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Abstract—Head detection, as a fundamental task in practice
for many head-related problems, requires an enormous number
of annotated boxes to maintain the performance. To alleviate
the time and cost of labeling each image in the dataset, we
propose an end-to-end semi-supervised head detection frame-
work, which shows competitive results with only a small set
of data. Specifically, under the setting of semi-supervised, we
introduce a weak boxes generate branch and a weak boxes
refine branch to produce pseudo ground truth label for unlabeled
images with the guidance of annotated images. The weak boxes
generate branch is embedded in the detection framework taking
the proposals as input and outputting the initial weak boxes
that coarsely locate the place of the head. Then, the weak boxes
refine branch adjusts the weak boxes more accurate gradually by
training a transferred sub-network with the established relation
between proposals, weak boxes and labeled boxes. In the training
process, we jointly train the two branches in an end-to-end
manner, which can generate better pseudo bounding boxes with
a small dataset online to avoid over-fitting and obtain a more
precise head detector. The results on the public head detection
benchmark Brainwash and SCUT-HEAD show the effectiveness
of our method.

Index Terms—semi-supervise, head detection

I. INTRODUCTION

Head detection, which is a sub-task of object detection, is

fundamental in many head-related problems such as visual

tracking [20], action recognition [3], and crowd understanding

[23], aiming to localize spatial extents of all heads. The state-

of-the-art head detection methods typically trained deep Con-

volutional Neural Networks(CNNs) from large scale datasets

with bounding boxes labels [8] [2] [7]. As shown in Fig. 1(a),

the annotations in the level of the bounding box are essential

to the effectiveness of these methods. However, It is known

that it takes about 10 seconds to label an object [15]. As a

result, labeling for detection tasks with bounding box locations

requires enormous cost and time.

To reduce the cost of such labeling, we mainly study

how to learn a precise head detector using unlabeled data in

combination with the box-level labeled data, as shown in Fig.

1(b). This problem can be thought of as a subtask of semi-

supervised object detection. Compared to object detection,

head detection only contains one category. But there still some
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(a) Supervised learning

(b) Semi-supervised learning

Fig. 1. Different types of head detection settings

similarities between the two tasks. The authors in [11] try to

solve the incomplete boxes problems in weakly supervised

detection by learning a box correction network from a small

portion of box annotations. They have improved the perfor-

mance of semi-supervised object detection. However, in head

detection, suitable additional image-level labels in their works

are not available. Besides, Wang [19] utilize high-confident

samples with pseudo-labels in training to provide more data.

The disadvantage of the method is large time consumption

because of their iterative training process. Recently, Jeong [6]

propose a novel consistency based semi-supervised learning

algorithm, which creatively uses horizontally flipped images

to avoid the inappropriate place when applying consistency

regularization to object detection. But it still has a limitation

that the distribution of unlabeled data should be similar to that

of the labeled data.

Follow semi-supervising setting in [19], we define the semi-

supervised head detection task is: given a large dataset without

any labels, and only a small subset of it has bounding box

annotation of the head, testing the performance by labeled

images.

In this paper, we propose an end-to-end semi-supervised
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head detection framework called Weak Boxes Generate and

Refine network(WBGR), which can generate pseudo ground

truth for unlabeled images and train the detector online. Here,

the weak boxes are those boxes predict by our proposed

embedded network. Furthermore, we utilize the partially an-

notated bounding boxes as strong boxes to guide the refined

process of the weak boxes. As shown in Fig. 2, our method

consists of three components, a detection branch as the base,

a weak boxes generate(WBG) branch to initialize the weak

boxes, and a weak boxes refine(WBR) branch to adjust the

boxes. Specifically, we used a typical two-stage detector Faster

R-CNN to generate proposals and trained the detector by the

annotated and pseudo labels. The WBG branch, which takes

the proposals without post-processing as input and outputs

weak boxes, is a simple classification and bounding-box

regression branch embedded in the based detection backbone.

To further enhance the quality of weak boxes, the WBR branch

utilizes annotated bounding boxes to transfer the weak boxes

more accurate by a greedy method and a regression net. During

the training process, we make the image with annotation and

unlabeled as a pair. The generated pseudo ground truth from

our branch is online training together with annotated bounding

boxes to alleviate the detector over-fitting into the small subset

and maintain the generalization of the model.

Our contributions can be summarized as follows.

• We design an end-to-end semi-supervised head detection

network than can optimize the head detector with un-

labelled images by WBG and WBR branch generating

high-quality pseudo ground truth.

• Our proposed network significantly outperforms the orig-

inal model on head detection benchmarks Brainwash and

SCUT-HEAD.

II. RELATED WORK

A. Head Detection

Object detection, including head detection algorithms, can

be divided into two categories, depending on whether the

detector does classification and regression twice. Single-stage

detectors usually process the proposals to output boxes directly

with the consideration of balance training strategies, such as

SSD [10] and Retinanet [9]. Two-stage detectors are region

proposed network(RPN) based algorithms, which generate a

set of proposed regions and modifies them further, represented

by Faster RCNN [14]. Due to the better performance of two-

stage detectors, we utilize them as the baseline.

Furthermore, as a subtask of object detection, head detection

has inherited some methods from generic object detection.

Chen [2] present an approach that learns a semantic connection

between the head and body parts. Additional annotation makes

this method applicable to a few datasets. After that, to alleviate

the problem of false alarms, Li [7] add a saliency attention net-

work on the two-stage detector with a feature fusion strategy.

Besides, Li [8] propose an adaptive relational framework with

the local relation and global priors. To verify the effectiveness

of our method under a semi-supervised setting, we use Faster

R-CNN with adjusted hyper-parameters for head detection as

our detection branch.

Moreover, based on the two-stage detector, multi-stage

works represented by Cascade R-CNN [1] and Cascade RPN

[24] have appeared recently. They perform a cascade process

on the first and second stage of the two-stage detector, re-

spectively. Cascade R-CNN is trained with increasing IOU

thresholds to avoid the problems of overfitting and mismatch.

Different from Cascade R-CNN, Cascade RPN optimize the

anchor generation strategy and utilize generated proposals

to guide the feature learning process. Motivated by these

two work, our WBG branch generated weak boxes with an

uncomplicated cascading network.

B. Semi supervised Detection

Since we have not found work for semi-supervised head

detection, in this section, we mainly introduce semi-supervised

learning methods for object detection. Most of the works in

this area are divided into two kinds. One focuses on combining

image-level labels and instance-level labels in object detection,

such as [17], [21], [18], [11]. Another is based on the self-

training scheme with completed unlabeled images, such as

[19], [6], which we follow due to the useless of image-

level labels in the head detection task. Wang [19] stitch high

confidence patches from unlabeled data to labeled data. Jeong

[6] utilize consistency regularization to fine-tune the location

of the predicted box. Our method also focuses on how to

use the unlabeled images, but with end-to-end online training

strategy.

III. METHOD

In this section, we firstly present an overview of our network

architecture, then elaborate weak boxes generation(WBG)

branch and weak boxes refine(WBR) branch in details, finally

give the training details .

A. Overall Architecture

The overall architecture of proposed semi-supervised object

detection network is shown in Fig. 2, which consists of three

major components: a two-stage detection backbone, WBG

branch to generate weak boxes and WBR branch to refine

the coarse weak boxes more accurate.

We split all images I into two parts, I = A∪B and A∩B =
∅, where images in small part A(i.e. 10%) has box annotations

while images in B don’t contain any annotations. For images

in A, their manually labeled bounding boxes are denoted as

strong boxes, bs. The pseudo bounding boxes generated by

WBG branch are denoted as weak boxes, bw.

In the training process, our method starts with preparing

paired training images which contains an image form A

and an image from B. Then, we extract the features of the

images by a deep full conventional network(FCN). The region

proposal network(RPN) is built on the top of the FCN, which

produce transferred anchors and postprocessing proposals.

Continuously, in order to generate original weak boxes, we

utilize a simple WBG branch which is shown in the yellow



Fig. 2. An overview of our WBGR architecture. (1)Generate proposals and RoI features from conv feature map by RPN and RoI pooling. (2)WBG branch:
Feed the proposals not yet post-processed into a simple network for weak boxes annotation initialization. (3) WBR branch: Feed the RoI features and generated
weak boxes to the branch for weak boxes refine. (4) Perform proposals classification and regression with the supervision of weak and strong boxes.

part in Fig. 2. The WBG branch is trained by existed strong

boxes and takes the transferred proposals without non-maxima

suppression or eliminate and incoming feature maps for RPN

as input.

After generating the weak boxes, we utilize the region of

interest(ROI) pooling to extract the feature of proposals from

RPN. Our weak boxes refine branch will match the proposals

with the weak boxes and existing strong boxes, and gradually

optimize the weak ones. The weak boxes refine branch is

shown in the pink part in Fig. 2, which get roughly weak

boxes and output more accurate weak boxes. Finally, adjusted

weak boxes will be employed as fully supervised labels for

classifier and regressor in detection backbone. The weak boxes

can be seen as extra samples to make the network training

more adequate and robust. More details will be introduced

respectively in remain sections.

B. WBG Branch

In semi-supervised object detection setting, we only have

a part of images with box-level labels. To train a standard

object detection with regression, previous works introduce a

MIL learning method to initialize the pseudo GT annotations.

In [11], the authors utilize a pretrained weakly supervised

object detection model and use it to generate weak boxes

for all images. However, head detection is different from

generic object detection. There are only one category in head

detection, making it challenging to guide the score of the

proposals by the distribution of category scores. As a result,

we think of using the existing partial annotation to generate

roughly weak boxes for the remaining unlabeled pictures.

In the following, we introduce two methods to generate

weak boxes.

1) Generating weak boxes using a decouple two-stage de-

tector: A solution for generating weak boxes is to pretrain a

two-stage head detector like Faster RCNN with the existing

partial label in Image set A. After the training process of

network completed, we select the images without bounding

box labels as input and utilize a score threshold and top K

number of boxes to filter the network output as the generated

weak boxes.

2) Generating weak boxes using a simple embedded net-

work: Although we can generate initial weak boxes using

the decouple head detector, this method requires alternating

optimization, and it is difficult to directly train a convergent

network when there are fewer samples. Therefore, we propose

a new method to generate weak boxes utilising an embedded

network which can be trained end-to-end.

Our method is motivated by the work [24] and [1]. They

propose a cascaded bounding box regression framework to

get high-quality results and a cascade architecture to refine

score and location, respectively. Different from their work, we

incorporate a cascade-style network to generate weak boxes

with the extracted base feature map and proposals from RPN.

As shown in Fig. 3(c), the left part is a standard RPN,

which utilizes a sliding network to predict multiple region

proposal from anchors. Based on RPN, we add our lightweight

architecture, WBG branch, which is in the middle part of

Fig. 3(c) framed by a dotted line. After post-processing such

as sorting and non-maximum suppression and truncating in

number, the output of our WBG branch will be considered as

weak boxes in our setting.



(a) RPN Network (b) Left: proposals from RPN. Right: weak boxes generated by WBG branch

(c) WBG Branch

Fig. 3. Components and examples in WBG Branch. (a) The original RPN network. (b)The weak boxes are less and more accurate than the proposals. (c)Our
lightweight WBG Branch’s architecture.

The architecture of our WBG branch is a fully convolutional

network. The WBG branch takes as input an n × n spatial

window of the input feature map. Each window is mapped

to a lower-dimensional feature(1024-d to 512-d for ResNet).

Then, we feed the feature into two 1 × 1 convolution layers:

a box classification layer and a box regression layer. The

scores and deltas are corresponding to the proposals form

RPN. After box transferred, we utilize a more strict filter with

higher IOU and score threshold, and a smaller top K truncating

number. This lightweight network is illustrated in Fig. 3(c).

Our network structure is similar to RPN shown in Fig. 3(a),

but with entirely different purposes (generating weak boxes)

and stricter restrictions to filter the resulting boxes. Proposals

from RPN and initial weak boxes are compared in the Fig.

3(b).

C. WBR Branch

After the weak boxes are generated, we design a weak box

refine branch to make the initial weak boxes more accurate

and can be used as training examples of detection head.

Here we will expound how to refine the weak boxes. A

natural way to improve weak boxes quality is an alternative

strategy, that is, fixing the weak boxes and training a regressor

for transffering weak boxes to strong boxes, fixing the regres-

sor and generating refined boxes. But is have a limitation:

the number of weak boxes will generally be few, which is

challenging to train the network till convergence. Hence we

integrate the proposals, weak boxes and strong boxes and

group them in one-to-one correspondence as samples for our

branch. After we obtained the trained regressor, we convert

those weak boxes without corresponding strong boxes into

more accurate ones.

To make the weak boxes refine branch more clear, we

summarize the process to obtain more accurate weak boxes in

Algorithm 1. In training iteration, each proposal is assigned

a corresponding weak box which owns the largest overlap. If

the largest overlap is smaller than a threshold, this pair will

be removed. Furthermore, the weak box will be assigned to

a strong box in the same way. Then we can map a proposal

to a strong box and calculate the offset which is used to train

the weak-to-strong regressor indirectly. The offset targets are

similar to the regression in Faster RCNN while we employ it

to transfer boxes. Besides, the architecture of our WBR branch

can be implemented as a fully connected neural network. As

the box-annotated set A is a small part of I, we also add

regressor together with the classification of proposals under the

supervised of weak boxes. After obtaining supervision and the

architecture, we can get the loss of transfer function to learn

the WBR branch.

LWBR (pi, pw, ti, tsi) =
1

Ncls

∑

i

Lcls (pi, pwi)

+ λ
1

Nreg

∑

i

pwiLreg (ti, tsi)
. (1)



Algorithm 1 Weak boxes refine branch process

Input:

The conv image feature map X and its proposals;

The roughly weak boxes bw and strong boxes bs;

Output:

More accurate weak boxes b
′

w;

1: Feed X and its proposals into the network with weak

boxes bw and labeled strong boxes bs to produce refined

weak boxes b
′

w;

2: for i = 0 → K − 1 do

3: Get the weak boxes bw from WBG branch or last WBR

instance

4: for r = 0 → |R| − 1 do

5: Compute IoU vectors I =
[

I1, . . . , I|N |

]

between

proposal jr and weak boxes bw.

6: Choose the top-scoring IOU Irn.

7: Compute IoU vectors S =
[

S1, . . . , S|M |

]

between

weak box bwn and strong boxes bs.

8: Choose the top-scoring IOU Snm.

9: Compute the deltas dr between jr and strong box

bsm
10: end for

11: Train the weak boxes refine network by deltas vector

D =
[

D1, . . . , D|R|

]

12: for n = 0 → N − 1 do

13: Transfer weak boxes bwn to b
′

wn by trained network

14: end for

15: end for

16: return b
′

w;

Lreg(t, ts) =
∑

j∈{x,y,w,h}

smoothL1

(

tj − tj
)

, (2)

in which i is the index of a proposal, pi is the class prediction

of proposal i and pwi is the class label from weak boxes, ti
is the predicted offset and tsi is the offset targets calculated

from strong boxes. The regression loss for our refine branch

is the smooth L1 loss, which is not sensitive to outliers with

smaller gradient changes.

D. Multi-task training

Our method can be trained in an end-to-end manner us-

ing multi-task loss which contains following composite loss

function from the four components with stochastic gradient

descent:

L = LWBG + LWBR + Lrpn + Ldet. (3)

Here, Lrpn and Ldet are multi-task loss of detection sub-

network. Since we get the annotations from strong boxes in A

and refined weak boxes in B, each proposal now has a ground

truth bounding-box regression target and classification target.

For localization, smooth L1 loss is uesd. For classification, a

binary cross entropy loss is used. LWBR is the weak boxes

refinement loss of WBR branch aforementioned.

For LWBG, as mentioned in Section. III-B, the weak boxes

generation branch has two sibling branches. The first branch

predicts a discrete probability distribution, p ∈ R
(1+1)×1, over

1+1 categories, where one denotes head, plus one for the

background. The second sibling branch computes the offset for

transferring input to weak boxes. The loss function of WBG

branch is:

LWBG = Lcls + λLloc, (4)

in which λ is the loss weight balance parameters, Lcls is classi-

fication loss, and Lloc is regression loss. Since we only utilize

detection branch without the weak boxes generate branch and

weak boxes refine branch on test images, our methods brings

little increase in computation during the inference time.

IV. EXPERIMENT

In this section, we first introduce our experiment details,

such as datasets, evaluation matrics, and hyperparameter set-

tings. Then we conduct ablation experiments to explore the

contributions of each proposed module. After that, we give

some qualitative results for further analyses. Finally, we com-

pare the performance of our method with some leading results

in head detection.

A. Experiment settings

1) Datasets and Evaluation Metrics: We evaluate our

method on the two primary head detection datasets: Brain-

wash [16], SCUT-HEAD [12]. The Brainwash dataset is a

frequently-used head detection benchmark, which contains

91146 labeled people in 11917 images. Our ablation studies

are performed on the test set of Brainwash, of which 1000

images are used for evaluation and testing, remaining for

training. Another dataset is SCUT-HEAD dataset aims to

reflect the robustness of head detector under difficult scenarios.

It contains 4405 images with 111251 annotated head collected

from video and Internet.

For testing, there are two metrics for evaluation: AP and

MR−2. Following the standard PASCAL VOC protocal, Av-

erage Precision(AP) computes the average precision value for

recall value over 0 to 1, which is commonly used in object

detection. MR−2 calculates the log-average miss rate over 9

points ranging from 10−2 to 100 FPPI. Both metrics are based

on the PASCAL criterion, ie., IOU>0.5 between ground truth

boxes and predicted boxes.

2) Implementation Details: Our network is base on Faster

R-CNN, of which the implementation is the same as [22].

We maintain most of the hyper-parameter in Faster R-CNN

such as RPN batch size, pooling model to keep the fairness

of experimental results when compared with the baseline.

During training, we adopt ResNet-50 pre-trained on Ima-

geNet [4] as the backbone of our proposed network. For the

newly added layers, the parameters are randomly initialized

with a Gaussian distribution N (µ, δ)(µ = 0, δ = 0.01).
Furthermore, for the hyper-parameter in Section. III-B, the top

K truncating number is set to 30. Besides, for the parameters

in Section. III-C, if not specified, our weak boxes refine branch

will transfer the initial weak boxes twice time; the proposals

nums is set to 2000 per-image; the IOU threshold to make

the pair between weak and strong boxes is 0.2. In finetuning,



(a) The PR curves on Brainwash test set (b) The MR-FPPI curves on Brainwash test set

Fig. 4. Miss rates versus false positive per-image(MR-FPPI) curves and Precision-recall(PR) curves on Brainwash test set

TABLE I
THE ABLATION STUDIES UNDER BRAINWASH DATASET

Method
Methodology

AP(Brainwash)
WBG branch WBR branch

Faster R-CNN (10%) 0.8642

Ours(10%) X 0.8850±0.0022

Ours(10%) X 0.8899±0.0019

Ours(10%) X X 0.8959±0.0039

Faster R-CNN (5%) 0.8392

Ours(5%) X X 0.8647±0.0033

Faster R-CNN(100%) 0.9196

TABLE II
THE ABLATION STUDIES UNDER SCUT-HEAD DATASET

Method
Methodology AP

WBG branch WBR branch (SCUT-HEAD)

Faster R-CNN (20%) 0.8017

Ours(20%) X X 0.8128±0.0021

Faster R-CNN(100%) 0.8566

the mini-batch size for SGD is set to be 1. The learning rate

is set to 0.0005 for the first 15 epochs and divided by 10 in

the following 5 epochs. The trade-off parameters between loss

are set to 1 all. And we set the momentum and weight decay

to 0.9 and 0.0001, respectively. For semi-supervised settings,

we randomly select a limited number of images with boxes

annotation, remaining images without any labels.

B. Ablation studies

We conduct ablation studies experiment on Brainwash to

illustrate the effectiveness of our proposed network. We vali-

date the contribution of each component including WBG and

WBR branch. To verify the validity of our results under semi-

supervised settings reasonably, each experiment in ablation

studies selects the same 10% of all box annotations.

1) Baseline: The baseline is the detection backbone without

WBG and WBR branch, which is same as Faster R-CNN. We

re-run the experiment and get a higher result of 0.9196 AP

with 100% box annotations while 0.8642 AP with 10% box

annotations.

2) WBG Branch : To verify the effect of WBG, we conduct

experiment with and w/o WBG. The boxes annotation gener-

ated by our WBG branch will be used to train the detector.

From Table. I and Fig. 4, we can conclude that WBG branch

does generate rough but valid box annotation for images in B
and improve the AP of baseline by 2.4%.

3) WBR Branch: When we measure the effectiveness of our

WBR branch, we find that if there are no existed weak boxes,

it is unable to refine them. For separately verify the result of

WBR, we utilize the boxes generation method mentioned in

Section. III-B, which generated pseudo ground truth as weak

boxes for unlabelled images with a decouple trained detector.

From Table. I and the green curve in Fig. 4, we can see that

this branch is essential for our method.

4) Joint Optimization: To further explain the effectiveness

of our method, we optimize the proposed WBG and WBR

branches jointly. The experiments are summarized in Table

I and Fig. 4. From the results, we can find that comparing

to train a decouple two-stage detector to generate boxes

separately, our proposed simple embedded network performs

better with efficient training strategy. Another conclusion is

that the accuracy of joint optimization with the refining

stage is higher than the result only with the WBG branch.

We attribute the improvement to more accurate weak boxes

adjusted by the WBR branch. In general, what our method

does is effectively generate higher quality training samples

for a better detector. We also carry the exploration studies on

fewer boxes annotation, SCUT-Head data, and the MR metric,

as reported in Table I, Table II, and Fig . 4, respectively. The



(a) Scene at night (b) Scene with strong light in day (c) Another scene with strong light in day

Fig. 5. Examples of head detection results compared between Different scenes. First Row: Proposals from RPN. Second Row: Initial weak boxes. Third Row:
Weak boxes refine for the first time. Fourth Row: Pseudo ground truth from weak boxes. See details in Section. IV-C.

percentage of boxes annotation in SCUT-HEAD is 20% result

from the size of data set much smaller than Brainwash. From

these results, we can draw the same conclusion.

C. Qualitative results

We show some qualitative comparison among the proposal

from RPN, weak boxes generated by WBG, weak boxes

refined by WBR for the first time, and weak boxes refined

by WBR for the second time, both of which use the same

basic network. As shown in Fig. 5, each column represents a

scene. The first row contains the top 30 proposals filtered by

RPN. The blue boxes in the second row indicate initial weak

boxes created by the WBG branch, While the green boxes

and red boxes in the last two rows denote refined weak boxes

from the WBR branch. From these examples, we can observe

that our proposed WBG can generate coarse but practical

week boxes, and our WBR branch does adjust the weak boxes

better gradually. Although the boxes still have some problems,

we believe our method can further improve by incorporating

segmentation context in WSOD.

D. Comparison with other methods

In the field of semi-supervision of head detection, we have

not found any existing work. And there are few articles with

public experiment results on the SCUT-HEAD dataset. So

in this section, we evaluate our model on Brainwash test

benchmark and compare it with some existed leading methods

such as SSD [10], E2PD [16], HeadNet [8], etc. The results

are summarized in Table. III. From the table, we can see that

our method achieves a competitive result, which outperforms



some full-supervised methods even with only 10% of the box

annotations. This result demonstrates the superiority of our

proposed method. Trough our methods, we can make better use

of the unlabeled images to help the detector being more robust

and effective. Furthermore, after our extended experiment, we

find that our method performs not better enough in fewer

samples like only 2% of the box annotations. The main reason

is that the samples are too few to train a better-generalized

detector under the detection framework in this paper. An

ideal solution is yet wanted because there is still room for

improvement.

TABLE III
THE RESULT OF OUR METHOD COMPARED WITH

OTHERS ON THE BRAINWASH DATASET

Method mAP

10% Faster R-CNN [14] 0.864

Ours 0.896

100 % YOLO9000 [13] 0.625

SSD [10] 0.741

TINY [5] 0.893

E2PD [16] 0.821

Faster R-CNN [14] 0.919

HeadNet [8] 0.913

V. CONCLUSION

In this paper, we proposed an end-to-end semi-supervised

head detection framework that can obtain competitive perfor-

mance with a small subset. Under the semi-supervised setting,

our method focuses on how to generate quality pseudo ground

truth for the unlabeled image with the help of annotated boxes

to obtain more precise detector. We firstly proposed a WBG

branch to produce weak boxes that coarsely located the head.

Then, we introduce a WBR branch aiming to transfer weak

boxes more accurate with the guidance of strong boxes. The

pseudo labels are generated online and trained with labeled

images, which avoid head detector over-fitting to the small

set. Experiments show the effectiveness of our method.
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