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Abstract—Parkinson’s disease is a degenerative movement
disorder causing considerable disability. However, the early
detection of this syndrome and of its progression rates may
be decisive for the identification of appropriate therapies. For
this reason, the adoption of Neural Networks to detect this
disease on the base of walking information is gaining more and
more interest. In this paper, we defined a Deep Neural Network
based approach allowing one to exploit the information coming
from various sensors located under the feet of a person. The
proposed approach allows one to discriminate people affected by
the Parkinson syndrome and detect the progression rates of the
disease itself. To evaluate the proposed architecture we used a
known dataset with the aim to compare its performance with
other similar approaches. Moreover, we performed an in-depth
hyper-parameter optimization to find out the best neural network
configuration for the specific task. The comparison shows that the
proposed classifier, trained with the best parameters, outperforms
the results proviously obtained in other studies on the same
dataset.

Index Terms—Parkinson Disease, Gait Analysis, Deep Learn-
ing, Dense Neural Networks, Parameter Optimization

I. INTRODUCTION

Parkinson disease (PD) is a chronic and degenerative ner-
vous system disorder that affects movements. The symptoms
are an increasing difficulty to walk, to speak or to complete
other simple tasks. For this reason, the monitoring of gait
outcomes through wearable technology (e.g., inertial sensors)
can be a useful and inexpensive alternative to evaluate the
presence of this disorder in a controlled and daily living
environment [10]. According to this, in the last years, a
great interest was addressed towards the analysis of data
extracted from sensors able to identify freeze of gait (FOG)
to discriminate ill and healthy subjects [29], [9], [25], [22],
[2]. However, the recognition of ill and healthy subjects when
FOG already appeared is poorly useful to perform PD early
identification.

Conversely, the early identification of PD and the constant
monitoring of the PD severity can be very useful to identify
the appropriate therapies to slow down the progression of the
disease (i.e., preserving the integrity of the brain neurons)
and to evaluate their effectiveness and calibrations over time.
Basing on the above considerations, in this study we propose
a deep learning approach allowing one to detect PD and PD
severity levels by means of the analysis of data extracted from
wireless sensors. Compared with traditional machine learning

techniques, the proposed deep learning approach is more
suitable to handle multimodal data. Furthermore, deep learning
algorithms can outperform the machine learning ones when a
sufficient number of data, able to represent the complexity of
the studied problem, is provided [8].

The main contribution of this paper is the application of
a Deep Neural Network (DNN) architecture, to learn from
data extracted by sensors located under the feet of a person to
discriminate ill and healthy subjects, as well as to evaluate the
progression rate of the Parkinson Disease. The effectiveness
of the proposed architecture is also evaluated, for the first time
in the literature, in the case of subjects that, while walking,
are also involved in another activity (to perform a count down
during their walking). Moreover, another contribution of this
study consists in a high parameter optimization analysis aimed
to find the best parameters’ combination for the proposed
architecture. Finally, the proposed approach is compared with
similar existing approaches using the same dataset, outputting
the best results ever reached in the literature. In the following
Section II, a general background on Deep Learning (DL) is
briefly introduced. In Section III, a brief discussion of the
related work is reported. The proposed approach is described
in Section IV, while the experimental results are discussed
in Section V. Finally, in Section VII and VIII, the threats to
validity and the conclusions are reported, respectively.

II. BACKGROUND ON DEEP LEARNING

Deep Learning is a set of recent machine learning tech-
niques, often used in classification problems[1], allowing one
to simulate the information processing of biological nervous
systems [7]. A DL architecture consists of a set of connected
layers. In particular, each layer extracts, from its input data,
different levels of abstraction, organizing concepts in a hier-
archical structure that can be used to perform feature learning
and pattern classification. DL algorithms are considered more
suitable (with respect to other machine learning approaches)
to be applied in contexts characterized by a high level of
complexity (several features and a huge number of data) in
order to obtain high performance [5], [6]. Basing on the
described characteristics, in the last year, several applications
of DL in health informatics have been proposed with very
encouraging results [16].
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This work considers a multiple layers perceptron (MLP)
classifier made of a feed-forward artificial neural network with
at least five layers of nodes. The MLP approaches differ from
the linear perceptron approaches for the presence of multiple
layers and of non-linear node activation. These factors allow
one to distinguish data that cannot be separated in a linear
manner. Looking at the neural network training, it can be
generally split into two phases: the forward and the backward
phase. In the forward phase, the nodes’ activation follows one
another from the input layer to the output one: except for
the input nodes, all the others represent neurons performing
node activation through an ad-hoc function [12]. Successively,
the backward phase permits one to improve the network
performance by assigning to the nodes updated weights and
bias values (if necessary), in order to improve the overall
performance of the neural network.

III. RELATED WORK

In the recent literature, one can find various papers dealing
with deep learning and gait analysis in patients affected by
PD. Several recent studies have regarded the identification of
freeze of gait (FOG) to distinguish ill subjects from healthy
persons, as well as the degree of severity of the disease in ill
patients [29], [9], [25], [22], [2]. However, FOG consists of
an episodic inability to move and typically affects patients
with advanced PD [29]; thus it is not useful to evaluate
abnormalities occurring in the early stages of the disease.
Starting from these considerations, in the last years some
studies have focused on gait analysis. The gait and its related
features, according to the literature, are far more suitable to
identify PD in the early stages [20]. Moreover, differently from
the aforementioned researches, in [17], [28] deep learning
approaches are also used to evaluate the progression rates of
the disease.

The contribution in [17] concerns the detection of ill and
healthy people, as well as the classification of the severity of
PD. According to the authors, they propose the first algorithms
performing severity prediction based on a Unified PD Rating
Scale. The considered dataset is the PhysioNet one1. The used
deep learning architecture encompasses 18 one-dimensional
convolutional networks, made of eight layers each, working
in parallel, and then a convolutional network, composed of
two fully connected layers, as well as of an output layer
and of a concatenate layer, grouping together the outputs
of the first 18 neural networks. The authors compare their
work also with the one of Zhao at al. [31], which uses the
same dataset and focuses on the same problems. However,
in this contribution, the authors employ a different deep
learning architecture, composed of two parallel branches, one
with a 2D convolutional network and one with a recurrent
neural network, namely an LSTM network. They obtained an
overall accuracy of 98.61% on the whole PhysioNet dataset.
The overall dataset accuracy values about severity detection
have not been computed. Finally, in [28] the authors focus

1https://physionet.org/content/gaitpdb/1.0.0/

on the already mentioned PhysioNet dataset and on the al-
ready investigated tasks of detecting ill and healthy persons
(2 classes), as well as of multiclass severity classification.
However, in this case the data from the two feet are considered
separately as input of a deep neural network made of two
parallel and identical branches. Both of them are constituted
of a 2-layer convolutional network, followed by an attention-
enhanced LSTM. The two branches are finally concatenated
and submitted to a softmax layer for the final classification.
The data of the dataset have been segmented according to
gait cycles and, in the experiments, the authors considered
both the three sub-datasets singularly and altogether. For the
binary classification, the achieved accuracy is 99.07% over the
overall dataset. On the other hand, for the multiclass severity
classification, the accuracy result is 98.03%.

In this paper, we propose a classification approach based on
a deep neural network based on perceptrons. We decided to
test the proposed approach on the aforementioned PhysioNet
dataset, with the aim to directly compare the obtained results
with the baseline studies cited above. With respect to the
cited studies, an in-depth hyper-parameter optimization phase
is performed as well, in order to provide useful insights about
the parameter impact over the resulting classification quality.

IV. APPROACH

In this section, we first describe the proposed feature
model and then we focus on the used deep neural network
architecture.

A. The proposed feature model

In this paper, the identification of PD is based on the dynam-
ics of the Vertical Ground Reaction Force (VGRF), measured
by sensors under the feet of a subject at each sampling instant.
The overall set of considered features is defined in Table I.
The table reports on the first column the feature acronym.
For each feature, in the second column, a brief description is
reported. In detail, the first eight features describe the value
of vertical reaction force (in Newton), captured by sensors
located in different points of the right foot. Similarly, the
second group of eight features describes the value of vertical
reaction force (in Newton), captured by sensors positioned in
different points of the left foot. The RF total and the LF total
features represent the total force under the right and left foot,
respectively. Finally, some of the involved patients performed
a countdown (subtracting 7 downward to zero) during their
walking. According to this, we added a new binary feature
(called 7Count), assuming the following values: 1 when during
walking the subject performed the aforementioned countdown,
or 0 in case of normal walking (no countdown is performed
during the walking). In this way, we wanted to test the
relevance or not of adding a further task during walking in
the PD classification. This has not been performed before in
the related work using this same dataset.

B. Deep Neural Network model

In this work, we employed two deep neural networks with
the aim to: i) distinguish ill subjects from healthy subjects



Fig. 1. The used neural network model for the binary (pink box) and multi- (blue box) classification problem.

(binary classification), ii) distinguish subjects on the base of
different degrees of illness (multinomial classification). The
architecture of both deep neural networks is depicted in Figure
1, consisting of a variable number of hidden layers (from
six to nine) and of different output layers for the two cases.
In particular, the figure shows the case of the binary output
layer (in pink) allowing for the discrimination of ill subjects
from healthy ones. Alternatively, the same architecture (with a
different output layer) can be applied to discriminate subjects
on the base of the degree of severity of the disease (the blue
rectangle shows the multiclass output layer consisting of an
ordinal scale of severity levels in the set {0, 2, 2.5, 3}). The
overall architecture is composed of:

• one Input layer: the entry point of the network, en-
compassing a number of nodes equal to the number
of considered features (the 19 of the considered feature
model);

• an initial Batch Normalization layer: this serves to im-
prove the training of deep feed-forward neural networks.
It allows one to increase the speed of training, to adopt
higher learning rates, to initialize flexible parameters in
a more flexible way, as well as to saturate possible non-
linearities. We added this layer because batch normalized
models can provide higher accuracy on both validation
and test, thanks to a stable gradient propagation within

the network itself [14].
• a variable number of Hidden layers: made of artificial

perceptrons, whose output is calculated as a weighted sum
of their inputs and passed through a certain activation
function. In the evaluation section, we experimented with
a different number of hidden layers, in order to reach the
best performance.

• a Dropout layer: it immediately follows each hidden
layer. This layer aims to prevent over-fitting by imple-
menting a regularization technique. This is achieved by
turning off randomly several neurons in a layer according
to a certain probability p from a Bernoulli distribution.
This probability is usually the same for each node of the
coupled hidden layer and it usually ranges from 0.0 to
0.5.

• one Output layer: this layer produces the final classifica-
tion outcome and is usually made of a number of neurons
equal to the number of classes. We used a dense layer and
a softmax function for the neurons of this layer for both
binary and multinomial classification problems.

The just described deep neural network model was trained
by using categorical cross-entropy [18] as a loss function.

V. EXPERIMENT DESCRIPTION

In this section, we present the application of the deep
neural network architecture described in Section IV-B on an



TABLE I
DESCRIPTION OF THE CONSIDERED FEATURES.

Acronym Description

RF1 Vertical reaction force from the sensor located in the heel
under right foot

RF2 Vertical reaction force from the sensor located in the left
rear part of right foot

RF3 Vertical reaction force from the sensor located in the right
rear part of right foot

RF4 Vertical reaction force from the sensor located in the left
part of the inset of right foot

RF5 Vertical reaction force from the sensor located in the right
part of the inset of right foot

RF6 Vertical reaction force from the sensor located in the left
part of the sole of right foot

RF7 Vertical reaction force from the sensor located under the
ball of right foot

RF8 Vertical reaction force from the sensor located under the
toes of right foot

LF1 Vertical reaction force from the sensor located in the heel
under left foot

LF2 Vertical reaction force from the sensor located in the left
rear part of left foot

LF3 Vertical reaction force from the sensor located in the right
rear part of left foot

LF4 Vertical reaction force from the sensor located in the left
part of the inset of left foot

LF5 Vertical reaction force from the sensor located in the right
part of the inset of left foot

LF6 Vertical reaction force from the sensor located in the left
part of the sole of left foot

LF7 Vertical reaction force from the sensor located under the
ball of left foot

LF8 Vertical reaction force from the sensor located under the
toes of left foot

RF Total Total force under right foot

LF Total Total force under left foot

7Count Whether the subject is counting down

OpenData dataset. In the following subsections, a description
of the analyzed datasets as well as of the experiment settings
are reported.

A. Dataset description

In this study, we adopted an open data dataset2. We decided
to use this dataset for two main reasons. Firstly, the dataset
is made of three different sub-datasets, each one coming
from the contribution of three different neuroscience research
experiments [30], [13], [11]. This ensures that the extracted
measures are considered valuable in the medical community.
Secondly, the only existing approaches that are comparable
with the proposed one are tested on the same dataset.

The whole dataset encompasses 93 patients with idiopathic
PD (59 males and 34 females) and 73 healthy control subjects
(40 males and 32 females). Every participant walked in his/her
usual pace for about 2 minutes, while wearing a pair of
shoes with force sensors. All of these studies collected the
data from 16 sensors located under the sole of each foot, 8

2https://physionet.org/content/gaitpdb/1.0.0/

per foot and all the sub-datasets are consistent and contain
data that can be related to the feature model proposed in
Section IV-A, except for the 7Count feature (available only
for Ga sub-dataset). Table II reports some statistics for the
considered whole dataset (last row) and the composing sub-
datasets (called Ga, Ju, and Si, respectively). For each dataset
the number of considered subjects (second column) and the
number of total instances (third column) are reported. The total
number of subjects is then split, for each considered dataset, in
four different groups representing a different level of disease
severity. The referring severity scale is the Hoehn and Yahr
scale3. It usually comprises 5 levels of severity of PD, ranging
from 1 to 5. In our experiments, we considered only stages 0
(healthy subject), 2, 2.5 and 3, since these are the only stages
exhibited by the patients in the considered datasets.

B. Experiment setting

Two different experiments have been carried out with the
aim to evaluate the capability of our proposed classifier to
distinguish, respectively: i) ill subjects and not ill subjects and
ii) the level of severity of the subject’s disease. Each exper-
iment has been performed on all the datasets listed in Table
II using as feature model the one described in Table I (except
for the 7Count feature). Moreover, for the Ga sub-dataset,
we also considered the 7Count feature and we performed a
further experiment aiming to evaluate whether the value of this
feature affects the obtained results. Furthermore, we performed
a thorough hyper-parameter optimization step [3] to find the
best combination of the parameters reported in III. The best
hyper-parameters have been found using a Sequential Bayesian
Model-based Optimization (SBMO) approach, implemented
using the Tree Parzen Estimator (TPE) algorithm as defined
in [4].

As the table summarizes, the following ranges were consid-
ered:

• Network size: we considered three levels of network
sizes (small, medium and large), depending on the actual
number of layers. A small sized network contains a
maximum of 1.5 mln of learning parameters. A medium
one is composed of a number of parameters between 1.5
mln and 7 mln, whereas a large network is made up of
more than 7 mln and up to 22 mln parameters;

• Activation function: we used the well known and widely
adopted ReLU activation function and we also experi-
mented two activations function that have shown good
results in recent studies, called Swish and Mish [21], [19],
respectively. It is well known that ReLU suffers from the
”dead” units problem: during training some ReLU units
always output the same value for any input. This happens
by learning a large negative bias term for its weights
during training and also means that it takes no role in
discriminating between inputs. When a ReLU unit ends
up in this state, it is very unlikely to be subsequently
recovered (because the function gradient at 0 is still 0

3https://parkinsonsdisease.net/diagnosis/rating-scales-staging/



TABLE II
STATISTICS OF THE CONSIDERED DATASETS.

Dataset Total Subjects Total Instances Severity 0 Severity 2 Severity 2.5 Severity 3 Total Patients
Ga [30] 47 1,361,382 18 15 8 6 29
Ju [13] 55 1,180,552 26 12 13 4 29
Si [11] 64 775,616 29 29 6 0 35
Whole 166 3,317,550 73 56 27 10 93

TABLE III
OPTIMIZED HYPER-PARAMETERS AND CONSIDERED RANGES.

Hyperparameters Ranges
Batch Size {128, 256, 512}

Network Size {Small, Medium, Large}
Activation Functions {ReLU, Swish, Mish}

Dropout in range [0.1, 0.2]
Optimization algorithm {SGD, Adam, RMSProp, Nadam,

Adamax, Adagrad }
Learning Rate in range [5, 15] (normalized, refer

to text)

meaning that SGD will not alter the weights). There
are variants, like ”Leaky” ReLU, with a small positive
gradient for negative inputs, that are an attempt to address
this issue and give a chance to recover. We choose for
our comparison Swish and Mish since they both do not
suffer from the dead neurons issue and deal better with
the vanishing gradient problem.

• Learning rate: it ranged from 5 to 15, normalized with
respect to the optimization algorithm. For instance, using
the SGD optimizer, the range was from 0.005 to 0.15;

• Number of layers: the numbers of considered layers
varied from 5 to 9;

• Batch size: batch sizes greater than 512 make the training
process less stable and the final accuracy was not satis-
factory hence we compared three batch sizes (128, 256,
and 512);

• Optimization algorithm: we tested several optimization
algorithms to minimize the loss, such as the Stochastic
Gradient Descent (SGD) [23], Adam [15], RmsProp [27],
Nadam [27], Adamax [26], and Adagrad [26] optimizers.
In particular, SGD has been integrated in all experi-
mentations with Nesterov Accelerated Gradient (NAG)
correction to avoid excessive changes in the parameter
space, as specified in [24];

• Dropout rate: we considered different dropout rates
belonging to the interval [0.1, 0.2] with a step of 0.05.

Both the binary classification (ill/not ill subjects) and the
multinomial classification problem (classification on the base
of the level of severity of the subject’s disease) were performed
with a changing number of epochs to validate every single
considered dataset, and then, the whole merged dataset.

Four known metrics have been used to evaluate the classi-
fication results: Accuracy and Validation Accuracy, Loss and
Validation Loss. The error has been evaluated with the Mean
Squared Error (MSE). The accuracy has been computed as the
ratio of the sum of true positives and true negatives to the total

TABLE IV
ACCURACY OBTAINED BY THE PROPOSED BINARY CLASSIFIER COMPARED

WITH OTHER EXISTING SOLUTIONS.

Dataset Proposed
Approach

Approach 1
[17]

Approach 2
[31]

Approach 3
[28]

Ga 99.52% - 98.7% 99.31%
Ju 99.29% - 98.41% 99.29%
Si 99.40% - 98.88% 99.16%

Whole 99.37% 98.7% 98.61% 99.07%

number of classified samples in the test set. The validation
accuracy is the accuracy calculated on the validation dataset.
The loss implies how poorly or well a model behaves after
each iteration of optimization.

VI. RESULTS AND DISCUSSION

In this section, we only discuss some of the obtained
results. Figure 2 shows the evaluation of the accuracy and
the validation accuracy of the binary classifier, across a 10-
fold cross-validation process and versus an increasing number
of epochs, for each of the considered datasets (the three sub-
datasets and the whole unified one). For the Ga and Si datasets,
good results are obtained with a number of layers equal to five.
For the Ju and the whole dataset, the best results are obtained
when the number of layers is 8. In both cases the best results
were obtained using mish activation function. It can be seen
that, for each considered dataset, the validation accuracy is
better than the training accuracy with a very smooth trend of
the curve an with a top value about at the 100th epoch for
Ga and Si and 150 epochs for Ju and the whole datasets. The
best obtained accuracy values for each considered dataset are
reported in the second column of Table IV. In the columns
from three to five, the table shows the corresponding values
obtained in other comparable studies (the reference is reported
as well). Looking at the table, we can conclude that the
obtained accuracy is almost always greater than the accuracy
obtained using alternative approaches on the same datasets.

As concerns the multi-classifier, Figure 3 shows the ac-
curacy and the validation accuracy, across a 10-fold cross
validation process and versus an increasing number of epochs,
for each of the considered datasets. The number of layers
providing the best results for the used DNN is 5 for datasets
Ga, Ju, and Si, while it is 7 for the whole merged dataset. The
same considerations drawn in the previous paragraph hold:
for each considered dataset, the validation accuracy increases
smoothly and is quite better than the training accuracy. The
best values are reached about at the 100th epoch for the three
sub-datasets and at the 200th epoch for the merged dataset.



Fig. 2. Accuracy and validation accuracy, for each considered dataset, using the binary classifier.

Fig. 3. Accuracy and validation accuracy, for each considered dataset, obtained by using the multi-classifier.



TABLE V
THE LIST OF THE 6 PERMUTATIONS PROVIDING THE BEST VALIDATION ACCURACY ON THE WHOLE DATASET FOR THE MULTINOMIAL CLASSIFICATION.

ID Network
Size

Activation
Function

Learning
Rate

No.
Layers

Batch
size

Optimization
Algorithm

Dropout
Rate Val. Acc. Val. Loss Training

Time (sec)
No. Param.
(mln)

1 medium mish 12 8 128 SGD 0.20 0.9910 0.019 34604.15 12
2 medium swish 8 8 128 SGD 0.15 0.9899 0.019 24481.79 12
3 medium relu 12 8 128 RMSProp 0.20 0.9885 0.023 34375.59 12
4 small relu 9 7 256 SGD 0.15 0.9881 0.024 15685.67 7
5 small relu 9 7 256 Nadam 0.15 0.9877 0.026 18881.39 7
6 small relu 9 6 256 SGD 0.15 0.9857 0.032 15595.17 0.69

Moreover, Figure 4 shows, for the binary classifier (left side)
and for the multi-classifier (right side), the values obtained for
the accuracy and validation accuracy when the 7Count feature
is considered or not, respectively. The adopted dataset for this
experiment is Ga, since it is the only one containing also this
further feature. Looking at the figure, we can observe that,
when the 7Count feature is used, the obtained results are a
little improved of about 0.2%-0.3%.

Finally, Table V reports the list of the parameters sets
giving the best validation accuracies in the multi-classification
experiment performed on the whole dataset. In the table, we
report the validation accuracy, the validation loss, the training
time and the number of parameters (mln) obtained for different
combinations of: Network Size, activation function, learning
rate, number of layers, batch size, optimization algorithm and
dropout rate. As shown in the table, the best permutation has
a dropout rate equal to 0.20, while almost all the remaining
have a value equal to 0.15. It is also interesting to observe that,
among smaller networks, ReLU is still competitive compared
with Mish and Swish. For medium and large networks Swish
and Mish perform better instead. This is also confirmed
by a direct comparison among different activation functions
reported in Figure 5, showing the trend of accuracy for ReLu,
Mish and Swish for some of the obtained trials of networks
with different numbers of layers. As shown, for seven layers
networks, Swish and Mish are almost equivalent while Mish
on 8 layers is quite more stable and performs better. This is
also confirmed by the best validation accuracy we obtained
(i.e., 0.991): it holds for a medium 8-layers network with a
slightly higher learning rate and a Mish activation function.

VII. THREATS TO VALIDITY

Looking at the construct validity threats, some imprecisions
and omissions can be due to the sensors used to extract the
considered features. To avoid this limitation, we considered
three different datasets using different sensors to extract the
same measures.

Moreover, looking at the internal validity, if the adopted
datasets are not correctly labeled or are obtained with a
non-rigorous process, we will have classification errors. This
risk is strongly mitigated because the used datasets are well
documented and referenced in medical studies.

Finally, threats to external validity concern the generaliza-
tion of the discussed findings. We have evaluated our approach
on a relevant number of subjects coming from three existing
datasets having different size, characteristics, and previously

adopted with different goals. In any case, in the future, it is
possible to further analyze more datasets with more subjects.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, a Deep Learning architecture is proposed to
exploit information coming from a set of sensors located under
the feet of a person. This information is used to discriminate
persons affected by PD and to identify the severity of their
disease. Moreover, in this study, we have performed a great
parameter optimization to evaluate, for the proposed classi-
fiers, the best parameters, basing on the obtained accuracy.
The approaches have been tested on three known datasets and
the classification is performed considering both two and four
classes. The obtained results show for all considered datasets
very good results, obtaining (in the best case) a validation
accuracy of 0.991 for the identification of the disease severity.
Generally, the obtained results are better if compared with the
results obtained on the same datasets using similar approaches
presented in the literature. As future work, we will extend
the high parameter optimization step and we aim to augment
the considered set of features. Finally, further experimentation
will be performed to generalize the obtained results to a multi-
classification with much more degrees of severity.
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