of geodesic distances which allows a description of
this data better than using Euclidean metrics [3], [14].

Intuitively, a geodesic distance computes the shortest path
between two points over a smooth and curved manifold [15].
There are several possible alternative geodesic distances on the
Riemannian manifold of SPD matrices [14], [16]; we decided
to adopt the Log-Euclidean (Log-E) distance, which is simple
and fast to compute. Equations 1 and 2 describe, respectively,
the log-E distance formula between two SPD matrices ρi and
ρj and the closed form formula to compute the mean [17] of
two or more SPD matrices with this metric. The conceptual
difference between geodesic distance, Euclidean distance and
corresponding means is illustrated in Figure 1.

dL(ρi, ρj) = ‖ log(ρi)− log(ρj)‖F . (1)

ρL = exp

{
arg inf

ρ

n∑
i=1

‖ log(ρi)− log(ρ)‖2
}

= exp

{
1

n

n∑
i=1

log(ρi)

}
,

(2)

C. Geodesic Clustering Analysis

In the proposed method, we have used geodesic k-means
clustering algorithm [16] to cluster the FC matrices into differ-
ent groups. The aim is to divide FC matrices into homogeneous
groups of subjects presenting similarities in their connectivity.



The underlying assumption is that there are some alterations
in brain connections of the patients [18] that can be grasped
by the clusters. K-means was implemented using the Log-E
distance [14] as defined in eq.(1), with the centroids computed
as the geodesic mean, which can be computed in the closed
form by eq.(2).

D. The DB Index

In order to choose the optimal number of clusters (K)
we used the Davies-Bouldin (DB) index as criterion [19].
This index evaluates the consistency using the distance of
all points within a cluster to the corresponding centroids and
the separation between clusters using the distance between
centroids. The lower is the index, the better are the clustering
results. In this work, the DB index is computed for every
considered number of clusters (i. e. K=[2,3,4,5,6]) and the
minimum value suggests the natural partition of data.

Consider a set of correlation matrices Xρ = {ρ1, . . . , ρn}
and a set of clusters C = {c1, . . . , ck} partitioning Xρ in K
groups. Cluster representatives are defined as

ck =
1

|ck|
∑
ρi∈ck

ρi (3)

and the distance between matrices d(ρi, ρj) used in our
analysis between items is the Log-E distance. The equation
for the DB index is given as follow

S(ck) =
1

|ck|
∑
ρi∈ck

d(ρi, ck) (4)

and

DB(C) = 1

K

∑
ci∈C

max
cj∈C\ci

{
S(ci) + S(cj)

d(ci, cj)

}
(5)

E. Feature Extraction and Classification

The working hypothesis is that we can cluster the FC
matrices preserving the alteration of brain connectivity charac-
terizing the groups. This would allow therefore a compression
of graphs into a smaller vectorized representation retaining
the group differences while filtering the intrinsic variability
of subjects in the same group. Indeed, using the cluster
representatives as a dictionary, we built a vector representation
for each subject, computing the features as the distances of the
subject FC matrix from all cluster centroids.

In our experiments, we performed geodesic clustering mul-
tiple times with a variable number of clusters ranging from
K = 2 to K = 6 in order to find the best K. Once convergence
was achieved we computed the Log-E distance between the
samples in the training set and all K centroids (e.g. for K = 2
each sample was described by 2 distance values and for K = 4
each sample was represented by 4 features). These distance
values were used as feature vectors to train a linear-SVM. In
the test phase, each sample in the test set was described by
the distances of the corresponding FC matrix from all cluster
centroids computed during training.

To avoid double dipping we made all the experiments using
5-fold cross-validation, randomly selecting the samples and
preserving the proportion between the classes in each fold.
For statistical reasons we repeated this cross-validation process
100 times with randomized selection of folds.

In the end, we evaluated the results in terms of average
accuracy and confusion matrix averaging over all 100 itera-
tions. In our experiments, all distances were computed using
the Log-E distance (eq. 1) and the corresponding geodesic
mean (eq. 2). In addition, to show the advantage of using
the geodesic distance on the manifold containing the data,
we performed identical computations using Euclidean metrics,
allowing to evaluate the differences in performance. In order to
check the significance level of the performance of our classifier
we performed a permutation test on labels. For this purpose,
we generated a null distribution by randomly changing the
labels 1000 times and in each iteration we performed L-SVM
classification using 5-fold cross validation and computed the
mean cross fold accuracy.

III. RESULTS

Figure 2 depicts the box plots showing the classification
accuracy over 100 iterations with the proposed method on the
ASD dataset (Fig. 2A) and on the SCHZ dataset (Fig. 2B).
Blue and orange bars represent results obtained with geodesic
and Euclidean metrics respectively. The gray line shows the
average over 100 iterations of the DB index for the geodesic
clustering. For the ASD dataset (Fig. 2A) it can be seen that
the highest mean accuracy (67.12%) is achieved with Log-E
distance for K = 4 clusters, whereas with Euclidean distance
the maximum obtained mean accuracy is 61.59% with K = 6
clusters. Figure 2A also shows that the DB index (line plot)
has a minimum value in K = 4, suggesting that this is the
optimal number of clusters. This is reinforced by the fact that
this is the same number of clusters with peak accuracy for
geodesic clustering.

For the Schizophrenia dataset, Figure 2B shows that, with
the geodesic metric, maximum mean accuracy (75.33%) is
achieved with K=2. Similarly, in Figure 2B, the DB index
(silver line) for this dataset also has the minimum value for
K=2. On the other hand, for Euclidean metrics, the maximum
accuracy is achieved (70.03%), on this dataset, for K=4. The
embedded tables in both figures summarize these results. Table
1 shows the average confusion matrix for geodesic clustering
results for both datasets between HC and pathological subjects.

In order to assess the statistical significance of our obtained
results we implemented a permutation test. The results of
permutation test are represented in form of pvalues in Figure 2.
The p-value is computed as the ratio between the number
of accuracy values greater than the tested accuracy and the
total number of permutations (1000 in our case). These results
strongly support the principle according to which the use of
geodesic metric on SPD matrices, which form a Riemannian
manifold, gives better results in term of accuracy, whereas
the use of Euclidean metric on SPD matrices is suboptimal.



Fig. 2. Boxplot representing the mean classification accuracy for A) HC
vs ASD and B) HC vs SZ dataset with geodesic (blue box) and Euclidean
(orange box) metrics based k-means clustering. Line plot shows the mean DB
index value for each cluster of geodesic k-means clustering. selection. Stars
on the bar shows the significance level obtained through permutation test.

Results from the proposed methodology also outperform the
results presented in [3,4] using the same dataset.

IV. DISCUSSION AND CONCLUSION

In this work, we have presented a novel computational
framework, which allows the classification of HC and pa-
tients using static FC matrices obtained from rs-fMRI. To
achieve this goal, we performed k-means clustering by taking
advantage of the properties of SPD matrices: in this context,
using geodesic metrics proved to be superior to the Euclidean
approach.

In particular, classification features have been constructed
with a subject-wise graph similarity representation by using a
geodesic metric based on k-means clustering. This algorithm
adopted log-Euclidean distance on the Riemannian manifold

TABLE I
CONFUSION MATRIX OF AVERAGE CLASSIFICATION RESULTS FOR THE
PROPOSED APPROACH BASED ON GEODESIC CLUSTERING FOR HC VS.

ASD AND HC VS. SCHZ DATASETS

Mean Confusion Matrix of HC vs ASD (for K=4)
Predicted Class

HC Pathological Subjects
Actual HC 22 15
Class Pathological Subjects 12 30

Mean Confusion Matrix of HC vs SCHZ (for K=2)
Predicted Class

HC Pathological Subjects
Actual HC 10 5
Class Pathological Subjects 2 10

space of SPD matrices. To avoid double dipping, both cluster-
ing and classifier tuning occurred on training folds: we applied
the geodesic k-mean clustering algorithm to compute the cen-
troids on data independent from the testing folds. Furthermore,
we computed the distance of each training sample from each
centroid and used this distance vector as feature set to train
the L-SVM classifier. In testing, we computed the distance of
each test sample from the centroids defined on the training set
and then used this distance value to test the performance of
the trained classifier. To reduce the impact of fold selection,
this process was repeated for 100 iterations and results were
summarized as the average of all these iterations.

In order to evaluate our proposed algorithm, we made a
similar experiment but using the Euclidean metric base k-
means clustering distance instead of the geodesic metric. The
results of this study noticeably reveal that the use of Euclidean
metrics on the manifold of SPD matrices is suboptimal, as it
is causing a data representation leading to decreased accuracy.
Indeed, the classification performance improved when using
the geodesic metric which computes the shortest possible
distance along the curvature of the manifold, thus offering
an optimal data representation. Hence to compare and analyze
FC SPD matrices it is suggested to consider a geodesic metric
exploiting the properties of the Riemannian space on which
these matrices lie. This study also reveals that a specific en-
coding of the FC matrices, describing them according to their
distances from cluster centroids, allows good performance in
distinguishing between HC and patients.
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