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Abstract—The goal of this paper is to develop a Brain Com-
puter Interface (BCI) based on voluntary eye blinks decoding. In
particular, the study was focused on the signals generated in the
cortex by eye blinking, which can be collected by frontopolar
scalp Electroencephalographic (EEG) sensors. Normally, EEG
recording systems meant for clinical applications are expensive
and cannot be used in large-scale user-friendly applications.
Thanks to a prototype made by the STMicroelectronics company,
based on an Open Source EEG project, a low-cost EEG recording
system was created in this work. The goal is to develop an
algorithm that can detect and discriminate between voluntary
(forced) and involuntary (natural) blinking so that, in the future,
an EEG-based BCI system that is able to control a device
through eye movements could be developed, which would be
of great use for all people with motor disabilities who can
control eye movements. The proposed algorithm is based on
a one-dimensional (1D) Convolutional Neural Network (CNN)
architecture. Frontopolar EEG signals were collected during
the execution of voluntary and spontaneous blinks by four
healthy subjects. A dataset of EEG epochs of including blinks
was constructed and used to train and validate the proposed
CNN. The proposed system allowed to discriminate the blinks
performed by the subjects (voluntary vs. involuntary) with an
average accuracy of 97.92%.

Index Terms—Brain Computer Interface, Electroencephalog-
raphy, Eye blink, Convolutional Neural Networks

I. INTRODUCTION

The term “interface” is used to identify a logical link
between two entities of different types that allows them to
communicate with each other. A Brain Computer Interface
(BCI) is a direct communication system between the brain and

an electronic or other device [1]. However, it does not depend
on the normal output pathways of the brain, consisting of
peripheral nerves or muscles. BCI technology can have a great
impact on the quality of life of people with motor disabilities,
allowing them to interact with virtual avatars in the computer,
with devices or with real objects through neural prosthetics
[2]. In recent years, BCI has gained a great deal of interest.
The increase in computational power and data storage allowed
scientists to apply deep learning techniques on large amounts
of biological data, previously intractable due to their size and
complexity [3]. Most of research works in the field of BCI are
based on Electroencephalography (EEG) or Electromyography
(EMG) with the aim of decoding the intended movement and
controlling a device accordingly [4]. EEG is a measure of the
electrical activity generated by the human brain, recorded on
the scalp of the head, whereas EMG records the electrical
activity of the skeletal muscles. Finding neural correlates of
the intended movement in the motor cortex can be of great
interest towards the goal of explaining how movements are
“planned” by the brain, however, if the ultimate goal is to give
a contribution to the development of a user-friendly BCI meant
for people with motor disabilities, decoding eye movements
could be of great help as many motor-impaired subjects can
effectively control eyes and may use such movements to
drive a device [5]. Eye movements can be detected by eye
trackers equipped with Charge-Coupled Device (CCD) sensors
in Infrared radiation (IR) camera [6] (which are unfortunately
expensive, not wearable and require practice to get familiar
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with it) or by EEG. Eyeball indeed behaves as a dipole with
a positive anterior pole (cornea) and a negative posterior pole
oriented (retina) and generates visible changes in the EEG
traces while moving. In particular, blinks are a semi-autonomic
rapid closing of the eyelid, typical blinking spikes in the EEGs
are generated when cornea is short-circuited to the eyelid [7].
Spontaneous (involuntary) blinking occurs without external
stimuli and conscious effort whereas voluntary blinking is
forced by the subject and involves the use of all the 3
divisions of the orbicularis oculi muscles [8]. Low-cost EEG
are widespread (even used to monitor neural deficit [9]) and,
although the quality of the recorded signals is not as good
as that provided by equipment meant for clinical purpose,
eye movements can be clearly recorded, due to the relatively
high amplitude of the related signals, as compared to the
background EEG due to the electrical activity generated by the
brain [7]. The aim of the present work is to develop a system,
based on the analysis of EEG signals collected by a low-cost
EEG recording equipment, that can effectively discriminate
between voluntary end spontaneous (involuntary) blinks. The
ultimate goal is to associate voluntary blinking to the control
command of a device in future applications.

In the context of the literature on BCI dealing with eye
blinks in EEG signals, most of papers consider blinks as
“artifacts” and aim at rejecting them [10], conversely, the
present paper considers them a possible source of control that
is worth to be analysed to decode the subject’s intention to
issue a command associated to voluntary (forced) blinking.

Some methods have been reported in the literature in this
context. Agarwal et al. [11] proposed an automated open
eye detection algorithm capable of estimating the timestamps
of the start and end of the blinks. Kartsch et al. [12] have
developed a drowsiness detection system based on the es-
timation of blinking rate from EEG recordings. Sharma et
al. [13] presented a method to detect eye closing/opening
from the EOG signals. They proposed the “Virtual Windows
Method” in order to carefully observe the blinks online and
asynchronously with a detection accuracy of 96.9%, 95.6%
and 91.9% for multiple blinks, eye closing and eye opening re-
spectively. EOG and EMG signals are applied simultaneously
with the EEG signals by Minati et al. [14] to control of a 5+1
degrees-of-freedom robot arm based on a wireless headband
in the form of four control methods meant on different signal
combinations. Ahmed [15] controlled a wheelchair through
eye blinks with a sensitivity of 80%. Left and right winks are
associated to “move left” and “move right”, double blinking is
associated to “move backward”. In their work no distinction
is made between spontaneous and forced blinking, single
blink is associated to the command “move forward” but the
possibility of false detection due to spontaneous blinking is
not investigated.

The present paper introduces a one-dimensional (1D) Con-
volutional Neural Network (CNN) to discriminate between
spontaneous and voluntary blinks recorded from four healthy
subjects (Sbj , with j=1,2,3,4), reporting high accuracy values
(97.92%). CNNs are indeed very useful for extracting features

from the input representation achieving encouraging and im-
pressive results in several applications [4], [16], [17].
The paper is organized as follows: Section II-A illustrates
our experimental paradigm for EEG recording, Section II-B
describes how the training and test dataset were constructed
from the recorded EEG signals, Section II-C introduces the
proposed 1D CNN, Section III reports the achieved results
and Section IV draws some conclusions and addresses future
extensions of the study.

II. METHODOLOGY

The flowchart of the procedure is described in Figure 1. The
main steps can be summarized as follows: (A) acquisition of
the EEG recording (channels FP1 and FP2); (B) detection of
blinks and subsequent selection of the related EEG epochs;
(C) the extracted epochs are used as input to a customized 1D
Convolutional Neural Network that will classify the epoch as
“voluntary blink” or “involuntary blink”. The proposed CNN
is featured by 1 convolution layer, 1 max pooling layer, 1
fully connected layer followed by a softmax layer which fulfils
the 2-ways (voluntary vs. involuntary blinks) classification and
will be described in detail in Section II.

A. EEG recording and preprocessing

Data acquisition setup and EEG data recording process were
carried out in the controlled lab environment at STMicroelec-
tronics Catania R&D (Italy). EEGs was acquired by means
of consumer-grade OpenBCI platform [19] [20] and the 4
channels Ultracortex Mark IV helmet. The brain activity of
4 healthy male and female volunteers (3 male and 1 female
subjects) was recorded and analyzed for each customized
setup. Their mean age was 23 years old and none of them
suffered from any disease or pain during the recordings. All
the experiments were conducted in a quiet and dimly lit room
with the subject seated in a comfortable chair. The subject
received information and instruction about the experimental
setup. The reference and ground electrodes were on the ear
clip (A1 and A2 position) and the EEG electrodes were placed
on the forehead above the eye (Fp1 and Fp2 position) and were
used as input channel (Figure 2). A sampling frequency of 250
Hz with 24 bit/s resolution was used to collect EEG signals.
The brain-computer interface device was used to record 15-
minute sessions. The registration protocol was structured as
follows. For each subject, two recordings were acquired: in the
first recording, the subject was asked to blink involuntarily, in
a natural way; in the second recording, the subject was asked
to blink voluntarily at regular intervals of 5 seconds, with the
support of a sound stopwatch that marked the time interval.

The acquired EEG time series were processed off-line
using MATLAB® R2018b. Each EEG signal was first band-
pass filtered between 1 and 49Hz by using a 2nd order
Butterworth filter. A DC correction was performed. No further
pre-processing was applied.

In this study, an open-source biosignal data acquisi-
tion (DAQ) and a 3D printed Mark IV EEG helmet with
STM32L475 Chip on Board (CoB), as illustrated in Figure



(A) EEG recording and preprocessing (B) Dataset preparation

(C) Proposed CNN architecture
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Fig. 1. Procedure of the proposed classification framework. (A) Ultracortex Mark IV helmet is used for recording EEG signals from channels FP1 and FP2,
subsequently filtered between 1 and 49Hz by using a 2nd order Butterworth filter. (B) Voluntary and Involuntary blinks are detected through PeakUtils package
[18] (C) and used as input to the proposed 1D Convolutional Neural Network that performs the binary classification task (voluntary blink vs. involuntary
blink).

Fig. 2. 10/20 System consisting of the 19 channels montage (Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz). A1
and A2 (highlighted in red) represent the reference and ground electrodes,
respectively; whereas, Fp1 and Fp2 (highlighted in green) represent the
electrodes used to record the EEG signals.

3, was constructed to record EEGs. Our CoB supports 4-
EEG channel screwable dry 5 mm Ag/AgCl electrodes, ear
clip electrodes, amplifier and data recording using customized
GUI. Dry electrodes do not require any skin preparation or
conductive pastes. Ultracortex Mark IV EEG helmet carries
35 node to accommodate electrodes placemat based on Inter-
national 10-20 system. Our CoB uses as input two differential
high-impedance amplifiers [21] (about 40 kΩ) [22]. EEG

stream data are transferred from CoB to PC through an USB
cable.

B. Dataset preparation

Blink signals’ magnitude is twice larger than EEG signals
generated by the brain cortex and exhibit a characteristic
waveform. A typical eye-blink can be characterized by its
waveform pattern (spike), amplitude and duration. An eye-
blink waveform pattern is defined as the voltage variation
over the time during a natural or forced eye-blink. Eye-
blink amplitude is the depth of the waveform pattern and
the duration is simply the time taken by the user to perform
a complete eye-blink. To this aim, the EEG traces recorded
and preprocessed as described in II-A were stored in optical
disk for further analysis. Our DB manage EEGs stored as
matrices. In each matrices, the rows represent channels (Fp1,
Fp2) and columns represent the samples. EEGs are then further
processed to detect the blinks and select the epochs related
to blinks. Since blinks show up as spikes, an algorithm of
peak detection was applied to detect spikes. In particular, peak
detection was carried out by the PeakUtils package [18] that
includes functions that find peaks in the data.

This library implements a function for approximating the
baseline by using an iterative polynomial regression algorithm.

PeakUtils finds the peak and puts the corresponding time
label into a vector t, where t[i] is the time sample of the



Fig. 3. Ultracortex Mark IV EEG.

ith detected peak. Blink EEG epochs were extracted using
a rectangular window with a length of T = 0.8s. The epochi is
represented by x[n], with n=0,1,...,N-1 where N=T x fs, with fs
= 250Hz. Each x[n] contains N= 0.8 x 250 =200 samples. Each
xi EEG segment starts from the ti index and ends in ti +200
samples, both for voluntary and involuntary blinks. It is to be
noted that, the initial seconds of a blink were discarded since
there is a common trend for voluntary and involuntary blinks
(up to the peak) not useful for binary classification purpose.

C. Convolutional Neural Networks: Backgroud

Convolutional Neural Networks (CNN) belong to the deep
learning architectures commonly employed for the classifica-
tion of 2-dimensional images or videos [23], [16]. However,
CNN have been recently developed to analyze also 1D signals
(such as EEG). 1D CNN and 2D CNN have structural differ-
ences (one processes mono-dimensional arrays; the other one,
2-dimensional matrices) but are based on the same principle of
operation. A standard CNN contains several processing mod-
ules consisted of convolution and sub-sampling (or pooling)
operations, followed by a multi-layer fully connected neural
network. The convolutional layer consists of C filters that
perform the dot product (i.e., convolution operation) with the
input data. Each filter moves along the input with a specific
step size (sharing the same weights), estimating C feature
maps. The extracted feature maps are usually downsampled
through a max or average pooling layer, where a filter scans
the input feature map and computes the maximum or the mean
of each sub-region under analysis. Note that, in this study,

the max pooling operation was used since allows to capture
better invariant features [24]. The network ends with one or
more fully connected layers (as a standard multi-layer NN
configuration) for performing the discrimination task.

1) Proposed CNN: The proposed 1D CNN is mainly com-
posed of 1 convolutional layer (followed by a non-linear
activation function), 1 dropout layer and 1 pooling layer.
The network ends with a standard multi-layer fully connected
neural network with softmax output function for the 2-way
classification task: voluntary vs. involuntary blinks (Figure 4).
Specifically, the proposed CNN is designed to receive as input
EEG epochs sized 1 x 200 x 2 (where 200 is the number of
samples in a 0.8s window, as described in Section II-B; 2 is
the number of channels taken into account: FP1 and FP2). The
convolution layer has 10 1-dimensional filters sized 1 x 10.
Every filter convolves with each temporal input representation
with stride and padding parameter of 1 and 0, respectively,
producing 10 feature vectors (i.e., feature maps) sized 1 x 191.
After applying the sigmoid non-linearity, the dropout layer
(with dropout hyper-parameter set to 0.5) is used to prevent
overfitting [25]. Note that we employed a sigmoidal function
since we observed better performance than the Rectified Linear
Unit function (ReLU), typically used in a CNN architecture.
The (max) pooling layer consists of a filter sized 1 x 8 that
slides over each feature vector with a step of 8 reducing the
spatial resolution to 1 x 23. Finally, the 10 features maps are
flattened into a single 1-dimensional vector of size 1 x 230 and
used as input to a 1-fully connected layer NN (of 10 hidden
neurons) followed by a softmax layer that performs the binary
classification.

The network was implemented in Keras [26] with Ten-
sorflow backend and trained using the default parameter of
adaptive moment estimation (ADAM) optimizer [27] for 50
iterations and with mini-batch size of 60 until the cross-
entropy function converged.

III. RESULTS

In this work, a dataset of 1080 EEG epochs (540 related
to voluntary blinks and 540 related to involuntary blinks) was
generated from 8 EEG signals, recorded from 4 subjects (Sbj ,
with j=1,2,3,4) and used as input to the proposed 1D CNN
(Section II-C). Specifically, in order to estimate the effec-
tiveness of the developed model the leave-one-out validation
technique was used [28]. In particular, the proposed CNN was
trained iteratively by using the whole dataset and leaving out
epochs of 1 subject at time. Hence, four models were trained
and the instances (i.e., epochs of Sbj) left-out represented the
test set of the jth network. The classification performance
were evaluated using the following standard metrics:

PRECISION =
TP

TP + FP

RECALL =
TP

TP + FN
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Fig. 4. 1D CNN architecture. It includes 1D convoulutional layer, 1D max pooling layer, 1 fully connected layer and 1 softmax output for classification
puporse. It is to be noted that the convolutional layer is followed by a sigmoid activation function and a dropout layer. As an example, in the figure, the
proposed 1D CNN receives an involuntary blink correctly classified as involuntary.

F −measure = 2 ∗ PRECISION ∗RECALL

PRECISION + RECALL

ACCURACY =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, FN represent the true positive, true nega-
tive, false positive and false negative, respectively. Specifically,
TP and TN are the number of voluntary and involuntary blinks
classified correctly; FP is the number of involuntary samples
incorrectly classified as voluntary and vice versa, FN is the
number of voluntary instances misclassified as involuntary.
Table I, reports the confusion matrices of each test set (i.e.,
subject left-out). For example, for Sb3 only 1 epoch was
erroneously classified (FP=1). Table II reports the voluntary
vs. involuntary blinks classification performances. As can be
seen, the proposed 1D CNN achieved very good values in each
test scenario, reporting accuracy rates up to 98.75%, 95.83%,
99.58%, 97.50% when epochs of Sb1, Sb2, Sb3 and Sb4
were used as test set, respectively. Furthermore, remarkable
scores of recall, precision (and consequently F-measure) were
also observed. In order to assess the overall efficiency of
the proposed model, the average performances were evaluated
over the test sets and expressed as mean value ± standard
deviation. Notably, the average values of recall, precision, F-
measure and accuracy were of 97.2 ± 4.85%, 97.92 ± 1.91%,

± 97.46 ± 2.1% and 97.92 ± 1.41%, respectively. These
results were confirmed also by evaluating the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC).
As an example, Figure 5 shows the ROC curve evaluated
when epochs of Sb3 were used as test set, reporting an
AUC= 99.98%. Similar results were achieved for Sb1, Sb2
and Sb4. Average training and test times were recorded to
evaluate the delay introduced by the neural network in real
time. Simulations were performed in an Intel Atom E3950
CPU with low consumption, average training and test times
were 15.9s and 0.8s, respectively.

IV. DISCUSSION AND CONCLUSIONS

This work addressed the importance of analyzing eye move-
ments for the development of BCI systems meant for people
with disabilities who are able to effectively control their eyes.
Eye movements can be detected by infrared eye-trackers,
which however are not affordable, or by means of EEG sensors
placed on the forehead, to detect the variations in the electrical
scalp potentials caused by eyeballs’ movements. There are
just a few papers in this topic, indeed, signals generated by
eye movements are usually considered artifacts in the field
of EEG-based BCI with the aim to detect and remove them.
Conversely, in this work, eye movements are considered a
possible source of control command generation. The attention
was focused on blinks, which are clearly visible in EEG
recordings, in particular in fronto-polar channels (sensors Fp1



TABLE I
CONFUSION MATRICES EVALUATED ON EACH TEST SET, WHERE: TEST SET 1 INCLUDES EPOCHS OF SUBJECT 1 (Sb1); TEST SET 2 INCLUDES EPOCHS OF

SUBJECT 2 (Sb2); TEST SET 3 INCLUDES EPOCHS OF SUBJECT 3 (Sb3); TEST SET 4 INCLUDES EPOCHS OF SUBJECT 4 (Sb4);

Confusion
matrix
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TABLE II
VOLUNTARY AND INVOLUNTARY BLINKS CLASSIFICATION

PERFORMANCES (RECALL, PRECISION, F-MEASURE, ACCURACY)
EVALUATED ON EACH TEST SET (I.E., LEFT-OUT SUBJECT (Sbj WITH

j=1,2,3,4))

Test set Voluntary vs. involuntary blinks
Recall Precision F-measure Accuracy

Sb1 100% 97.5% 98.73% 98.75%
Sb2 88.8% 100% 94.07% 95.83%
Sb3 100% 99.17% 99.58% 99.58%
Sb4 100% 95% 97.44% 97.50%

Average 97.2 ± 4.85% 97.92 ± 1.91% 97.46 ± 2.1% 97.92 ±1.41%

Fig. 5. ROC curve of the proposed 1D CNN for the voluntary vs. involuntary
blinks classification, when epochs of Sb3 are used as test set.

and Fp2). The goal was to discriminate between involuntary
(spontaneous) and voluntary (forced) blinks with the ultimate
goal of associating voluntary blinks with a control command
in a future BCI application. To this end, 4 healthy subjects
were recruited and underwent EEG acquisition (through sen-
sors Fp1 and Fp2) during the execution of spontaneous and
forced blinks. The recorded EEGs were used to construct two
balanced dataset (spontaneous blink dataset and forced blink
dataset) of EEG epochs containing blinks. A 1D CNN was

designed which receives EEG epochs as input and label them
as voluntary/involuntary. The proposed CNN has a shallow
architecture with i) one convolutional layer; ii) one dropout
layer and one pooling layer. The network ends with a standard
multi-layer fully connected neural network with softmax out-
put function for 2-way classification task. The proposed system
provided an accuracy of 97.92%. To the best of our knowledge,
this is the first work that aims at distinguishing voluntary from
forced blinks. Sharma et al. [13] proposed an eye opening and
closing detection system, associating such movements with
the intention to perform pick and place tasks of a robotic
arm. Ahmed et al. [15] controlled a wheelchair by issuing
the “move left” and “move right” commands when left and
right winks were detected, respectively, and “move backward”
’when a double blink was detected. Single blink was associated
to “move forward” but no distinction was provided between
spontaneous and forced blinking thus the possibility of false
detection due to spontaneous blinking was not investigated.
The system here proposed provided promising results.

In the future, the input size will be further reduced in
order to avoid useless computation and a larger cohort of
patients will be taken into account in order to better validate
the performance and with the goal of implementing a real
time classification system. Specifically, the neural network
will be integrated into the electronic card on the helmet in
order to achieve a real-time classification. In addition, the
proposed system will be test also to classify other types of
eye movements.
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