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Abstract—Our goal with this paper is to elucidate the close
connection between Hopfield networks and adiabatic quantum
computing. Focusing on their use in problem solving, we point
out that the energy functions minimized by Hopfield networks
are essentially identical to those minimized by adiabatic quantum
computers. To practically illustrate this, we consider a simple
textbook problem, namely the k-rooks problem, and discuss how
to set it up for solution via a Hopfield network or adiabatic
quantum computing.

Index Terms—problem solving, neural networks, quantum
computing

I. INTRODUCTION

Quantum computing exploits quantum mechanical phenom-
ena such as superposition or entanglement for information pro-
cessing. Since this promises levels of efficiency unreachable by
digital computers and since noisy intermediate-scale quantum
(NISQ) computers are now a technical and economical reality
[1]–[3], it appears worthwhile to consider their use in artificial
intelligence and machine learning. Indeed, a quickly growing
body of work suggests that quantum computers can efficiently
solve a wide range of optimization problems commonly en-
countered in these fields [4]–[10].

However, as of this writing, corresponding reports are still
largely confined to the physics literature and have not yet
received widespread attention in the computational intelligence
community. Likely reasons are that quantum mechanics is
seemingly abstract and hard to fathom because its effects do
not manifest in our daily lives. Also, the mathematics behind
quantum mechanics is often not taught in common computer
science curricula and the corresponding mathematical notation
needs getting used to as well.

Yet, problem solving on a quantum computer does not nec-
essarily require a deeper understanding of quantum mechanics
just as problem solving on a digital computer does not require
a deeper understanding of Boolean algebra. What is required,
though, are different perspectives on problem solving and it is
interesting to note that one such perspective is actually well
known to neurocomputing experts.

Hence, our main goal with this paper is to point out
that certain quantum computing techniques are actually not
far removed from certain neural network based approaches.
In particular, we intend to emphasize the close connection
between Hopfield networks and the paradigm of adiabatic
quantum computing (AQC).

To this end, we first recall the basic theory behind Hopfield
networks and their use in problem solving (section II). We then
recall basic premises of quantum computing (section III) and
finally review the ideas behind AQC (section IV). This will
reveal that everything a Hopfield network can do, an adiabatic
quantum computer can do, too, but arguably better.

II. HOPFIELD NETWORKS FOR PROBLEM SOLVING

Recall that a Hopfield network is a recurrent neural network
of n interconnected neurons s1, s2, . . . , sn each of which is a
bipolar threshold unit

si = sign
(
wᵀ
i s− θi

)
(1)

where the vector s ∈ {−1,+1}n denotes the global state of
the whole network.

If the n × n weight matrix W of a Hopfield network is
symmetric and hollow, i.e. has a diagonal of all 0s, and if the
network’s neurons update asynchronously, then the energy

H(st) = − 1
2 s

ᵀ
tWst + θ

ᵀst (2)

of the network at time t can never increase. As there are only
finitely many, namely 2n distinct states for the network to be
in, this is to say that it reaches a (local) energy minimum after
finitely many updates [11].

Hopfield networks are most comonly studied in the context
of associative memories for pattern retrieval; however, they
also allow for problem solving [12]. Here, the basic idea is to
devise an energy function H whose minimizers

s∗ = argmin
s∈{−1,+1}n

− 1
2 s

ᵀWs+ θᵀs (3)

encode solutions to the problem at hand.
Settings where this framework applies include bi-partition

and subset selection problems where a given set of n entities
needs to be partitioned into two disjoint subsets or a subset
of k < n entities needs to be determined. An example for the
former is the problem of computing a graph cut; examples for
the latter can be found in vector quantization, feature selection,
or support vector identification. In both cases, the solution
s∗ produced by a Hopfield network can be thought of as an
indicator vector whose entries s∗i ∈ {−1,+1} indicate which
entities to select or to assign to which subset.
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t st H
(
st

)
0 + + + + + + + + + + + + + + ++ 224.0
1 + + + + + + +−+ + + + + + ++ 184.0
2 + + + + + + +−+ + + + +−++ 144.0
3 + + + + + + +−+ +−+ +−++ 104.0
4 −+ + + + + +−+ +−+ +−++ 64.0
5 −+ + + + + +−+ +−−+−++ 40.0
6 −−+ + + + +−+ +−−+−++ 16.0
7 −−+ + +−+−+ +−−+−++ 0.0
8 −−+ + +−+−+ +−−+−++ 0.0
9 −−+ + +−+−+ +−−+−+− −16.0

10 −−+ +−−+−+ +−−+−+− −32.0
11 −−+ +−−+−+ +−−+−+− −32.0
12 −−+ +−−+−+−−−+−+− −32.0
13 −−+ +−−+−+−−−+−+− −32.0
14 −−+ +−−+−+−−−+−+− −32.0
15 −−+ +−−+−+−−−−−+− −40.0
16 −−+ +−−+−+−−−−−+− −40.0
17 −−+ +−−+−+−−−−−+− −40.0

...
...

...
52 −−−−−−+−+−−−−+−− −60.0
53 −−−+−−+−+−−−−+−− −64.0
54 −−−+−−+−+−−−−+−− −64.0

(a) exemplary evolution of the global state and energy of
a Hopfield network that solves the 4-rooks problem

r

r

r

r
(b) solution found after 52 asynchronous update steps

Fig. 1: Running a Hopfield network of n = 16 bipolar neurons
si which produce outputs in {−1,+1} can solve the 4-rooks
problem.

A. Didactic Example: The k Rooks Problem

As a didactic example for the problem solving capabilities
of Hopfield networks, we consider the k-rooks problem [12].
It asks for a placement of k rooks on a k × k chessboard
such that they do not threaten each other (see Fig. 1(b)) and
therefore constitutes a constrained subset selection problem
where k out of n = k2 fields need to be identified.

Modeling the configuration or state of the chessboard in
terms of a bipolar k × k matrix S with entries

sij =

{
+1 if a rook is placed on field (i, j)

−1 otherwise,

a valid solution is a configuration of S such that all its row-
and column sums amount to 1 · (+1)+(k−1) · (−1) = 2−k.

Vectorizing the matrix S ∈ {−1,+1}k×k by concatenating
its rows into a vector s ∈ {−1,+1}k2 , a configuration that
obeys these constraints can be found by running a Hopfield
network.

B. Solution for the Case k = 4

For instance, letting k = 4 and skipping over a detailed
derivation (which can be found in [12]), we may consider the
identity matrix I , the matrix of all zeros 0, and the matrix
J = 11ᵀ − I all of size 4 × 4 in order to define a 16 × 16
weight matrix

Wr = −2


J 0 0 0
0 J 0 0
0 0 J 0
0 0 0 J

 .
Together with a 16-dimensional threshold vector

θr = −2 (2− k)1
this yields the energy function Hr = − 1

2 s
ᵀWr s + θ

ᵀ
r s of a

Hopfield network that would place one rook per row. By the
same token, weights

Wc = −2


0 I I I
I 0 I I
I I 0 I
I I I 0


and thresholds

θc = −2 (2− k)1
yield the energy function Hc = − 1

2 s
ᵀWc s+ θ

ᵀ
c s that places

one rook per column. Hence, a Hopfield network with energy
function

H = Hr +Hc (4)

would solve our overall problem.
Figure 1 illustrates the evolution of a Hopfield network that

minimizes this energy and, in doing so, successfully finds one
of the 4! = 24 possible solutions to the 4-rooks problem.

III. QUANTUM COMPUTING IN A NUTSHELL

Quantum computers harness the principles of quantum
mechanics for information processing. While this offers great
computational power, it also works fundamentally different
than classical digital computing. In this section, we therefore
provide a brief introduction to basic terminology and concepts
of quantum computing.

On a digital computer, the basic unit of information is a bit
and the mathematics that governs the behavior of collections of
bits is Boolean algebra. On a quantum computer, the basic unit
of information is a qubit (quantum bit) and the mathematics
that models the behavior of collections of qubits is complex
linear algebra.

While a classical bit is in either one of two states (0 or 1),
the basic premise of quantum computing is that a qubit exists
in a superposition of two states and collapses to either one once



measured. Canonical examples of physical systems that exhibit
this phenomenon include the polarization of a photon (vertical
or horizontal) or the spin of an electron (up or down). How-
ever, quantum mechanical effects are not necessarily restricted
to the subatomic world but may also occur in completely
isolated macroscopic systems. One can, for instance, realize
superconducting circuits in which electrical currents flow in
two directions simultaneously [13], [14].

To mathematically describe the behavior of qubits, they are
modeled as unit vectors in a two-dimensional Hilbert space
over C. Using the Dirac notation1, we write a qubit as a linear
combination ∣∣ψ〉 = a0

∣∣0〉+ a1
∣∣1〉 (5)

where the coefficients a0, a1 ∈ C are called the amplitudes
of the basis states |0〉 and |1〉. Importantly, they obey the
normalization condition

|a0|2 + |a1|2 = 1 (6)

and are interpreted as follows: if a measurement is performed
on qubit |ψ〉, the probability of finding it in state |0〉 is |a0|2
whereas the probability of finding it in state |1〉 corresponds
to |a1|2.

Note that measurements performed on |ψ〉 are irreversible
operations because they constitute interactions with the outside
world and therefore lead to quantum decoherence. This is to
say that, once a qubit has collapsed to either one of its basis
states, it henceforth behaves like a classical bit.

Operations on qubits that preserve their quantum mechan-
ical nature are called reversible. Mathematically, these are
unitary linear operators U ∈ SU2(C) for which we have
UU† = U†U = I . Reversible operators can also be written
as U = e−iHt/~ where H is yet another operator called the
Hamiltonian. It corresponds to the total energy of a quantum
system in the sense that its spectrum reflects all possible
outcomes of measurements of the system’s total energy.

Another premise of quantum computing is that qubits can
be combined to form qubit registers. While a single qubit |ψ〉
exists in a superposition of 2 basis states, a quantum register
|ψ〉 of n qubits exists in a superposition of 2n basis states.
Mathematically, this is to say that

∣∣ψ〉 = 2n−1∑
i=0

ai |ψi〉 (7)

where the amplitudes obey
∑
i|ai|2 = 1 and the basis states

|ψi〉 are 2n-dimensional tensor products2 of single qubit basis

1Readers not familiar with the Dirac notation may think of the two basis kets
|0〉 and |1〉 in terms of Euclidean vectors [1, 0]ᵀ and [0, 1]ᵀ, respectively. Yet,
any other pair of orthogonal vectors, say [1, 1]ᵀ and [1,−1]ᵀ, would work as
well. One of the many reasons why physicists prefer the Dirac notation is that
it allows for great symbolic flexibility. For example the two basis polarizations
of a photon could be written as |↑〉 and |→〉 and the two basis spins of an
electron could be written as |↑〉 and |↓〉, respectively.

2The tensor product of two kets can be thought of as the Kronecker
product of the corresponding Euclidean vectors. For instance |0〉 ⊗ |1〉 can
be understood as [1, 0]ᵀ ⊗ [0, 1]ᵀ = [0, 0, 1, 0]ᵀ.

states. For example, for a quantum register of size n = 3, we
would work with the following 23 = 8 basis states

|ψ0〉 =
∣∣0〉⊗ ∣∣0〉⊗ ∣∣0〉 ≡ ∣∣000〉 (8)

|ψ1〉 =
∣∣0〉⊗ ∣∣0〉⊗ ∣∣1〉 ≡ ∣∣001〉 (9)

...

|ψ7〉 =
∣∣1〉⊗ ∣∣1〉⊗ ∣∣1〉 ≡ ∣∣111〉 (10)

Given these prerequisites, there are two distinct (yet equiv-
alent [15]) quantum computing paradigms, namely quantum
gate computing and adiabatic quantum computing.

Quantum gate computing sequences quantum mechanical
operators U1, U2, . . . to manipulate quantum registers and thus
to perform computations. Well known algorithms within this
paradigm include Shor’s prime factorization [16] or Grover’s
search [17].

Adiabatic quantum computing is the paradigm we consider
in this paper. It exploits a phenomenon summarized by the
adiabatic theorem [18]. It basically states that if a quantum
system starts out in the ground state3 of a Hamiltonian operator
which then gradually changes over a period of time, the system
will end up in the ground state of the resulting Hamiltonian.

To harness this for information processing and problem
solving on an adiabatic quantum computer, one prepares a
system in the ground state of a simple, problem independent
Hamiltonian and adiabatically evolves it towards a Hamilto-
nian whose ground state represents a solution to the problem
at hand [19].

One of the challenges in adiabatic quantum computing is
thus to devise suitable problem Hamiltonians. However, as we
will see next, if the problem at hand is a minimization problem
that can be tackled by a Hopfield network, this challenge is
minor because it is actually easy to construct Hamiltonians for
the energy functions of Hopfield networks.

IV. AQC FOR PROBLEM SOLVING

Adiabatic quantum computers such as those produced by
D-Wave systems [14] determine minimum energy states of
what physicists call Ising models [20]. In other words, they
are tailored towards solving the following kind of optimization
problem

s∗ = argmin
s∈{−1,+1}n

sᵀQs+ qᵀs. (11)

Just as for the energy of a Hopfield network in (3), the 2n

bipolar vectors s over which to minimize in (11) represent
possible global states of a system of n entities each of which
might be in one of two local states (either +1 or −1).
The coupling matrix Q ∈ Rn×n models internal interactions
whereas the vector q ∈ Rn models external influences.

3The ground state of a quantum system is its lowest energy state. Mathe-
matically, this is the eigenvector corresponding to the smallest eigenvalue of
a Hamiltonian H .



A. Didactic Example: The k = 4 Rooks Problem

Since the optimization problem in (11) is algebraically
identical to the one in (3), we may let

Q = − 1
2

(
Wr +Wc

)
(12)

and

q = θr + θc (13)

in order to solve the above k = 4 rooks problem via adiabatic
quantum computing.

Given (12) and (13), we consider a time dependent system
of n = k2 = 16 qubits

∣∣ψ(t)〉 = 2n−1∑
i=0

ai(t)
∣∣ψi〉 (14)

which is in a superposition of 216 = 65.536 basis states |ψi〉.
If this system evolves under the influence of a time-

dependent Hamiltonian H(t), its behavior is governed by the
Schrödinger equation

d

dt

∣∣ψ(t)〉 = −iH(t)
∣∣ψ(t)〉 (15)

where we have set ~ = 1. Using this, we consider a period
ranging from t = 0 to t = τ and assume the Hamiltonian in
(15) to be a convex combination of two static Hamiltonians

H(t) =
(
1− t

τ

)
HB + t

τHP . (16)

Here, HB is the beginning Hamiltonian whose ground state
is easy to construct and HP is the problem Hamiltonian whose
ground states encode the solution to our problem. To set up
HP , we therefore follow standard suggestions [21] and define

HP =

n∑
i=1

n∑
j=1

Qij σ
i
z σ

j
z +

n∑
i=1

qi σ
i
z (17)

where σiz denotes the Pauli spin matrix σz acting on the i-th
qubit. Likewise and again following standard suggestions, we
choose the beginning Hamiltonian HB as

HB = −
n∑
i=1

σix (18)

where σix denotes the corresponding the Pauli spin matrix σx.
After letting |ψ(t)〉 evolve from |ψ(0)〉 to |ψ(τ)〉 where

|ψ(0)〉 corresponds to the ground state of HB , we may
measure the system at the end of this evolution. This causes
the qubit system to collapse to one of its 216 basis states
and the probability for this state to be |ψi〉 is given by the
amplitude |ai(τ)|2. However, since the adiabatic evolution was
steered towards the problem Hamiltonian HP , states |ψi〉 that
correspond to ground states of HP are more likely to be found.

The computational efficiency of adiabatic quantum com-
puting will depend on the choice of the duration τ in (16).
The optimal choice for this parameter is known to depend
on the minimum energy gap between the ground state and
the first excited state of H(t). However, since this energy gap

(a) amplitude evolution of the 216 basis states∣∣ψi

〉
|ai|2

|0001010010000010〉 0.000594
|1000000100100100〉 0.000594
|0010010010000001〉 0.000594
|0100000100101000〉 0.000594
|0100100000100001〉 0.000594
|0100001010000001〉 0.000594
|1000001000010100〉 0.000594
|1000010000100001〉 0.000594
|0100000110000010〉 0.000594
|0010010000011000〉 0.000594
|0010100001000001〉 0.000594
|0001001001001000〉 0.000594
|0010000110000100〉 0.000594
|0001001010000100〉 0.000594
|0001100000100100〉 0.000594
|1000010000010010〉 0.000594
|0001100001000010〉 0.000594
|0010100000010100〉 0.000594
|0100100000010010〉 0.000594
|0100001000011000〉 0.000594
|1000000101000010〉 0.000594
|0010000101001000〉 0.000594
|0001010000101000〉 0.000594
|1000001001000001〉 0.000594
|0110100010000001〉 0.000285

(b) 25 likeliest final states

Fig. 2: Adiabatic quantum computing for the k = 4 rooks
problem. The top panel visualizes the evolution of a n = 16
qubit systems |ψ(t)〉. During its evolution over time t, it is
in a superposition of 216 = 65.536 basis states |ψi〉 each
representing a potential solutions to the problem. Initially,
each possible solution (valid or invalid) is equally likely to
be measured; over time, the amplitudes of the various basis
states begin to decrease or increase. At the end of the process,
24 basis state have noticeably higher amplitudes |ai|2 than
most other states and are thus more likely to be measured.
The table at the bottom ranks the 25 most likely states at the
end of the process and shows that these correspond to valid
solutions of the problem.

implicitly depends on the problem at hand, general closed form
expressions for the optimal τ are hard to come by and subject
of intensive ongoing research.



On the other hand, it is known that the gap is inversely
proportional to the square root of the number of basis states
that have energies close to global minimum [22] and we note
that, for the kind of problem considered in this paper, the
number of minima is comparatively small (k! � 2n where
n = k2). For such problems, τ ∈ O

(√
2n
)

is commonly a
good choice for the smallest possible runtime of the adiabatic
evolution [23].

Using the Python quantum computing toolbox QuTiP [24],
we simulate this process for τ = 100 time steps and obtain
the results shown in Fig. 2.

The panel at the top visualizes the behavior of the ampli-
tudes |ai(t)|2 of the basis states the system could be found
in upon measurement. At t = 0, all these basis states are
equally likely but over time their amplitudes begin to diverge;
amplitudes of basis states that correspond to low energy states
of our objective increase while amplitudes of basis states that
could hardly be considered a solution to our problem decrease.

At t = τ , certain basis states are therefore more likely to
be measured than others and the table at the bottom of Fig. 2
ranks the 25 most likely final basis states. Indeed, each of the
top 24 most likely states encodes a solution to the 4 rooks
problem; the next most likely state does not encode such a
solution.

V. CONCLUSION

Our goal with this paper was to point out that if one
knows how to use Hopfield networks for problem solving, one
basically also knows how use adiabatic quantum computing
for problem solving. This is interesting because Hopfield
networks are well known to the neurocomputing community
and allow for solving a wide range of typically hard discrete
optimization problems. Yet, on the other hand, they suffer from
certain inadequacies that can be circumvented on an adiabatic
quantum computer.

For instance, a Hopfiled network of n neurons is capable
of searching an exponentially large set of 2n bipolar vectors
for a configuration that represents a solution to a problem that
has been encoded in terms of an energy function. Updating
its neurons in an asynchronous manner, we are guaranteed
that the network will converge to a stable state, i.e. to a state
that minimizes its energy function. However, it is well known
that asynchronous updates realize nothing but a local search
process which might get stuck in local minima [25].

An adiabatic quantum computer, on the other hand, per-
forms a global or exhaustive search. This is due to the quantum
mechanical phenomenon of superposition which causes all 2n

potential solutions to be considered simultaneously. This, in
turn, makes it unlikely that a suboptimal solution will be
found. Moreover, whereas a classical exhaustive search would
require O(2n) operations, an adiabatic quantum computer
typically requires efforts of only

√
O(2n). While this is still

exponential in the problem size, the speedup is substantial (see
Fig. 3).

The k-rooks problem we considered as a practical example
for our discussion was chosen for mere didactic reasons. It

0 4 8 12 16

2n√
2n

Fig. 3: Illustration of the quadratic speedup achievable via
adiabatic quantum computing, i.e. runtimes of O(

√
2n) rather

than of O(2n).

does not constitute a difficult problem and, in practice, one
would neither solve it using Hopfield networks nor adiabatic
quantum computing. However, it exposes how to (re)formulate
discrete optimization problems such that they can be solved
using Hopfield networks or adiabatic quantum computing. This
is interesting, because many much more demanding (i.e. NP
complete) optimization problems can be expressed within
this energy minimization framework, too [26]. A take home
message therefore is that, at the dawn of the era of quantum
computing, it might well be worthwhile to reconsider Hopfield
networks.

We also note again that adiabatic quantum computing (as
considered in this paper) and quantum gate computing are
polynomially equivalent [15]. In other words, if it is possible
to express the solution to a problem in terms of minima of a
Hamiltonian or energy function such that the problem can be
solved on an adiabatic quantum computer (such as a D-Wave
device), then the problem can also be solved on a quantum
gate computer (for instance an IBM Q device). This can, for
example, be achieved using the Suzuki-Trotter expansion [27],
[28] or related quantum approximate optimization algorithm
techniques (QAOA) [29].

Finally, we should point out that, as of this writing, quantum
computing is still “not quite there” yet. In this paper, we saw
how quantum mechanical phenomena such as superposition
and entanglement are a boon for quantum information pro-
cessing. Yet, other quantum mechanical phenomena such as
decoherence are still its bane. In order for quantum computers
to reliably reach quantum supremacy, qubits must be prevented
from interacting with the outside world because any such
interaction would cause a qubit to collapse to a basis state and
therefore eliminate the benefits of superposition. And while
the engineering problem of avoiding decoherence becomes
more daunting the more qubits need to be manipulated, there
is progress in this regard. For instance, in 2018, Google



presented a 72 qubit quantum gate computer and D-Wave
began marketing a 2048 qubit adiabatic quantum computer
and, in 2019, IBM began selling a 20 qubit quantum gate
computer.

It is also important to note that quantum computing should
be seen as a form of probabilistic computing. Once a qubit
system is measured it collapses to one of its basis states
and henceforth behaves just as a system of classical bits.
In this paper, we discussed that this collapse happens prob-
abilistically; while appropriate solutions are more likely to
be observed, they are not guaranteed to be observed. Any
quantum computing algorithm would therefore have to be run
several times so as to be sure about the solution obtained.
This, however, is a phenomenon not unknown to machine
learning practitioners. For example, most algorithms for simple
k-means clustering start from random initializations and may
thus yield different results in different runs; experts know that
several runs are required before conclusions can be drawn.

Despite of these caveats, the potential benefits of quantum
computing for unsupervised learning are obvious. In particular,
since many problems in this area are subset selection problems
in disguise. It should, for instance, be possible to devise Hamil-
tonians for tasks such as feature selection, similarity searches,
k-medoids clustering, or support vector identification.
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