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Abstract—Due to the frequent use of anomaly detection systems
in monitoring and the lack of methods capable of learning in real
time, this research presents a new method that provides such
online adaptability. The method developed is called OSHULL
(Online and Subdivisible Distributed Scaled Convex Hull) and
bases its operation on the properties of scaled convex hulls. It
begins building a convex hull, using a minimum set of data, that is
adapted and subdivided along time to accurately fit the boundary
of the normal class data. The method has been evaluated and
compared to several main algorithms of the field using some real
and artificial data sets. As a consequence, an algorithm has been
obtained with online learning ability and easily configurable, all
without diminishing its effectiveness in relation to other batch
state-of-the-art methods. Finally, its execution can be carried
out in a distributed and parallel way, which is an interesting
advantage in the treatment of big data sets.

Index Terms—anomaly detection, convex hull, data streaming

I. INTRODUCTION

Anomaly detection is a subarea of machine learning that
deals with the development of methods for discriminating
among what is considered normal and anomalous data. This
makes the detection of anomalies, a priori, a problem of clas-
sification into two unique classes. However, since anomalies
usually occur sporadically, normal data is the one that pre-
vails in these problems, therefore requiring specific machine
learning models which training phase is generally carried out
using mostly even normal data. Their objective is to model
the normal class boundaries as accurately as possible, so that
the classification of new data can be carried out by checking
whether they belong to the normal class or not. Because of this,
anomaly detection is also known as One-Class classification.

This type of problems are quite frequent in real-world
scenarios, such as predictive maintenance. Also, very often,
anomaly detection systems are part of monitoring systems, for
example, in the supervision of the operation of a car engine. In
these problems the ability to learn in real time can be essential
as there may not be a sufficient amount of data at the beginning
of the learning process but over time. There are many use cases
(medical, IT security, etc.) where this situation happens and
the detection methods must be able to start making decisions
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as soon as possible with very little initial knowledge and
adapt this knowledge as new data are available. This is called
online learning. Despite its interest, there are a low number
of such methods for anomaly detection. This paper presents
the adaptation of an anomaly detection method [1] [2] based
on convex hulls and random projections. The contribution is
to allow the convex hulls to be dynamically changed in an
online learning scenario and to represent non-convex regions
as a union of several convex hulls. The algorithm will adapt
the limits of the normal class every time it processes new data,
without having to store all the data or retrain from scratch.

II. RELATED WORK

This section summarizes the main types of anomaly detec-
tion techniques available in the state-of-the-art.

A. Batch-learning anomaly detection methods

Regarding the methods that do not learn in real time [3] [4]
we can distinguish:

• Probabilistic methods: their main objective is the estima-
tion of the density function that generates the data. They
assume that the training data is generated by a probability
distribution function D, which can be estimated using
those same data. This estimated distribution D̂ usually
represents a normality model so that normal data will be
given in regions with high probabilities and anomalies in
regions with lower probabilities. To model these density
functions, parametric (based on Gaussian or regression
models [5]) and non-parametric (based on histograms or
kernels [6]) techniques are used.

• Distance-based methods: these methods are based on
distance metrics to calculate the similarity between two
data. They assume that normal data is given in the form
of dense neighborhoods, while anomalies are far from
such neighborhoods. The two most important methods
are nearest neighbor [7] and clustering [8].

• Reconstruction-based methods: these methods can au-
tonomously model the training data set and predict new
data by calculating their reconstruction error defined as
the distance between the value provided by the model
and the target value, thus serving as a score. They can
be classified into two groups, those based on neural
networks [9] and those based on subspaces.
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• Domain-based methods: they generate a boundary based
on the structure of training data that separates classes in
a space. These classifiers become insensitive to the size
and density of each class as the classification of new data
is determined solely by its location with respect to the
boundary. To carry out the separation, a hyperplane (or
other parametric structure) is approached that separates
the points of one class from the other in an optimal way,
although it is usual to work with problems of more than
two classes combining several hyperplanes [10].

• Methods based on information theory: They assume that
anomalous data significantly alter the information con-
tained in the normal set and, therefore, they process the
content of data sets through measures such as entropy
or relative entropy [11]. Metrics are calculated using the
complete data set with and without including the point to
classify. The results are compared with those produced
using only the normal set so that, if there are large
differences, we can assume that we are facing an anomaly.

B. Online-learning anomaly detection methods

There is no clear taxonomy for online anomaly detection
algorithms, but a large part of them are adaptations of classic
methods to add this ability. Some of these techniques are:

• osPCA [12] is a PCA based version that do not require to
store the entire data matrix or covariance. By oversam-
pling the training data and extracting the principal direc-
tion, osPCA allows to determine anomalies according to
the variation of the resulting dominant eigenvector.

• KRLS [13] combines the principles of kernel machines
and the popular Recursive Least Squares (RLS) algorithm
to provide an efficient and non-parametric approach for
performing online anomaly detection.

• ORUNADA [14] is an online version of UNADA [15]
which applies incremental subspace clustering via a
discrete time-sliding. This window updates in a near
continuous way the feature space. Then, the partition
of each subspace is upgraded using an incremental grid
clustering algorithm that divides the space into units and
place points into them, allowing also good scalability.

III. BACKGROUND

This section summarizes the main ideas of the two methods
taken as the basis for the development of OSHULL: the APE
algorithm developed by Casale et al. [1], and its distributed
version carried out by Diego Fernández et al. [2]. Both
techniques base their operation in the use of convex hulls over
random projections of the data in 2-dimensional spaces.

A convex hull (CH) is the smallest convex polyhedron that
contains a set of data points. Figure 1 shows an example
of a CH wrapping a two dimensional data set, in this case
the CH is a polygon. The usefulness of this structure in
anomaly detection problems is to calculate the polyhedron
that encompasses the set of normal data, so that classifying
a new data consists on checking whether it is located within
the convex hull (normal data) or outside it (anomaly).

Fig. 1. Formation of a convex hull from a cloud of points.

Calculating the CH in high-dimensional spaces is, compu-
tationally, a very expensive task. Due to this, several anomaly
detection methods choose to project the data on 2-dimensional
spaces in which the calculation of CHs is simple [1]. This
random projection technique is based on the idea that high-
dimensional data spaces can be projected into a lower dimen-
sional space without significantly losing the data structure [16]
if multiple projections are used. The possibility to reduce the
dimensionality of the problem without a high computational
effort while preserving the data structure, allows to create very
simple and powerful learning techniques. Building a CH in 2-
dimensional spaces and check if a point falls inside are com-
mon tasks in geometric computing for which there are very
efficient solutions [17]. Thus, the learning and classification
phases consist on the following:

1) Learning phase: Given training data set (normal data)
of dimension d, a number τ of random projections of
the data onto a 2-dimensional subspace are made. First,
τ random matrices are generated. Second, the training
set is projected into the space generated by each of
these projection matrices. Finally, the vertices of the CH
are calculated in each projection, this being the aim of
training. These vertices are projections of the original
data, therefore, the algorithms only need to store the
vertices that form the CHs and the projection matrices,
discarding the rest of the training data.

2) Classification phase: To predict the class of a new
data point, it is first projected using the τ projections
generated during the training phase. For each projection,
and given the set of vertices of the CH of that 2-D
space, it is possible to check if the point is inside the
corresponding polygon. A point will be classified as
normal only if it is inside all CHs. In other case, the
point will be considered anomalous. There are a lot of
algorithms to perform this check in 2-D spaces [18]. A
graphic example of this procedure is shown in Figure 2.
The grey polyhedron represents the training data cloud
in its original three dimensional space, the grey polygons
represent the corresponding CHs calculated for each
P -projection, and the orange dot a new datum to be
classified. It will be classified as an anomaly since it
falls out of CH in the the P1 projection.

To avoid the effect of over-adjustment of the training data,
reduced and expanded versions of the initial CH called Scaled
Convex Hulls (SCH) are used [1]. The size of these scaled
versions will be given by a λ parameter, and the new data



Fig. 2. Three projections of a three-dimensional data cloud and a new point
to be classified.

will be classified based on them. If λ > 1 the vertices will
expanded and otherwise will be contracted.

In addition, D. Fernández et al. [2] proposed a distributed
version of the APE algorithm of Casale et al. [1]. It allows
data privacy preservation as the information that is exchanged
among the distributed sites is not the data itself but their
projections, and that projection process is not invertible. Our
proposal is based on this version for being the most advanced.

IV. ONLINE AND SUBDIVISIBLE DISTRIBUTED
SCALED CONVEX HULL

The main objective of the proposed method OSHULL is
to carry out online one-class learning, so that starting from
a minimum set of initial data points, it allows learning and
adjusting the model with the arrival of new normal data.
This section presents its theoretical foundations. The steps
described below are applied independently to the convex hulls
at each of the projections. Sections A and B correspond to
the base algorithm developed by Casale et al. [1]. Our novel
contribution can be found in sections C and later.

A. Calculation of the initial convex hulls

The first step of the algorithm is to carry out the projection
of training data in 2-D spaces. For this aim, it is necessary
to generate random matrices corresponding to the projections,
considering that the more projections used, the more accurately
the training set will be represented. Later on, a portion of the
training set will be projected as determined by each of these
projection matrices and the CHs will be calculated, one per
projection. From this moment, the system is ready to readjust
the CHs, as it will be seen in Section IV-C. Notice that only
the projections of the data that correspond to CH vertices in
each subspace need to be stored, and the rest of the projections
as well as the original training data can be discarded.

B. Calculation of the scaled convex hulls

In some cases there may be normal data that is misclassified
as false positives anomalies during training because they
are located outside the limits of some of the convex hulls
calculated during the initial formation phase. In order to avoid
this behavior and to softly adjust the shape of the data, we have
decided to use a λ > 1 expansion factor. This value allows
to generate scaled convex hulls (SCH), whose purpose is to

Fig. 3. Scaled convex hull (orange) obtained from an initial convex hull
(yellow). The red dot will be correctly classified as normal data thanks to the
use of the margin.

soften the classification of new data. In this work, the formula
presented by Liu et al. [19] was used to calculate the SCH.
Given the set of points S ⊆ Rd, vertices of the CH are defined
with respect to the center point c = (1/ |S|)

∑
i xi,∀xi ∈ S

and the expansion parameter λ ∈ [0,+∞) as:

vλ : {λv + (1− λ) c | v ∈ CH (S)} (1)

The parameter λ specifies a constant contraction (0 < λ < 1)
or extension (λ > 1) of the CH with respect to c. We will
always use λ > 1 since we are not interested in reducing the
CH. Figure 3 shows an example of a scaled convex hull.

C. Convex hull adjustment

To provide the method with the ability to learn in real
time, the limits of CHs have to be readjusted as new data
is available to the system. To do this, and at the same time
guarantee some system stability, these limits will be expanded
whenever a considerable number of data falls systematically
and concentrated around the same area between the limits of
the CH and the SCH. In this case, the behavior of the algorithm
will be to extend the limits of the CH to cover, as far as
possible, that area where normal data did not appear when
building the initial CH. With this aim, we added a new stage
to the training phase in which, after forming the initial convex
hulls, they are further reshaped as explained below:

1) When the projection of new data point falls into the
margin (space between the limits of the CH and the
SCH), it is determined which of the vertices of the CH
is the closest one according to the euclidean distance.

2) The position of this new datum in the projected space is
stored in a list associated with this nearest vertex. Each
vertex will have a list of data that has fallen close to it so
that, when the length of this list exceeds an established
threshold, the CH will expand by creating a new vertex.

3) The vertex expansion will consist in creating a new
vertex calculated as the centroid of the data stored in
the vertex’s list that caused the expansion.

4) Simply adding the vertex to the hull can cause it to stop
being convex. Instead, the CH is recalculated using as
data the old vertices and the new one.



Fig. 4. Readjustment of a CH to cover new data falling consistently in its
margin.

5) Once recalculated, if the new vertex becomes part of the
convex hull, the SCH will be also accordingly modified
using equation 1.

Figure 4 (a) contains an example of a CH that has received
several data points in its margin, close to vertex V1, while
Figure 4 (b) represents the new CH after the expansion from
V1 and the generation of vertex V3. It is important to remem-
ber that although in the figure the training data points are
represented (blue dots) the algorithm only stores the vertices
and their corresponding lists. Also, note that this readjustment
process at no time involves projecting the available data and
recalculating the CHs. On the contrary, this process will be
carried out only once during the formation of the initial CHs
since the projection matrices will always be the same and the
modifications to a projection do not affect the others.

D. Region subdivision

Because representing data sets using a single CH produces
poor results in data sets with non-convex geometric shapes,
the OSHULL method implements an iterative process that
subdivides CHs for a better fit to the shape of the data. In this
way, starting from an initial convex hull, it can be recursively
subdivided into as many convex hulls as necessary to properly
approximate the shape of normal data. Therefore, the method
may represent non-convex regions as the union of various
convex regions. At each projection several convex hulls can
coexist that will continue to be readjusted individually. Figure
5 shows an example of the subdivision of a CH to model more
accurately the non-convex set of projected data. The following
subsections describe the steps of this subdivision process.

1) Identification of non-convex areas, support points:
The proposed methodology for subdividing a CH begins by
establishing a metric that measures how well a convex hull
represents the normal data. A convex hull is composed of
vertices (data projections) that determine edges between them.
When a CH envelops a non-convex data set, empty regions in
which normal data does not exist are generated within the
convex hull (see Figure 5). These regions are those that the
subdivision process should try to remove to avoid classification
failures (false negatives).

Fig. 5. Convex hull that must be subdivided to better capture the boundary
of a data set with half moon morphology.

Fig. 6. Convex hull and distances to support points (red lines).

Since the edges of the CH closest to these empty regions
do not have nearby data points, we propose to locate these
regions using a support point associated to each edge. This
support point is defined as the data point inside the convex hull
closest, in the Euclidean sense, to the midpoint of that edge.
In Figure 6, vertices V1 and V2 form an edge with a midpoint
in c. Therefore, the support point of this edge will be the
data inside the CH closer to c, in this case the point Psupport.
Calculating the distances to the support points of every edge
(red lines in Figure 6), it can be seen how the edges that best
represent normal data have closer support points than those
that are poorly adjusted. In our example, the distance d of the
edge connecting V1 and V2 is much longer than the others,
which indicates that the area around c is a good place to start
subdividing the CH. During online training, each time a datum
falls inside a convex hull, the distance of the new datum to all
edges is calculated. If, for a given edge, this distance is shorter
than the distance to its current support point, this point will
be substitute by the new datum. Notice that, a support point
can be shared by some edges, which is a common situation at
the beginning of training or after a subdivision.

2) Edge selection to divide the convex hull: This step must
be able to decide when a distance from an edge to its support
point is large enough to subdivide a CH. Each projection
can generate convex hulls of different sizes, therefore, the
minimum distance of an edge to its support point cannot be a
constant chosen by the user. To automate its calculation, the
algorithm uses the interquartile range (IQR) of the distances
between all edges and their support points. This allows to
automatically calculate and adapt the threshold that separates



Fig. 7. The figure on the left shows a CH before being divided. The length
of each edge is represented in units u, so that the perimeter p totals 7.5u.
The figure on the right shows the point c, located at a distance p/2 from V1

and V2. The vertex closest to c will be chosen as the pivot of the subdivision.

Fig. 8. Two convex hulls created from a subdivision.

the normal distances from the atypical and extremely atypical.
The algorithm will rely on this extremely atypical threshold
to decide when the distance of an edge to its support point is
large enough to subdivide the CH based on that edge.

3) Determination of the forms of the new regions: Once
the need of division is detected, our approach tries to reduce
the number of convex decision regions by dividing the CH
into two convex hulls of similar size (area). The idea of the
procedure is to find a pivot vertex Vi of the CH that, together
with the vertices of the selected edge and its support point
Psupport, will form the new edges that divide the CH into two
convex hulls of similar areas. Figure 7 illustrates this process
in which the (V1, V2) edge is selected for division. To find this
pivot vertex Vi, we calculate the length p of the perimeter of
the CH excluding the (V1, V2) edge (red edges in Figure 7) and
the point c that is at a distance p/2 from the two vertices of
the edge selected for division. Finally, the pivot vertex to make
the subdivision will be V6 as it is the closest to that midpoint
c. Figure 8 shows the two resulting CHs after subdivision.

Although the use of the perimeter of the CH does not
provide maximum precision, this operation is easy to calculate
because the positions of the vertices are known at all times, and
the results it produces are sufficient for the proper functioning
of the algorithm. Other possible options, such as calculating
the area in irregular polygons and for all possible combinations
of vertices, imply operations computationally more expensive,
not so adequate for a real time learning algorithm.

Finally, the process of subdivision of a convex hull for a
given projection can be summarized as:

1) Calculate the extremely atypical threshold by using
the distances between edges and support points for all
convex hulls in that projection. Including all convex
hulls in the calculation allows to relate them.

2) Locate the edge of the CH whose distance to its support
point is higher than this threshold and it is the greatest
for that projection.

3) Choose the pivot vertex dividing the CH into two regions
of similar sizes from the vertices of the selected edge
according to the perimeter.

4) Generate two new convex hulls using the support point,
the pivot vertex, and the vertices of the selected edge.

5) The edges of these two new convex hulls should select
their support points by reusing the CH support points
available before the division.

E. Freezing process

In the same way that a CH must be subdivided if it has
edges enclosing empty spaces with distances exceeding the
atypical threshold, a CH with all its edges at low distances,
and therefore well adjusted, must be maintained until the end
of training and prevent it from being unnecessarily divided.
This process is called freezing. A CH will freeze if all its edges
are at normal distances and it has not been subdivided for a
given number of iterations. The higher this number, the higher
the opportunities for data to fall inside a CH and, therefore,
to reduce the distance from the edges to their support points.
A frozen CH cannot be subdivided again, but it will continue
to be readjusted with data dropping in its margin.

The threshold used as the maximum distance to freeze a
CH must be a value in the range of normal distances, so the
method uses again the interquartile range. In this case, the
third quartile is taken as the threshold. Thus, if the distance
of all edges of a CH to their support points is less than Q3
and it has not been subdivided during a minimum number of
iterations, the region will freeze.

F. Pruning process

After several subdivisions, some convex hulls can cover
regions completely empty of normal data. Also, small convex
hulls can be found that overlap the margins of other adjacent
convex hulls. To get rid of them, a periodic pruning process is
performed that eliminates those convex hulls that have not
received data inside during a given time interval, as it is
assumed that they do not represent normal data.

With this aim, when a CH is created, a variable is asso-
ciated that counts the points that fall inside it. This counter
will increase during training any time a data falls only and
exclusively within the CH, i.e., if a data falls in two or more
convex hulls simultaneously, none of them will increase its
counter. With this behavior, if one CH is included in a greater
CH, the small one eventually will disappear.

G. Pseudocode

Algorithm 1 contains the pseudocode for the OSHULL
training phase. In line 8, information about a projection is



stored (CH vertices and its center). In line 9, the model is
completed by storing the information of the new projection
created (the projection matrix, the vertices of both the SCH
and CH, and the CH center). In line 14, Algorithm 2 is called,
which is responsible for carrying out the expansion, subdivi-
sion, freezing and pruning in the CHs of the t projection. In
Algorithm 2, line 6 determines if the new data falls inside the
CH, in the margin or outside it. In line 9, for each CH where
the point has fallen into the margin, we check which vertex is
the closest and add the point to its associated list. In line 10,
we record the fall in the i CH. In line 13, if the new point has
only fallen into a CH, and the vertex in question exceeds the
minimum number of data nearby, the CH is expanded.

Algorithm 1 OSHULL training phase
Inputs: S ∈ Rd, training set to form the initial CH;

D ∈ Rd, training set for adapting the CH boundaries; τ ,
number of projections; λ, scaling parameter; minIt, minimum
number of iterations to subdivide and freeze; minDNear,
number of data that must fall near a vertex to expand it;

Output: M , learnt model composed of τ projection
matrices and their respective CH;

1: M = ∅
2: for t = 1..τ do . Generate projections and initial CHs
3: Pt ∼ N(0, 1) . Random projection matrix [2× d]
4: S̄t : {Ptx |x ∈ S} . Project the data
5: {v}t = CH

(
S̄t
)

. Vertices of the CH
6: c̄ = getCenter(S̄t) . Center of the CH
7: {v}λt : {λvi + (1− λ)c̄ |vi ∈ {v}t} . Calculate SCH
8: Ht = storeCH({v}t , c̄) . Store CH info
9: M = M ∪

(
Pt, {v}λt , Ht

)
10: end for
11: for i = 1..len(D) do . Readjust the model with D
12: for t = 1..τ do . For each projection
13: x̄i : {Ptxi |xi ∈ D} . Project the new data point
14: M = readjustCH(M, t, x̄i,minIt,minDNear)
15: end for
16: end for

Algorithm 3 contains the classification phase that is used
after training. In line 10, if the new point is out of all CHs in
one projection, it will be classified as an anomaly and is not
necessary to continue checking the remaining projections.

Finally, a distributed version of the algorithm is easily done
by distributing the operations corresponding to each of the
generated 2-D spaces (i.e., projections) through a network of
independent computational nodes. Each node is assigned a
projection or a group of projections on which to carry out the
learning phase (Algorithms 1 and 2). After that, a new data will
be classified taking into account the aggregated classifications
over the different nodes (Algorithm 3).

V. RESULTS

In this section, several experiments are presented to show
the behaviour of the proposed method. To have a reference

Algorithm 2 Procedure used during training to readjust the
convex hulls of a projection: expansion, subdivision, freezing
and pruning.

Input: M , learnt model; t, projection to be deal; x̄, new
projected point in the subspace t; minIt, minimum number
of iterations to subdivide and freeze; minDNear number of
data that must fall near a vertex to expand it;

Output: M , updated learnt model;
1: procedure READJUSTCH
2: CHlist : {CH|CH∈Mt} . List of CHs from M in t
3: InfoList : {H |H ∈Mt} . Info about each CH in t
4: cExpList = [] . Candidates Expand List
5: for i = 1..len(CHlist) do . For each t-convex hull
6: Pos = determineFallP lace(x̄t, CHlisti)
7: if Pos = INSIDE then
updateSuppPts(InfoListi)

8: else if Pos = MARGIN then
9: InfoListi = updateNearPts(InfoListi)

10: cExpList = recordCH(cExpList, i)
11: end if
12: end for
13: if ((len(cExpList) == 1) and

(InfoListi[numberDataNear] ≥ minDNear))
then

14: i = cExpList[0] . The index of the CH is i
15: CHlisti = expandConvex(CHlisti, InfoListi)
16: end if
17: µ = calculateIQR(CHlist, InfoList) . Calc. IQR
18: CHlist = freeze(CHlist, InfoList,minIt, µ)
19: CHlist = subdivide(CHlist, InfoList,minIt, µ)
20: CHlist = delete(CHlist, InfoList,minIt, µ)
21: M = updateModel(M,CHlist, InfoList)
22: end procedure

Algorithm 3 OSHULL classification phase
Input: x ∈ Rd datum to be classified; M , learnt model;
Output: Result ∈ {NORMAL,ANOMALY }

1: for t = 1..τ do . For each projection
2: CHlist : {CH |CH ∈Mt} . CHs in t projection
3: x̄t = Ptx . Project the new point
4: Result = ANOMALY
5: for i = 1..len(CHlist) do . For each convex hull
6: if x̄t ∈ CHlisti then
7: Result = NORMAL
8: end if
9: end for

10: if Result == ANOMALY then
11: Break
12: end if
13: end for



point, we have also included in this experimental study several
of the well-known machine learning algorithms for anomaly
detection: One-Class Support Vector Machine (O-SVM) [20],
Robust Covariance (RC) [21], Isolation Forest (IF) [22] and
Local Outlier Factor (LOF) [23]. Remember that none of these
classical algorithms work online. In addition, we decided to
include in the comparative analysis a previous version of our
algorithm (O-DSCH) that do not have the ability to subdivide
the convex hull in order to check the improvement obtained
with this new characteristic.

To evaluate the algorithms, several data sets were employed
of two types: five artificial and three real ones. The artificially
generated data sets allow us to evaluate the ability of the
method to adapt to certain geometric shapes, such as half-
moons or quasi-spheres separated in space. All are three-
dimensional. In addition, real data sets have been used to
evaluate the algorithm against higher dimensional data sets,
corresponding to detection of microcalcifications in mammo-
grams [1] (6 features), detection of fraud in credit cards [24]
(30 features) and detection of failures in data storage sys-
tems [25] (19 features). In the case of real data sets, to assess
the performance of each algorithm, data were partitioned into
training and test sets using a 5-fold cross validation. Instead,
for the artificial data sets, we created five versions of each
one, divided into train and test sets, preserving the shape but
varying aspects such as the size and distribution of data in
space. In both cases, the partition into train and test sets was
carried out using only data from normal class. Subsequently, to
each test set, 1% of anomaly data points were added to check
the performance using data of both types. The final results for
every data set were obtained as the average of the five folds. In
all cases the input variables have been previously normalized.
The value of the lambda parameter has been estimated for
each test using a grid search. To estimate the performance
of the methods during the experiments, we used standard
metrics for classification problems. Considering the anomalous
class as the positive one these statistical metrics are based on
the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) as follows:

• Recall: measures the probability of classifying an anoma-
lous data as such. It is defined as:

Recall = TP/(TP + FN)

• Specificity: measures the probability of classifying a
normal data as such. It is defined as:

Specificity = TN/(TN + FP )

• Accuracy: measure the probability of classifying a data
correctly, whether it is positive or negative. It is defined
as:

Accuracy = (TP + TN)/(V P + TN + FP + FN)

• Similarity: relates accuracy (A) and recall (R), allowing
the results to be compared more directly. It is defined as:

Similarity = 1−
(√

(1−A)2 + (1−R)2/
√

2
)

TABLE I
AVERAGE TEST RESULTS (%) ± STANDARD DEVIATION FOR THE 5

ARTIFICIAL DATA SETS.

Method Recall Specificity Accuracy Similarity

OSHULL 95.4± 1.3 94.4± 1.9 94.4± 1.7 94.7± 1.5
O-DSCH 73.6± 7.1 98.8± 0.9 98.5± 0.9 81.3± 4.0
O-SVM 94.7± 1.5 97.4± 1.3 97.4± 1.1 95.7± 1.3
RC 93.5± 1.8 99.5± 0.4 99.5± 0.4 95.3± 1.4
IF 87.1± 2.6 98.2± 0.9 98.1± 1.4 90.7±2.0
LOF 93.8± 1.7 99.5± 0.5 99.4± 0.3 95.6± 1.2

TABLE II
AVERAGE TEST RESULTS (%) ± STANDARD DEVIATION FOR THE

MICROCALCIFICATION DATA SET.

Method Recall Specificity Accuracy Similarity

OSHULL 70.8± 4.2 78.4± 2.3 77.9± 3.3 74.1± 3.2
O-DSCH 21.9± 24.6 99.8± 0.2 94.3± 2.0 44.6± 12.3
O-SVM 60.2± 8.4 90.5± 2.1 88.4± 2.7 70.7± 3.5
RC 72.7 ± 4.0 89.8± 2.5 88.6± 1.9 79.1± 2.9
IF 87.3± 2.8 75.7± 3.2 76.5± 2.3 81.1± 2.4
LOF 88.5± 1.9 74.7± 3.2 75.7± 2.6 80.9 ± 3.2

In the case of the OSHULL algorithm, to assess its behavior
in an online learning environment, only half of the training
data was used to create the initial convex hulls and the second
half was used to adapt them in real time, sample to sample.
However, OSHULL has shown similar results with partitions
ranging between 30-50% for this first phase, and 70-50% for
the second. The balance lies in having a representative initial
data set, while having a sufficiently large amount of data to
carry out the adjustment.

Table I summarize the average test results obtained using
the artificial data sets. To model these sets, OSHULL used 50
projections. Tables II, III and IV show the results obtained on
the real data sets using for the OSHULL, respectively, 125,
200 and 50 projections. Best results are boldfaced. Finally,
as a summary, Table V contains the average test similarity
obtained by the algorithms for the eight data sets. In addition,

TABLE III
AVERAGE TEST RESULTS (%) ± STANDARD DEVIATION FOR THE CREDIT

CARD FRAUD DATA SET.

Method Recall Specificity Accuracy Similarity

OSHULL 80.4± 4.4 96.2± 1.4 95.9± 2.7 85.8± 1.9
O-DSCH 32.4± 17.0 99.9± 0.3 98.8± 1.5 52.2± 11.4
O-SVM 87.4± 2.1 95.9± 1.3 95.7± 1.8 90.5 ± 2.8
RC 89.9± 1.5 89.9± 1.0 89.9± 1.1 89.9± 2.3
IF 91.3± 2.7 84.2±2.6 84.4± 3.1 87.3± 3.9
LOF 89.6± 1.9 89.0± 2.2 89.1± 3.0 89.3± 3.7



TABLE IV
AVERAGE TEST RESULTS (%) ± STANDARD DEVIATION FOR THE

FAILURES IN DATA STORAGE SYSTEMS DATA SET.

Method Recall Specificity Accuracy Similarity

OSHULL 84.1± 2.3 82.4± 1.1 82.4± 1.2 83.2± 1.7
O-DSCH 58.1± 3.0 99.4± 0.4 98.9± 1.1 70.3± 2.1
O-SVM 93.1± 1.5 79.6± 2.5 79.7± 2.1 84.8 ± 1.7
RC 71.9± 1.7 67.7± 1.3 67.7± 1.6 69.7± 1.6
IF 62.1± 1.4 56.5± 1.9 56.6± 2.5 59.2± 2.0
LOF 91.3± 1.3 80.4± 1.0 80.5± 1.2 84.9± 1.4

TABLE V
AVERAGE SIMILARITY (%) ± STANDARD DEVIATIONS AND AVERAGE

RANKING POSITION IN THE DIFFERENT TESTS.

Avg. similarity Avg. ranking position

LOF 91.6± 5.9 2.4
O-SVM 90.6± 6.6 2.6
RC 89.4± 8.8 2.6
OSHULL 89.3± 7.8 3.6
IF 85.1± 6.3 4.1
O-DSCH 71.7± 19.1 5.6

a ranking is shown as the average position occupied by the
algorithms considering all test results.

We can conclude that, thanks to the capacity of subdivision
of the convex hulls, the performance of the base algorithm has
been improved, as reflected in the average similarity, because it
is possible to more accurately represent the boundaries of non-
convex regions of data. In addition, compared to the classical
non online algorithms, although OSHULL occupies the fourth
position, its average similarity is only about 2.3 points from
the best. Therefore, we can state that we have been able
to obtain an algorithm with the ability to learn in real time
without implying an important decrease in its performance in
the detection of anomalies.

VI. CONCLUSION

The OSHULL algorithm fulfills the objectives established
in order to obtain an anomaly detection method with on-
line learning capability without losing significant performance
compared to several classic non online anomaly detection
methods. Due to its subdivision capacity, it is positioned as
an alternative for non-convex problems. OSHULL is easily
configurable through its parameters and it is not necessary to
know a priori the percentage of anomalous data in the data
set. It models are relatively light, it is not necessary to store
all the data used for the creation or adaptation of the convex
hulls. The model only needs the vertices of each convex hull
to decide if a new one is within the limits of the normal
class. Although the computational cost has been increased with
respect to the base algorithm, this can be compensated by
running OSHULL in a distributed and parallel way.
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