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Abstract─Humans deciding between probabilistic 

alternatives may consider all or only some attributes of 
the alternatives.  If they have a high need for cognition 
they may also engage in metacognitive monitoring that 
relates attributes of the presented alternatives to 
unpresented information.  Neural network models of 
decision making data suggest brain interactions 
involved in high or low metacognitive monitoring. 

 
1. WHAT YOU GET VERSUS WHAT YOU SEE 

 
uman beings are thought to be endowed 
with a need to understand as much of 
their environment as possible.  This 
need has been given various names by 

different researchers, such as the drive to comprehend 
[1] and the knowledge instinct [2].   Yet the knowledge 
instinct competes with a countervailing drive to 
simplify environmental inputs and minimize cognitive 
effort [3]. 

How do these competing instincts play out for 
decision makers (DMs) presented with alternative 
options, sometimes with complex descriptions? At the 
effort minimization end, the decision is based on a 
small part of the information the DM is given.  In other 
words, for these DMs “what you get is less than what 
you see.”  At the knowledge maximization end, the 
decision is based not only on all of the presented 
information but on unpresented inferences from that 
information.  For those DMs “what you get is more 
than what you see.” 

Elsewhere I suggested “what you get is more than 
what you see” as a normative ideal for mental attitudes 
needed to make positive social change [3].  In a similar 
vein, the medieval philosopher Moses Maimonides 
interpreted the original sin of Adam and Eve as relying 
on outward presentations of knowledge instead of 
considering its deeper implications (see [4] for 
discussion).  Yet there are wide variations between 
individuals in adherence to that ideal, based on 
differences in cognitive traits such as need for 
cognition, need for closure, numeracy, and 
metacognitive monitoring [5].  Also, the same 
individual may process some information deeply and 
other information superficially, based on changes in 
context or in emotional arousal level. 
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Decisions between two alternatives depend heavily 
on how those alternatives are encoded in memory.    
(This is true also if there are more than two 
alternatives, but for simplicity we only consider binary 
choices in this paper.)  The encoding in turn depends 
on which attributes of the alternatives are given 
attention and which attributes are ignored.  Hence, 
modeling these choices requires a mathematical theory 
that integrates decision making with memory and 
selective attention.  In previous work [6-9] I have 
based neural network models on a synthesis of two 
such theories: Fuzzy Trace Theory (FTT) and 
Adaptive Resonance Theory (ART). 

 
2. REVIEW OF FTT AND ART 

 
Fuzzy trace theory [10-12] is a unified theory of 

memory and decision making.  It explains decisions on 
the basis of the way we store the presented options in 
memory.  FTT is a dual-process theory, adducing 
evidence that we store events with two separate 
memory traces: verbatim and gist traces.   Verbatim  
traces store stimuli exactly as they are presented; this 
often means exact numerical values (e.g., of money 
won or lost, or lives saved or lost) and probabilities.  
Gist traces store what the DM interprets as the 
essential meaning of these stimuli.   

FTT also says that as people grow from childhood 
to adolescence and then adulthood, they gradually 
switch from greater reliance on verbatim traces to 
greater reliance on gist traces.  Gist processing makes 
it possible for people to deal with novel situations and 
make ever more sophisticated generalizations and 
analogies.  Yet gist processing also makes people more 
likely to remember events that did not occur and to use 
decision heuristics that can lead to errors or 
inconsistent preferences. 

Broniatowski and Reyna [5] formalized FTT in a 
theory that proposed weighting, which could differ 
between individuals, between categorical gists, ordinal 
gists, and interval or verbatim representations.  For 
example, they considered the Asian Disease Problem 
studied by Tversky and Kahneman [13]: deciding 
between two public health measures to combat a 
disease expected to kill 600 people.  In one framing of 
that problem, the choice is between saving 200 people 
for sure and saving all 600 with probability 1/3 with a 
2/3 probability of saving none.  The categorical gist for 
this problem is a choice between saving some for sure 
and possibly saving none, which argues for the safe 
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option of saving 200.  The ordinal gist is a choice 
between saving fewer people with higher probability 
and saving more with lower probability, which does 
not argue for either choice.  The interval also makes 
the two alternatives equally valued because for both 
the expected value is 200 lives saved.  

Extracting the gist of presented information 
amounts to categorizing the information based on 
relevance to the current context.  Hence FTT connects 
naturally with neural network theories of 
categorization.  Adaptive resonance theory (ART) [14, 
15] embeds categorization in a functional network 
including perception, learning and conditioning, 
memory, and behavioral control.  Recent 
developments of ART have made significant contact 
with results from neuroscience of the cortex and 
thalamus [16, 17]. 

The typical ART network is based on two layers 
that encode attributes and categories. The ART based 
models of [6-9] calculate and compare emotional 
values of options.  In those models, the ART layers are 
identified with emotional regions of the brain. The 
lower (attribute) layer is interpreted as either amygdala 
or a superficial layer of orbitofrontal cortex (OFC) and 
the higher (category) layer as a deeper layer of OFC.  
Variants of the network have successfully simulated 
several sets of decision data involving short-term 
preference decisions between probabilistically 
presented options. The preferences are based on gist 
representations of the options which selectively 
weight different attributes encoded at the attribute 
layer of the network. 

 
3. INDIVIDUAL DIFFERENCES 

 
The Asian Disease Problem studied in [23] is a 

classic example of a choice that is subject to framing 
effects.  When the choice is framed in terms of gains, 
as a choice between saving 200 people for sure and 
saving all 600 with probability 1/3 and a 2/3 
probability of saving none, the choice of most 
participants is risk averse.  That is, they prefer the sure 
saving of 200.  Yet when the same choice is framed in 
terms of losses, as a choice between 400 dying for sure 
and a 1/3 probability of none dying with a 2/3 
probability of 600 dying, the choice of most 
participants is risk seeking.  That is, they prefer the 1/3 
probability of none dying. 

The different responses to gain and loss frames that 
Tversky and Kahneman found were based on a 
between-subject manipulation: participants did not see 
both the gain and loss frames of the same problem.  
Framing effects are much reduced in within-subject 
designs [18, 19].  This is particularly true for 
participants who are high in need for cognition.  Need 
for cognition (NFC) is a psychological construct, 

based on questionnaires, that measures the tendency or 
inclination to engage in effortful cognitive activities.  

Hence, people with high NFC tend toward “what 
you get is more than what you see.”  Another variable 
with the same property is numeracy, defined as facility 
with numerical statements and mathematical 
manipulations, and ability to use mathematics in the 
real world [20].   Numeracy and need for cognition are 
independent variables that both promote 
metacognitive monitoring, that is, continually 
evaluating one’s choices to see that they are as 
consistent and sensible as possible.  An example is the 
tendency to “edit” one’s choices on a decision problem 
to see that they are consistent with choices on a 
reframing or minor perturbation of that problem. 

The neural network model of AlQaudi et al. [7] and 
the lattice model of Broniatowski and Reyna [5] both 
include a metacognition parameter, varying between 
individuals, that measures the tendency to incorporate 
information that is not explicitly presented but is 
closely related to what is presented.  This parameter, 
as noted above, correlates strongly with both NFC and 
numeracy.  A high value for this parameter not only 
promotes consistency between gain and loss frames, 
but it promotes the filling in of missing information 
within each of those frames 

Specifically, Reyna and Brainerd [11] studied the 
differences in framing effects between standard 
versions of the Asian Disease Problem and various 
truncated versions of the same problem.  The standard 
gain frame is presented as: “If   Program A is adopted, 
200 people will be saved; If Program B is adopted, 
there is a one-third probability that 600 people 
will be saved and a two-thirds probability that no 
people will be saved.  Reyna and Brainerd also 
presented two truncated versions of the gain frame.  In 
one of those versions the zero complement of the risky 
choice was removed, so that choice read simply: “If 
Program B is adopted, there is a one-third 
probability that 600 people will be saved.”  In the 
other truncated version the nonzero complement of 
the risky choice was removed, so that choice read: 
“If Program B is adopted, there is a two-thirds 
probability that no people will be saved.”  There 
were analogous presentations, to different 
participants, of the standard loss frame, the loss 
frame with zero complement removed, and the loss 
frame with nonzero complement removed. 

The results of the studies in [11] were that the 
magnitude of the framing effect – measured as the 
difference in percentage of risky choice between the 
loss frame and the gain frame – differed between the 
standard and two truncated versions.  Specifically, 
the framing effect was considerably enhanced when 
the nonzero complement was removed.  The 
framing effect became insignificant when the zero 



complement was removed.  The authors explained 
these findings in terms of the categorical gists from 
FTT, which highlighted the possibility of nobody 
being saved or of nobody dying.  Removing the 
nonzero complement made those categorical gists 
more salient, whereas removing the zero 
complement made the categorical gists less salient. 

Several investigators have studied brain activation 
patterns for choices on the Asian Disease Problem and 
similar probabilistic preference problems, noting how 
following or violating traditional frames altered brain 
activity.  In particular, De Martino et al. [21] 
conducted an fMRI study of a human monetary 
decision task analogous to the Asian Disease Problem. 
De Martino and his colleagues compared activation 
patterns for choices that conformed to the traditional 
framing effect (risk seeking for losses or risk averse 
for gains) with choices that violated the framing effect 
(risk seeking for gains or risk averse for losses).  These 
investigators found that the anterior cingulate cortex 
(ACC), an area involved in conflict detection, was 
particularly activated by choices that violated the 
framing effect.  The orbital and ventromedial 
prefrontal cortex (OFC), which are involved in control 
and cognitive representation of emotions, showed 
higher activation in individuals who were less prone to 
the framing effect.  On the other hand, frame-
consistent choices tended to activate the amygdala, an 
area involved in primary processing of the emotional 
value of stimuli or events. 

The next section reviews a neural network 
explanation for the De Martino et al. fMRI data based 
on ART.  It also reviews the roles of the relevant brain 
regions in the ART- and FTT-based model of [6]  

 
4. AN ADAPTIVE RESONANCE EXPLANATION 

FOR SOME IMAGING DATA 
 
Figure 1 shows a generic ART network.  The level 

F1 represents attributes and F2 represents categories.  
Short-term memory is encoded at the feature level F1 
and category level F2, and learning at interlevel 
synapses.  The orienting system generates F2 reset 
when bottom-up and top-down patterns mismatch at 
F1, that is, when some function that represents match 
between those two patterns is less some quantity called 
vigilance. 

In the decision model of [6], F1 is interpreted as 
amygdala, F2 as OFC, and reset as ACC.  For a 
participant subject to the framing effect, gist 
representations of prospects involving probabilities of 
gains and losses tend to be simplified to the four 
categories of “sure gain,” “risk of gain or no gain,” 
“sure loss,” or “risk of loss or no loss” [12].  These gist 
representations favor choices of sure gains over risky 
gains and choices of risky losses over sure losses, in 

accordance with the framing heuristic.  Those four 
gain/loss categories could be encoded at the OFC, and 
the actual options (e.g., gain $400 with probability 
80%) at the amygdala.  Resonant feedback between 
the amygdala and OFC (Figure 1) causes the input to 
be stably classified in one of those four categories, and 
the resulting increased F1 activity inhibits reset (i.e., 
ACC) activity.  Both amygdala (F1) and OFC (F2) are 
activated by the input and the interlevel feedback, but 
the only F2 nodes activated are the two corresponding 
to the “sure gain” and “risky gain” categories; hence, 
total OFC activity remains small. 

By contrast, consider a network corresponding to a 
second participant not subject to the framing effect.  
For such a participant, all-or-none gist representations 
are assumed to be weaker, and either verbatim or more 
nuanced gist representations stronger, than in the first 
participant. (An example of a nuanced gist is “almost 
certain gain”; see the next section of this paper.)  The 
network corresponding to that participant has higher 
vigilance and may experience mismatches between 
those inputs and the corresponding simple categories, 
based on sensitivity to probability and/or magnitude 
information about the potential gains or losses.  That 
mismatch means that F1 activity no longer inhibits 
reset (i.e., ACC) activity.  Also, there is greater activity 
at F2 (i.e., OFC) than for the first participant because 
the all-or-none interpretation of the input is challenged 
and other (existing or novel) categories of gain-loss-
probability configurations at that level are considered.  
The enhanced F2 activity, in turn, non-specifically 
inhibits F1 (i.e., amygdalar) activity. 

fMRI data are notoriously difficult to interpret in 
mechanistic terms, which is one reason they have not 
often been directly reproduced in neural networks.  
Yet the above ART-based explanation for a specific 
fMRI dataset may hint at a way to interpret relative 
activations of brain regions in terms of the number of 
competing psychological representations activated at a 
given level.  At a higher level of abstraction, say 
involving competing rules, this could explain greater 
fMRI activity in areas like the dorsolateral prefrontal 
cortex with greater deliberation between rules. 

 
5. CONTEXTUAL DIFFERENCES WITHIN 

INDIVIDUALS 
 
Yet other results suggest that the how carefully 

options are processed varies even within individuals. 
The same DM could rely on more nuanced gists for 
one option than for another on the same preference 
task.  This was the interpretation in the model of [6] of 
data by Rottenstreich and Hsee [22] on differences in 
probability weighting based on differences in 
emotionality. 



Rottenstreich and Hsee [22] asked some 
participants if they would rather obtain $50 (affect-
poor) or the kiss of their favorite movie star (affect-
rich), and the majority (70%) preferred the money.  
But when the same participants were given a 
hypothetical choice between a 1% probability of 
obtaining the $50 and a 1% probability of obtaining 
the kiss, the majority (65%) preferred the kiss.  These 
researchers asked another set of participants how 
much they would be willing to pay for a 99% 
probability of obtaining a $500 tuition rebate (affect-
poor) and for a 99% probability of obtaining $500 
toward a trip to European tourist destinations (affect-
rich: these were American students).  The median 
price that the participants were willing to pay for the 
almost-certain European trip was $28 lower than the 
median they were willing to pay for the almost-certain 
tuition rebate.  In both cases, the affect-rich item 
showed a greater enhancement of probability 
differences close to 0 or 1. 

The model of [6] explained the kiss/money results 
by positing that for any desirable item the participants 
potentially could possess (kiss OR money), the 
attributes attached to the option of a certain probability 
of gaining that item were (a) possible gain (which has 
a value of 1 or 0); (b) possible non-gain (which also 
has a value of 1 or 0); and (c) gain probability (which 
has a continuum of possible values from 0 to 1).  The 
DM’s attention was assumed to shift back and forth 
between the two options: probability p (for some p 
between 0 and 1, inclusive) of kiss and probability p 
of money.  Yet because of differences in emotional 
arousal, the attentional weights of the possibility 
attributes (a) and (b) were assumed to be larger for the 
kiss than for the money, and the attentional weight of 
the probability attribute (c) to be larger for the money 
than for the kiss. 

Attributes (a), (b), and (c) were represented by 
nodes of the level F1 of the ART module in the network 
(see Figure 1).  Level F2 had five nodes representing 
option gists: (1) sure gain; (2) sure non-gain; (3) tossup 
between gain and non-gain; (4) almost impossible 
gain; (5) almost certain gain.  The more nuanced 
categories (4) and (5) were assumed to be more 
accessible when considering the money than when 
considering the kiss. 

To my knowledge there have been no experiments 
testing the activations of specific brain regions in 
choices between equal probabilities of more and less 
affectively rich items.  Nor have there been studies of 
whether the results of [22] hold in specified patient 
populations.  It has been conjectured that the 
hippocampus is involved in constructing attribute 
weights in real time decisions via selective memory 
retrieval (Akram Bakkour, personal communication, 
1/18/19).  If that is true, amnesic patients with 

hippocampal damage would not show the differential 
probability weighting for affectively rich versus 
affectively poor items seen in [22]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. ART 1 architecture.  Arrows denote excitation, filled 
circles inhibition, and semicircles learning.  (Adapted from 
Carpenter & Grossberg, 1987, with the permission of Academic 
Press.)   

 
6. CONCLUSIONS 

What might distinguish neural networks in the 
brains of decision makers who look beyond what is 
directly presented to them from those who are bound 
only by what they directly see?  The ART network 
analysis discussed in Section 4 of this paper argues 
that the “what you see is more than what you get” 
people show greater activation of prefrontal areas 
involved in cognitive and emotional control. 

While the change from predominant gist to 
verbatim processing in adulthood is generally an 
advance in thinking capacity, this analysis suggests the 
need at time for “verbatim override” of prevailing gists 
if the gists are too simple.  Some investigators think of 
the process as prevalence the fast intuitive System 1 
with correction by the slow deliberative System 2 [23].  
Yet the two-system description is somewhat simplistic 
because deliberation is not always slow and intuition 
is not always fast (see [24] for discussion). 

The contextual difference discussed in Chapter 5 is 
less well understood at the neural level.  If indeed 
some decision makers shift attention between two 
hypothetical alternatives and use a categorical gist 
encoding for one of them and an interval encoding for 
the other, why should that be the case?  The studies 
that showed the phenomenon were based on students 
at selective universities such as Stanford, which 
suggests that such a shift of encoding might coexist 
with high need for cognition in many participants.  The 
explanation in [6] was based on shifting levels of 
emotional arousal, which in the example of [22] is 
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higher when considering the kiss than when 
considering the money. 

Yet emotions are widely recognized to play 
essential roles in effective decision making [25, 26].  
Hence, deliberative override of short-term arousal 
does not mean “the triumph of reason over emotion.”  
Rather, it means a top-down attentional control of 
emotion.  Such attentional control, which is both 
excitatory and inhibitory, is characteristic of ART 
networks. 
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