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Abstract—Relation classification is the task of identifying
relations between two entities in a sentence, which is an essen-
tial step in the standard NLP pipeline. Most of the previous
models only make use of dependency or semantic features,
which may result in the loss of vital information. In this
paper, we propose a novel model that incorporates dependency
and semantic information for relation classification. This is a
neural network model using long short-term memory(LSTM),
graph convolutional networks(GCN), and convolutional neural
networks(CNN), named LGCNN. Concretely, it utilizes self-
attention and LSTM to capture the local context in sentences.
What’s more, it uses graph convolution network to encode
dependency information and takes advantage of convolution
neural network to encode semantic information from the local
context. Experiments on the SemEval-2010 Task 8 and KBP37
dataset demonstrate that our model is very effective in relation
classification.

Index Terms—Relation classification, dependency features,
semantic features

I. Introduction
Relation Extraction(RE) is a significant task in Natural

Language Processing (NLP) [1]. The task is to extract
semantic relations between entity pairs in a sentence based
on their context. Use the following sentence to give an
example: “Forward <e1> motion </e1> of the vehicle
through the air caused a <e2> suction </e2> on the
road draft tube.” The marked entity pair “motion” and
“suction” are of the relation “Cause-Effect(e1,e2)”. Many
tasks such as dialog generation, information retrieval
and question answering require relation extraction as an
intermediate step.

Traditional relation extraction methods are based on
either hand-crafted features [1] or elaborately designed
kernels [2], which are time-consuming and challenging to
apply to novel domains. Recently, neural network-based
methods are proposed to solve the shortcoming of tradi-
tional methods, which can automatically extract semantic
features from text and reduces manual intervention. Neu-
ral network-based methods include convolutional neural
networks [3], long short-term memory based recurrent
neural networks [4], [8], graph convolutional networks [5],
and so on.

*Corresponding author.

While CNNs are able to learn local semantic features,
GCNs have been effective in learning dependency fea-
tures. In this paper, we propose a novel model that
incorporates CNN and GCN to extract the semantic and
dependency features of sentences for relation classification.
The contributions of our work can be summarized as
follows: (1) We propose an attention-based GCN method
to learn dependency sentence features. Compared with
previous methods, our method utilizes attention and local
context for learning word representations. (2) We also
present CNN, a framework with multiple types of filters
in capturing the semantic features on the context vector.
(3) We combine the GCN and CNN to preserve the full
relation information. Our proposed model proved to be
very useful on the SemEval-2010 Task 8 and the KBP37
dataset.

II. Related Work
A. Relation Extraction

Recently, neural network models have shown superior
performance in many areas compared to traditional mod-
els with hand-crafted features. Zeng [3] first applied the
CNN model to relation extraction, which improves the
effect of relation extraction by automatically capture rel-
evant lexical and sentence-level features. Variants of CNN-
based methods include convolutional deep neural network
[3], ranking with CNN(CRCNN) [6], and Attention-CNN
[7]. The RNN-based method is another popular choice in
relation extraction. The most recently used RNN models
are bidirectional long short-term memory networks(Bi-
LSTM) [8], Attention-LSTM [9], and LSTM with entity-
aware attention [10].

Dependency tree-based features were applied to relation
extraction and found to be very efficient in extracting
dependency information [11], [12]. Yang [24] utilizing
dependency information of dependency parse tree and
present a position encoding convolutional neural network
for relation classification. Le [13] obtained the shortest
dependency path(SDP) between two entities based on
dependency parse, and extracted the relation by incor-
porating CNN and two-channel RNN with LSTM units.
Some recent work combines SDP with graph convolutional

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 1. Overview of LGCNN. LGCNN can be divided into four parts: Lexical Embedding Representation, Dependency Sentence Encoding,
Semantic Sententce Encoding and Classification.

network(GCN). The paper [5] suggested incorporating
pruning strategies and SDP to improve the performance
of dependency tree-based methods, which used GCN to
model the pruned-tree.

B. Graph Convolution Networks

The graph convolutional network [14] encodes the nodes
in the graph according to its graph structure and an
application of the convolutional neural network. Since
graph convolution network can effectively encode sentence
semantic information, it is widely applied in Neural
Language Process such as text generation [15], question
answering [16], and machine translation [17]. In some
recent studies, graph convolution network was applied
to relation extraction [5], [18]. However, they either used
the pruned dependency path to build the graph or relied
on the shortest dependent path to construct a graph,
which may lose some significant information. We use
the attention of the shortest dependency path to assign
different weights to the nodes in the graph, and use the
graph convolution network to extract the dependency
information.

III. Methods Overview

Given a word sequence S = {w1, w2, ...} contains two
entities e1 and e2, the aim of relation extraction is to
extract the semantic relation between two entities. Since
the relation set C = {c1, c2, ...} is given, the problem can
be converted into a classification task. LGCNN consists of
four components, and we will briefly introduce each part
in this section. The overall framework of LGCNN is shown
in Fig. 1.

1) Lexical Embedding Representation: LGCNN uses
multi-head attention over the concatenated word and
position embedding for capturing the meaning of the
correlation between words. For capturing the local context
of each token, Bi-LSTM is employed to encode the
representations of the output of the multi-head attention.
In this component, to get a better lexical representation,
we use multi-head attention and Bi-LSTM. More details
in section IV-A.

2) Dependency Sentence Encoding: In this part, GCN
is applied to encode the representation of each token
on the dependency tree to capture long-range depen-
dencies. To capture the most critical information about
the relation classification in the dependency tree, we use
word attention based on the shortest dependency path. In
section IV-B, we will describe the component in detail.

3) Semantic Sentence Encoding: In this part, we use
CNN over lexical representation to get the uppermost
semantic information of the sentence. Please refer to
section IV-C for more details.

4) Classification: Finally, sentence representation is
acquired by stitching the output of dependency sentence
embedding and semantic sentence embedding. Sentence
representation is used to match the most likely relation
through a fully connected layer in the candidate relations.
We will elaborate on this component in section IV-D.

IV. Model Details
In this section, we introduce each components of

LGCNN in detail.

A. Lexical Embedding Representation
Given a sentence S = {w1, w2, ...} containing an entity

pair, we encode each token in the sentence into better lex-



ical representation, which consists of an embedding layer,
a self-attention layer, and a Bi-LSTM layer. The input
sentence contains position indicators(PI): e11, e12, e21, e22,
which will be treated as a single word. The position
indicator has been proven to be very useful in relation
extraction [19].

1) Embedding Layer: The embedding layer aims at
mapping words in sentence into continuous input embed-
ding. Firstly, we map each token wi to a k-dimensional
GloVe [20] embedding wi ∈ Rdw . Then, we map the
relative distance of each token to two entities into two p-
dimensional position embeddings, which is following Zeng
[3]. Finally, we get the final input embedding for each
token in the sentence by stitching word embedding and
two position embeddings.

2) Self-attention Layer: To solve the long-term de-
pendency problems, we utilize the multi-head attention
mechanism to capture the meaning of the correlation be-
tween words. Multi-head attention [21] is able to learn the
implicit contextual information for words, which applies
the self-attention mechanism multiple times over the same
input. The following formula can express the process:

aijh = softmax(qjhk
T
ih/
√
d) (1)

o =
∑
j

αijhνjh (2)

oi = [oi1; ...; oih] (3)

O = wmo+Xk−1 (4)

In the attention mechanism, q, k, and v are equal, which
are the input vectors after being segmented, where aijh
represents the weight of the jth token in the hth attention
mechanism for the ith token. And d is denoting the vector
length of q, oih indicating the weighted representation of
the ith word in the hth head attention mechanism. With
[...; ...] denoting the concatenation operation, and oi is the
representation of the ith word after concatenation through
the multi-head attention mechanism. We use the residual
connection method to get the final representation O, which
is the sum of concatenation outputs of self-attention and
the input Xk−1 of the previous layer, where wm ∈ Rd×d

is a learnable variable of a linear transformation.
3) Bi-LSTM layer: In this layer, we use Bi-LSTM

network to encode the context representation of each
word. Bi-LSTM network consists of two parts: a forward
LSTM network which encodes the context of sentence in
sequential order and a backward LSTM network which
encodes the context of sentence in reverse order. The
strategy of the model is to connect the forward LSTM
hidden state −→ht and the backward LSTM hidden state ←−ht ,
so that each token contains a forward context and back-
ward context. Bi-LSTM hidden state can be represented
by the following:

ht =
−→
ht ⊕

←−
ht (5)

where ⊕ denotes concatenate operation.

Fig. 2. is the dependency tree of the sentence: “The reports regarding
the casualties has been announced and the loss that has been caused
by the quake is being estimated”.

B. Dependency Sentence Encoding
As we all know, the dependency path contains a large

amount of dependency information, which will facilitate
the relation extraction. We use a graph convolution
network(GCN) to extract the dependency information of
the token in the dependency tree. The shortest dependency
path(SDP) of the two entities can effectively extract the
most important information between two entities, but
only using SDP may lose some significant information.
Therefore, we use the attention mechanism based on SDP.
First, we get a weighted representation of the word by
SDP-based attention and then encode it using GCN.

Since the different words are of varying importance
in the dependency tree, and SDP contains important
information between the two entities, so we use SDP-
based attention for the words. The SDP-based attention
is to assign a higher weight to words on SDP, and words
that are not on SDP give lower weight. The weight of
each word in a sentence can be derived from the following
formula:

ai =

{
ahigh, if i ∈ Ssdp

alow, if i /∈ Ssdp
(6)

where ai refers to the weight of the ith word, Ssdp

represents the set of words on the SDP path, ahigh and
alow are two weight representations, indicating the high
weight and low weight respectively.

For example, Fig. 2 is a dependency tree of sentences,
where “loss” and “quake” are two entities, and the shortest
dependency path is “loss-caused-by-quake”. Through the
SDP-based attention mechanism, we assign the weights
of “loss”, “caused”, “by”, and “quake” to ahigh, and the
weights of other words to alow.

Given a sentence S = {w1, w2, ...}, we use the Spacy
tool to generate the dependency tree and extract SDP
between the two entities. The dependency tree can be
represented as a directed graph G, where the nodes N of
the graph represent the words in the sentence, and the
edges Σ in the graph represent the dependencies between



Fig. 3. is the detail of dependency sentence embedding.

the words. The graph convolution network proved to be
very effective in the classification task [14], which captures
information about neighboring nodes or neighbor nodes
with a distance of k. We construct an N ∗ N adjacency
matrix A where Aij = 1, if word i to j have an edge
on the dependency tree, otherwise Aij = 0. Motivated
by Marcheggiani and Titov et al [22], we employ three
edge labels which include in forward edges(eij), backword
edges(e−1

ij ) and self-loops(◦), where eij denote the forward
edge from node i to node j, e−1

ij represents the backword
edge from node i to node j, and ◦ as a special symbol
for self-loop. For each token wsi in sentence s, we employ
GCN to get its hidden representation. The specific formula
is as follows:

gi
k+1 = f(

N∑
j=1

Aij(W
kgki + bk)) (7)

Here, gi
k+1denotes the hidden representation of the ith

word in a sentence in the k + 1 layer GCN embedding,
f refers to any non-linear activation function, A = A+ I
with A being the N ∗ N adjacency matrix and I being
the N ∗ N identity matrix, Ak is the model parameter
that needs to be learned, and bk is a bias term. Note that
when k = 0, gi

0 represents the initial representation of
the token wi, which is the output representation of the
LSTM in our model.

1) Piecewise Max Pooling: As Fig. 3 shown, each
hidden representation H is divided into three seg-
ments (H1,H2,H3) by the two entities, where H =
(g1, g2, ..., gN ). We obtain an embedding Hgcn for the
sentence s by max pooling of three segments separately.

Hgcn = max(H1)⊕max(H2)⊕max(H3) (8)

where ⊕ denotes vector concatenation.

C. Semantic Sentence Encoding
Furthermore, we employ CNN to extract the global

features among h1:N = h1, h2, ..., hN , where hi ∈ Rd

represents the LSTM hidden state vector of the ith word
in the sentence. We apply a window of p hidden state
vectors to a filter w ∈ Rp×d, which will generate a new
feature. The feature ci can be obtained by the following
formula:

ci = f(w ⊙ hi:i+p−1 + b) (9)

Here f refers to a non-linear activation function, and we
use the rectified linear unit(ReLU) in this paper. b is a
bias term and ⊙ is the dot product.

Apply this filter to the entire sentence to generate global
feature c = [c2, c2, ..., cN−p+1]. In general, CNN needs
to extract features using multiple filters. Afterward, we
utilized max-pooling to get the most important feature in
the global feature c. The output of max pooling generated
by ith filter is as follows:

pi = max(c) (10)

To better explore relation indicate information, we use
multi-gram CNN, which uses multiple types of filters to
get the features. Finally, CNN’s sentence embedding Hcnn

can be obtained by the following formula:

Hcnn = (p1, p2, ..., pk) (11)

where k is the total number of filters. In this paper, we
combine tri-gram, four-gram, and five-gram features with
a concatenation operation.

D. Classification
The final sentence representation is obtained by con-

catenating the GCN’s sentence encoding and CNN’s sen-
tence encoding, which contains not only the dependency
information but also the deep semantic information.

H = Hgcn ⊕Hcnn (12)

The final sentence representation can be directly classifi-
cation by feeding it into a fully connected softmax layer.
In order to prevent over-fitting, we utilized dropout [23]
in the connected layer. The probability of target label:

p(y|x) = softmax(w ⊙H + b) (13)

where x is the input sentence, and y is the target label.
We utilize the cross entropy and the L2 regularization to
define the objective function as follows:

J(θ) = −
s∑

i=1

(yi|xi, θ) + β∥θ∥2 (14)

where s indicates the total sentence; xi and yi represent
the sentence and label of the ith training example; β is L2

regularization hyperparameter. The θ is the whole network
parameter, which can be learnable. In order to train the
network parameter θ, we minimize the objective function
by using the Adadelta optimizer.



TABLE I
Details of the SemEval-2010 task 8 and KBP37 dataset.

Datasets Split Sentences
SemEval-2010 task 8 Train 8000

(Relations:10) Test 2717
KBP37 Train 15917

(Relations:19) Test 3045

V. Experiments
In this section, we present our experiments in detail.

Subsection V-A introduces the dataset and evaluation
metrics. Subsection V-B describes the hyperparameter
setting. Subsection V-C compares our LGCNN model
with other methods in the literature and evaluate various
versions of our model with removed some components.

A. Datasets
In our experiments, we evaluate the models on the

SemEval-2010 task 8 and KBP37 dataset. The statistics of
the two datasets are shown in Table I. Below we described
each in detail.

1) SemEval: The SemEval-2010 task 8 dataset is an
acknowledged benchmark for relation classification [1],
which contains 8000 sentences for training and 2717
sentences for testing. The dataset includes ten categories,
nine of which are directional, and one is non-directional.

2) KBP37: The KBP37 is a relatively large dataset in
relation extraction. The KBP32 dataset contains 19322
sentences that 15917 sentences for training and 3405
sentences for testing. Because the dataset contains many
special entities and relations, its classification is more
complicated and confusing. In KBP37, a large number
of entities are names of persons, places or organizations.

B. Parameter Settings
For different datasets, we use different parameters

to achieve the best performance. In this work, we use
Adadelta to update model parameters for the SemEval-
2010 task 8 and KBP37 dataset. The parameters of the
LGCNN model are summarized in Table II.

TABLE II
Hyper-parameter of LGCNN.

Parameter SemEval-2010 8 KBP37
Word dimension 300 300

Position dimension 50 50
Batch size 20 20
Hidden size 500 300
Head size 4 2

Window size {3, 4, 5} {3, 4, 5}
Convolution size 128 200

GCN Layer dropout rate 0.8 0.8
Other dropout rate 0.5 0.5
GCN dimension 300 300

Regularization parameter 1e-5 1e-5
Learning rate 0.8 1

Adadelta decay rate 0.6 0.6

TABLE III
Details of the SemEval-2010 task 8 and KBP37 dataset.

Model Features SemEval-2010 8 KBP37
CNN [3] WE,PF 78.3 51.3
CNN [3] WE,PI 77.4 55.1

BLSTM+ATT [8] WE,PI 84.0 61.2
LSTM+ATT [9] WE,PF 85.2 61.7
SDP_LSTM [4] WE,PF,WN,DEP 83.7 60.5
SPTree [26] WE,PF,WN,DEP 84.4 −

PA_LSTM [25] WE,PF,DEP 82.7 −
C_GCN [5] WE,PF,DEP 84.8 62.0
LGCNN WE,PF,PI,DEP 85.5 63.2

TABLE IV
Perfomance comparison of different version of LGCNN on two

datasets

Model SemEval-2010 8 KBP37
LSTM_CNN(w/o GCN) 84.9 61.7
LSTM_GCN(w/o CNN) 84.6 62.3

LGCNN 85.5 63.2

C. Overall Evaluation Results
We compare the F1-score of our model with some

previous RE models in Table III.
In Table III, the WE, PF, PI, WN, DEP denote word

vectors, position features, position indicators, wordnet,
and dependency features respectively. The first four rows
in the table represent the high performance achieved in RE
by the End-to-End Model. There are CNN-based models
such as CNN [3] and RNN-based models such as BLSTM-
ATT [8] and LSTM-ATT [9] for this task. The next four
rows in the table are neural network models based on the
dependency tree. Since the SPTree and PA_LSTM models
are not reproduced on the KBP dataset, the results are not
presented. The last row is our model, which has achieved
batter results on the two datasets.

To analyze the effect of the various components of
LGCNN, we separately removed some of the components
in LGCNN for evaluation. In Table IV, LSTM_CNN
indicates that the classification is not performed using
dependency sentence encoding in the LGCNN, and achieve
the F1-score of 84.9% and 61.7%. LSTM_GCN represents
that the model after removing the semantic sentence
encoding component and its F1-score on the two datasets
is 84.6% and 62.3%, respectively. The performance of
LGCNN combining dependency features and semantic
features is 85.5% and 63.2%. This shows that the com-
bination of dependency features and semantic features is
very effective in relation classification.

VI. Conclusion
This paper proposes a neural network, which combines

dependency information and semantic information for re-
lation classification. LGCNN makes use of SDP-based at-
tention on GCN to extract dependency information, which
can focus on the token in a sentence. Furthermore,we also



improves CNN with multiple types of filters to capture
the semantic features on the context vector. Experimental
results demonstrate that the proposed methods is superior
to previous strategies, which effectively combines the
features in the dependency tree with the features in the
original sentence. By analyzing our results further, it can
be found that our model enables two independent models
to reinforce each other.
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