
Closing the Simulation-to-Reality Gap using Generative Neural
Networks: Training Object Detectors for Soccer Robotics in Simulation

as a Case Study

Nicols Cruz1 and Javier Ruiz-del-Solar2

Abstract— In order to address the simulation-to-reality-gap,
in this paper a methodology for the real-time generation of
realistic images in robotic simulation environments is proposed.
The images rendered by the simulator are first segmented,
and then a generative neural network transforms them into
realistic images. This allows training object recognition methods
in situations dynamically generated by the simulator, but using
realistic images. The generative neural network is trained using
a database obtained using an instance segmentation network
(Mask R-CNN). The whole methodology is validated in the
soccer robotics domain. The reported experiments show that
CNN based object detectors trained in simulation, using the
generated realistic images, can be directly transferred to reality,
where state-of-the art results are obtained. Moreover, we show
how the training process of these detectors is fast, easy, and
does not require the repetitive use of robots, which is time
consuming for humans.

I. INTRODUCTION
One of the main challenges for the training of machine

learning algorithms used in robotics is the need of large
amounts of training data. This is especially true in the
case of robot vision systems that need to be trained using
images that consider the large variability of the target real-
world application. Simulations can be used to address this
challenge, but this approach suffers from the simulation-to-
reality gap, due to the fact that there is a visual mismatch
between the images generated/rendered by the simulators
and the real images. Several approaches have been proposed
to deal with the simulation-to-reality gap. The standard
approach consists of training in simulation and then fine-
tuning in reality. New approaches attempt to make images
in simulation and in reality look the same [1][2][3], either
by transforming simulated images into realistic ones during
simulation, by processing the real images with the goal that
they look like simulated ones, or by transforming both kinds
of images into a unified domain.

Following these ideas, in this paper a methodology for the
real-time generation of realistic images in robotic simulation
environments is proposed. In this methodology, a generative
neural network is used to transform the images normally
rendered by the simulator into realistic images, i.e. images
with realistic real-world characteristics.

*This work was partially funded by FONDECYT project 1161500 and
CONICYT/PIA Project AFB180004.

1Nicolas Cruz is with the Dept. of Electrical Eng, Universidad de Chile
nicolascruz2187@gmail.com

2Javier Ruiz-del-Solar is with the Dept. of Electrical Eng. and
the Advanced Mining Technology Center, Universidad de Chile
jruizd@ing.uchile.cl

Fig. 1. Example of a rendered simulated image (left), a segmented
simulated image (center), and a generated realistic image (right).

Fig. 2. Pipeline used to generate a database containing realistic images
and the ground truth (obtained from the segmented images) for the training
of object recognition methods.

More specifically, rendered images are first segmented,
and then transformed into realistic ones (see Fig 1). This
allows training object recognition methods using realistic
images in situations dynamically generated by the simulator.
Fig. 2 shows how the database used for this training is
generated.

A main challenge of the proposed methodology is the
training (construction) of the generative neural network
in charge of generating realistic images. This requires
a massive amount of training data, i.e. pairs of aligned
segmented/simulated-real images, which are difficult and
time consuming to obtain. In the here-proposed approach,
these image pairs are obtained using the following procedure,
which creates segmented images from real ones: First, a large
amount of real images of the target environment is acquired.
Then, the relevant objects in each real image are segmented
using an instance object segmentation neural network (e.g.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

a Mask R-CNN in our case). The output of this network
are segmented images, which are of similar nature than the
segmented images generated in simulation (the segment’s
identifiers just need to be the same in the segmentation
network and in the simulator).

However, the training of the instance object segmentation
network also requires a large amount of training data of
the target domain. In this work, this training process is
addressed by using a small number of labeled data together
with transfer learning and active learning mechanisms, which
avoids the use of a massive number of images with labeled
objects. It must be stressed that this training is made just
once for each application domain.

The whole framework is validated in the soccer robotics
domain. We show how state-of-the-art detectors of relevant
soccer objects (humanoid robot players and the ball) can
be trained in simulations and then directly used in reality.
These detectors show the same performance than state-of-
the-art detectors directly trained in reality, but the time to
generate the necessary databases is largely decreased.

In summary, the three main contributions of this work are
the following: (i) The use of a generative neural network
for generating realistic images from the images rendered
by the simulation. (ii) A novel method for generating the
training set of the generative neural network, based on the
use of a state-of-the art instance segmentation network. (iii)
The application of the proposed framework in a specific
application domain, robotics soccer, where object detectors
are trained in simulation and directly transfer to reality,
where state-of-the art results are obtained.

This paper is organized as follows: Section II presents
the related work. The proposed methodology is described
in Section III, followed by the experimental validation in
Section IV. Finally, conclusions are drawn in Section V.

II. RELATED WORK

The use of simulators for learning tasks and then transfer-
ring them to real robots (sim-to-real) is a promising approach
[3][4][5][1][6][7][8]. However, training an algorithm in sim-
ulation is not always a feasible approach given the mismatch
between the simulated and the real environments. To address
this issue, a first approach consists of pre-processing the
simulated and/or the real data to reduce their mismatch and to
make them look alike. In [3], DRL based visual navigation
for humanoid, biped robots in robotic soccer is proposed.
Images are segmented and down-sampled, both in simulation
and in reality, in order to make them look similar, thus
reducing the simulation-reality gap. The system is trained
using the down-sampled, segmented images generated in the
simulator, and then directly deployed in reality, where the
robot is able to navigate between static and moving obstacles
(robots). In [4], a collision avoidance system for indoor
service robots based on multimodal DRL is proposed. In
this case, the reality-gap is reduced by corrupting and post-
processing the simulated depth images so they resemble their
real-world counterparts. In addition, both real and simulated
images are decimated (and subjected to an anti-aliasing

filter) to reduce their dimensionality to 60x80 pixels. The
collision avoidance system is trained in simulation and then
successfully transferred to reality.

A second approach for addressing the reality gap is
using adversarial training techniques for learning a latent-
space/representation where simulated and real data look
alike. In [5], a data-efficient framework for sim-to-real trans-
fer of navigation policies is presented. In [1], an adversarial
discriminative sim-to-real transfer approach is presented. The
system is first trained with simulated data, using a supervised
loss, and then adapted using both simulated and real data,
by adding an extra adversarial loss term. The system is able
to achieve a comparable accuracy when using 50% fewer la-
beled real data, and a slightly worse accuracy with 75% fewer
labeled real data (compared to supervised adaptation). In [2],
an adversarial network is used to transfer real images into the
simulation domain. This allows to train algorithms using vast
amounts of simulated data. It also reports an improvement in
the decision making of autonomous vehicles as the result of a
less stochastic environment. In [7], a Simulated+Supervised
training approach is presented. The system is trained by
using an adversarial network, but with synthetic images as
inputs instead of random vectors. Several modifications are
introduced for preserving annotations, avoiding artifacts and
stabilizing training.

A third approach is domain randomization [9], where rich
random variations of the simulated data are incorporated
during training, with the goal that the real data distribution
will be within the distribution of the training data; domain
randomization involves randomizing non-essential aspects of
the training distribution in order to better generalize to a
difficult-to-model test distribution [10]. One of the main
challenges of this approach is to select which parameters to
randomize and to what degree [5]. Domain randomization
is a promising research direction where different robotic
problems are being addressed [10][11][12][13].

III. PROPOSED METHODOLOGY

As already mentioned, the proposed methodology consists
of two main stages. The first one allows the automatic gener-
ation of segmented/simulated-real image pairs using a state-
of-the-art instance object segmentation network. The second
stage implements the translation of segmented/simulated
images onto realistic ones using a generative neural network.
This network is trained using the image pairs generated in
the first stage.

A. Generation of segmented-real image pairs using an in-
stance object segmentation network

In the proposed methodology the aligned segmented-real
image pairs are generated by first obtaining real images
from the target environment, and then by segmenting them
using an instance object segmentation neural network. In
this work we select the Mask R-CNN [14] for this task.
Mask R-CNN is a CNN (Convolutional Neural Network)
architecture designed to perform instance segmentation. The
network outputs a mask for each object instance, alongside

a bounding box, a label class and a confidence score. While
several architectures can be used as a backbone for this
model, we use Resnet-50 [15] due to its state-of-the-art
performance.

The training of the Mask R-CNN for a new application
domain requires a large amount of labeled data. We avoid
this by training the network using a three-step procedure.

First, we train the Mask R-CNN using the COCO dataset
[16], which is a very large database of labeled images, but
from a different domain.

Second, once the model is trained we perform transfer
learning to our application domain. To implement this, a
database of real images of the environment in which the
autonomous robot will operate must be obtained. We call
this database Dreal. For the robot soccer case described
in Section IV, the database is composed of 236 real im-
ages. Then, a small subset of around five images in this
database is manually segmented by a human operator. We
name the annotated database of real-segmented image pairs
as DRS−subset. Afterwards, aggressive data augmentation
using the manual segmented subset is carried out. This is
implemented by randomly scaling, warping and then pasting
the labeled objects onto background images. The obtained
images are then processed to change its exposure, saturation
and hue values. The process outputs a large number of
images with known labels. The database of augmented-
segmented image pairs is called DRS−augmented. Then,
fine-tuning of the Mask R-CNN is carried out using the
DRS−augmented database. Given the excellent generalization
capabilities of Mask R-CNN, good results can be achieved
with a small amount of training iterations.

Third, active learning is used to improve the segmentation
results: in each iteration, the trained Mask R-CNN is used to
perform automatic labeling of the unlabeled images from a
subset Dreal−subset of the Dreal database. The predictions
of the network are corrected by a human, and added to the
DRS−subset database. Then, data augmentation is performed
as previously described and the resulting samples are added
to the DRS−augmented dataset. The Mask R-CNN network
is then retrained using this dataset. Thus, by following
this active learning procedure (see Algorithm 1), we are
able to rapidly increase the performance of the Mask R-
CNN model, while requiring minimal human interaction.
We repeat this process until the Mask R-CNN achieves a
satisfactory accuracy at labeling the Dreal database.

Once this condition is met, we infer over all the images
in the Dreal database in order to obtain a large number
of real-segmented pairs in the DRS−subset database. After
discarding badly segmented images, we extract the relevant
objects of this database (for the test case described in Section
IV, 125 images of robots and 56 images of balls), and we
perform a final data augmentation step to obtain the final the
DAS−pairs database, composed of 2,000 images.

Algorithm 1 Active learning training process
obtain Dreal

DRS−subset = ∅
DRS−augmented = ∅
while Mask R− CNNaccuracy 6 min accuracy do

//choose a small number of new samples
Dreal−subset(j) ⊆ Dreal

for i ∈ Size(Dreal−subset) do
Segi =Mask R− CNNinfer(Imagei)
SegCorri =ManualCorrection(Segi)
DRS−subset.add(Imagei, SegCorri)

end for
DRS−augmented = DataAugmentation(DRS−subset)
Mask R− CNNtrain(DRS−augmented)

end while

B. Realistic image generation using a generative neural
model

Generative models trained on a dataset aim to generate
new samples following the distribution of such dataset. Two
of the most popular approaches involve using GANs (Gen-
erative Adversarial Networks) [17] and VAE (Variational
Auto Encoders) [18]. However, these approaches suffer from
unstable training processes, problems such as mode collapse
and high computational costs during training. Given this, we
choose a supervised approach based on a cascade refinement
network to achieve the desired results.

We based our work on [19] with some minor modifications
such as using batch normalization and better initial weights.
The network works by using refinement modules (see Fig.
4) to analyze an image pyramid based on the original
segmented input image. An image pyramid consists on a
set of images with different sizes, all generated by down-
sampling the same original image by a factor of 2l where
l is the layer of the feature pyramid. Given an original
image of size (W,H, c0), a feature pyramid of L layers
is constructed. Then, each refinement module Fig. 4 takes
as input the concatenation of the features produced by the
previous refinement module with size (w/2, h/2, ck−1) and
a one hot encoded vector of the segmented image of size
(w/2, h/2, c0) taken from the image pyramid. The resulting
feature tensor is then processed by applying a series of 3x3
convolutions. The features obtained by this process are then
upsampled such that the output tensor shape is (w, h, ck).
These output features are the concatenated with the next
image in the image pyramid, with size (w, h, c0) to form
the input to the next refinement module. Given that the first
refinement block has no access to any previous features, in
that case only the one hot encoded vector of the segmented
image of the last layer of the image pyramid is used (i.e.
the image of size (W/2L,W/2L, c0). By doing this, each
refinement module computes increasingly higher granularity
features. This in turn allows the network to work with
both local and global spatially distributed patterns. Once
the desired output resolution is achieved, a 1x1 convolution

Fig. 3. Cascade refinement network architecture with two refinement
blocks.

is performed over the feature maps to generate N RGB
images. Each of these N images will be slightly different
in order to generate a diverse distribution of outputs and
approximate domains with high class texture variance. The
general structure of a cascade refinement network composed
of two refinement modules and using an original image with
shape (W,H, c0) is presented in Fig. 3.

The loss function required for training the network is
determined as follows. First, all the generated images ŷf ,
with f = 0, .., N , are fed to a VGG-19 neural network [20],
which was previously trained on Imagenet. The activation
maps of selected layers of the VGG-19 network are recorded
as M(ŷf). Then, the ground truth image y is fed to the same
VGG-19 netowrk and the activation maps of the same layers
are recorded as M(y). Afterwards, we compute the mean
difference between the activation maps of each one of the
generated images and the activation maps resulting from the
real image as Ef = mean(abs(M(ŷf) −M(y))). Finally,
the loss is calculated as:

α ·min(E0, ..., EN) + (1− α) · 1/f ·
N∑
i=0

(Ei) (1)

where α is a user tunable parameter.
We first train the generative model using the

DRS−augmented database without using any saturation,
hue or exposure data augmentation. This allows the model
to be more temporally consistent in terms of lighting. Then,
once the model has achieved a high enough accuracy on
the DRS−augmented database, we fine tune the model by
using the DRS−subset database in order to be able to learn
complex image features such as shadows and reflections.

Human labeling is only sparsely necessary to create the
database DAS−subset which is used to train the generator
network. Once the network is trained, no further human
interaction is needed and the network can be used to generate

Fig. 4. Refinement block architecture.

realistic images. This is done by segmenting the simulated
image and then feeding the segmented image to the genera-
tive neural network that then outputs a realistic image. Given
that all the generated realistic images have a corresponding
aligned segmented image, and therefore the objects in that
images are known, a database composed of realistic images
with ground truth can be quickly obtained without any human
labeling in order to train machine learning based algorithms
(e.g. CNN based detectors).

IV. EXPERIMENTAL RESULTS

A. Case Study: Playing soccer in the RoboCup SPL League

As a test case, we use the B-Human simulator [21] to apply
the here-proposed methodology. This is the most popular
simulator available in the Standard Platform League (SPL)
of the RoboCup World federation, and it is used by a vast
majority of the participant teams. The simulator is able to
simulate soccer games with several humanoid players, and it
is commonly used to test self-localization, obstacle modeling,
high-level soccer behaviours and other relevant functionali-
ties required to play a soccer game. In order to render an
image in real-time, the B-Human simulator uses opengl, an
API that is cross platform compatible and is highly efficient.
While the simulator is realistic in terms of object shapes
and proportions, the textures are not representative of reality.
This was a minor drawback in early years of the RoboCup
competition as colored objects, such as an orange ball,
yellow posts and field markers, were used on the field. This
allowed the use of color-based vision systems. As the league
progressed, increasingly realistic conditions were added such
as a realistic ball, white goal-posts, natural illumination and
no color markers, which meant that algorithms developed in
simulation using simple rendered images did not translate
well into reality. Most notably, as the league transitioned
from heuristic color-based vision system to machine learning
based vision systems, it has become increasingly difficult to
develop and test algorithms using this simulator, because of
the simulation-to-reality gap. This makes soccer robotics an
ideal case study for the proposed methodology.

Fig. 5. First column: Simulated rendered images. Second column:
Corresponding segmented images. Third column: Corresponding realistic
generated images

We use Pytorch [22] as framework for all the implemented
neural networks including Mask R-CNN and the generative
refinement network. The generative model is trained in
python and then exported to a C++ compatible model by
using Pytorch JIT (Just In Time) compiler options. Then,
the model can be used in simulation just by compiling
the simulator and including the torch library. In order to
generate the segmented images in simulation, a unique color
is assigned to each class object in the form of a particular
texture. Then, the image is segmented by using simple RGB
bounds, and fed to the generative refinement network in order
to generate realistic images in simulation. Examples of the
rendered, segmented and resulting realistic images can be
seen in Fig. 5. Further examples of real time simulation can
be found in https://youtu.be/WVPgr xxd7I.

In the next sub section, we analyze the complexity of
building a training database for object recognition methods
using the classical approach (i.e. using the robot players), and
using our realistic simulation. We show how this process is
largely reduced in this last case.

Then, we compare the performance of object recognition
algorithms trained using real samples collected directly from
the robot, and of algorithms trained using samples generated
by the here-proposed methodology. This comparison is based
on the experience of our soccer robotics team, UChile
robotics, which has developed a series of state-of-the-art
CNN based robot vision algorithms for detecting robots [23],
and for detecting the ball [24].

B. Generation of the training database

Machine learning models used in robotics soccer require
large amounts of training data, which should consider dif-
ferent game situations. One of the main challenges that we
address in this paper is the difficulty of obtaining such
data. While standard approaches are based on the capture
and labeling of real samples using a robot and realistic
soccer situations, the here-proposed proposed approach is

able to generate realistic labeled samples in a simulated
environment.

Building a database in robotics soccer and training CNN
based detectors require several steps. We analyze these
different steps and conclude that developing a vision system
using a realistic simulator is less time consuming, easy, and
better to avoid damaging the robots. We then compare the
performance of detectors trained in different environments
when deployed in real conditions and prove that our simu-
lated environment can be reliably used to test and prototype
other algorithms.

1) Object detector development: In the RoboCup SPL
league the robots are required to detect different objects
in real-time while playing. However, these robots possses
limited computational resources in the form of a single
core, 1.6 Ghz Intel Atom processor and 1 GB of RAM
memory. In order to achieve real time operation, most teams
implement detectors using a two-step approach consisting of
an heuristic-based region proposal generation followed by a
CNN classification of the proposal regions. In the classical
approach, the development of the detector is first carried out
in simulation. Once a working prototype has been obtained,
the development shifts to the real robot in order to adapt the
detector to the real-world conditions. This means fine-tuning
the region extractor parameters and then performing sample
collection to re-train the network with real samples in order
to achieve proper operation in the real environment. If this
is not feasible, the algorithm is re-designed.

In contrast, by using our realistic simulator the complete
process can be performed in simulation. This means that
both the architecture of the region extractor as well as it
parameters’ tuning can be developed in conjunction, which
streamlines the process. This also results in faster develop-
ment, as iterating over the system can be done exclusively
in simulation, without the need of the real robot. Finally
the reality gap is low enough that the detector which was
developed in simulation can be directly deployed in the real
robot with minimal performance penalties.

2) sample collection: Under the classical approach, this
process consists in using a real robot to obtain positive and
negative samples of the objects to be detected (e.g. robots or
the ball) given by the region proposal algorithm. Normally,
sample collection is a long process, which can take several
hours and involves preparing the robot and the environment,
and then manually modifying the position of the robot in the
environment to avoid potential collisions, as well modifying
the position as the different objects within the environment
that need to be detected.

When using our proposed methodology, sample collection
is heavily simplified as all samples can be collected in
simulation. Since this is the case, no robot preparation is
needed and samples are collected by using a simulated robot
to traverse the field, saving the samples generated by the
region proposal algorithm. To achieve the same variance of
the field as in the classical case, objects on the field are
randomly moved on the environment automatically (i.e. by
the simulator). If the robot sample collector collides with an

object, the simulation is simply restarted. This means that
when using the realistic simulator, no human operators are
needed, sample collection is faster given the automatic nature
of the sample collection process, and finally, more samples
can be collected with no cost for the hardware, since the
simulation can be run for as long as needed.

3) sample labeling: The last step to train the supervised
CNN based classifiers is to perform sample labeling. In
a classical scenario, with samples collected from the real
robot, humans need to manually label the collected samples.
While this may sound trivial, the process becomes harder
with large databases and can take several hours for databases
of thousands of images. Furthermore, in the robot soccer
application where real-time operation is need, samples are
usually low-resolution and very small. This means that
humans are prone to making errors in the labeling process.

On the other hand, samples that are obtained using the pro-
posed visual realistic simulation are labelled automatically
without the need of human intervention. This can be easily
done since the corresponding segmented image is available
in simulation, which indicates the labels of all the objects
present in a region proposal. This means of course that no
humans are needed, the process is instantaneous, and there
are no samples with incorrect labels.

C. Performance in reality

In this section, we train two CNN based classifiers: a
classifier of robots players and a ball classifier. These CNN
models are used in conjunction with a region proposal
algorithm to detect robots and balls in real time. The robot
detector uses a modified version of the CNN architecture
described in [23], while the ball detector is a modified
version of the CNN architecture described in [24], with the
only variation being the number of filters in each layer. We
train these models with three different datasets: (1) training
using a database of real images (see Fig. 6), (2) training using
realistic images generated in simulation (see Fig. 7), and (3)
training using the standard images rendered in simulation
(see Fig. 8). For the real dataset, samples were manually
labeled, whereas for the simulated datasets, samples were
automatically labeled by the simulator. In order to make a
fair comparison, in the first three tests cases all three methods
use 2,900 samples for the ball detector and 4,100 samples
for the robot detector with the same class proportion. Since
the methods that use simulated images can use a much larger
number of images with no penalty to the hardware and very
little database generation time, our last test, named large
dataset (see Table I), uses a higher number of samples, with
6,900 samples for the robot detector and 5,000 for the ball
detector.

The performances of the robot and ball classifiers trained
with the real, realistic and rendered datasets are compared
by testing them using real data. The ball testing dataset is
composed of 760 manually labeled samples, while the robot
testing dataset is composed of 959 manually labeled samples.
The obtained results are shown in Table I.

Fig. 6. Top row: Real ball samples. Bottom row: Real robot samples.

Fig. 7. Top row: Generated realistic ball samples. Bottom row: Generated
realistic robot samples.

The results show that the detectors obtain a similar per-
formance when trained using real samples and when trained
realistic images produced in simulation with the generative
neural network. In the case that the same number of training
images is used in both cases, the differences in accuracy
are about 4% for the robot detector and 3% for the ball
detector. This difference is less than 2% when more training
images are used in simulation with realistic images. It should
be remembered that the generation of realistic images is
straightforward with the proposed methodology. This means
that the proposed approach is able to bridge the reality gap
between simulation and reality, allowing to train models in
simulation and deploy them in real situations without the
need of fine-tuning.

On the contrary, the robot detector model trained using
standard rendered simulation images shows a vastly inferior
accuracy than those obtained by training the model using
real and realistic simulated images (see Table I). This can be
explained by the reality-simulation gap, which means that

Fig. 8. Top row: Standard simulated ball samples. Bottom row: Standard
simulated robot samples.

TABLE I
ROBOT AND BALL MODELS TRAINED IN DIFFERENT DATASETS AND

EVALUATED IN REALITY (USING REAL DATA).

training data type Robot detector
accuracy %

Ball detector
accuracy %

real images 90.7 97.2
realistic images (simulation) 86.5 94.3
rendered images (simulation) 63.3 95.6

realistic images, large dataset (simulation) 89.2 95.7

TABLE II
ROBOT AND BALL MODELS TRAINED IN REALITY (USING REAL DATA)

AND EVALUATED IN DIFFERENT DATASETS.

testing data type Robot detector
accuracy %

Ball detector
accuracy %

real images 90.7 97.2
realistic images (simulation) 94.2 91.7
rendered images (simulation) 85.6 83.7

filters learned by the classifier on the rendered simulated
images are not valid when used in reality.

On the other hand, the accuracy of the ball detector does
not change by a significant amount, between the real, realistic
and rendered domains. This is probably the result of the
relative simplicity of the ball detection problem. Indeed, the
ball pattern of black pentagons over a white ball is a very
unique feature on the field, so it is difficult to find adversarial
examples to produce false positives and false negatives.
Furthermore, the high contrast of the pattern and very low
sample variance makes the ball classification problem a
rather simple task for CNN based classifiers. Lastly, the main
features of the ball, clearly defined geometric shapes and
very high contrast, are shared between the real and simulated
domains, so there is not really much of a reality gap, which
explains the similar results between domains.

D. Model adaptation to simulation

When a classical approach is used to built an object
detector, the machine learning based model is trained to work
in the real environment. However, this model will perform
vastly different when used in a standard simulator given the
reality gap. This means that testing other tasks in simulation
which are vision-dependant such as self-localization or obsta-
cle avoidance becomes non-representative or impossible. To
solve this, a second model (e.g., CNN based robot detector)
is commonly trained using simulated samples to work in
the standard simulated environment, while trying to achieve
similar recall and precision to those of the real model. By
constructing a realistic simulator, we hypothesise that this
step is no longer necessary since the reality gap is low
enough to have similar behavior in reality and in the realistic
simulation, using the same model in both.

We prove this by first training the same ball and robot clas-
sifiers using the real ball and real robot datasets, composed
of 2,900 and 4,100 manually labeled samples respectively.
We then test the performance of these models, which were
trained using real data in three different environments: (1)
testing using a database of real images, (2) testing using
realistic images generated in simulation, and (3) testing using
the standard images rendered in simulation. The real, realistic
and rendered test datasets are composed of 760 images for
the ball dataset and 959 samples for the robot dataset. Sam-
ples from the real domain were manually labeled, whereas
samples from simulated environments were labeled by the
simulator itself. Results for these experiments are presented
in Table II.

While the detectors trained using real samples achieve
similar accuracy when tested on real samples and in our
realistic simulator, the same is not true for the standard
simulator case, where the model achieves an inferior accu-
racy. This means that models trained using real data can
be evaluated on the realistic simulator, but the standard
simulator is not a good tool to evaluate the performance
of models trained on real samples. This also means that
high-level modules that depend on visual systems, such as
behavior or world-modeling, will perform closer to their
expected real behaviour in the realistic simulator.

V. CONCLUSIONS

In this work we presented a methodology to generate
realistic images from simulated ones. This allows training
object recognition methods in situations dynamically gen-
erated by the simulator, but using realistic images. The
proposed methodology is implemented using a generative
neural network which the generates the realistic images,
and using an instance segmentation network (Mask R-CNN)
to generate the training data for the generation network.
Naturally, this second network is used just once, when the
generative network is trained.

The whole methodology is validated in the soccer robotics
domain. In this domain, the reported experiments show that
the proposed approach is able to bridge the reality gap
between simulation and reality; detectors of soccer objects
such as robot players and the ball can be trained in simulation
and directly transferred to reality, where state-of-the art
results are obtained. Furthermore, models tuned to work in
real environments can be accurately tested and modified in
the simulator. This is not possible using a standard robot
simulation environment, and it allows to develop algorithms
in a faster way without the need of using the real robot, which
is a great advantage when dealing with visual problems in
dynamic robotics applications such as robotics soccer.

ACKNOWLEDGMENT

This work was supported by the NVIDIA GPU program,
and partially funded by CONICYT-FONDECYT Project
1161500 and CONICYT-PIA Project AFB180004.

REFERENCES

[1] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Sim-to-real transfer
of visuo-motor policies for reaching in clutter: Domain randomization
and adaptation with modular networks,” CoRR, vol. abs/1709.05746,
2017.

[2] L. Yang, X. Liang, and E. P. Xing, “Unsupervised real-to-
virtual domain unification for end-to-end highway driving,” CoRR,
vol. abs/1801.03458, 2018.

[3] K. Lobos-Tsunekawa, F. Leiva, and J. Ruiz-del-Solar, “Visual navi-
gation for biped humanoid robots using deep reinforcement learning,”
IEEE Robotics and Automation Letters, vol. 3, pp. 3247–3254, Oct
2018.

[4] F. Leiva, K. Lobos-Tsunekawa, and J. Ruiz-del-Solar, “Collision
avoidance for indoor service robots through multimodal deep rein-
forcement learning,” RoboCup Symposium, 2019.

[5] H. Bharadhwaj, Z. Wang, Y. Bengio, and L. Paull, “A data-efficient
framework for training and sim-to-real transfer of navigation policies,”
CoRR, vol. abs/1810.04871, 2018.

[6] A. A. Rusu, M. Vecerı́k, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” CoRR, vol. abs/1610.04286, 2016.

[7] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images through
adversarial training,” CoRR, vol. abs/1612.07828, 2016.

[8] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial dis-
criminative domain adaptation,” CoRR, vol. abs/1702.05464, 2017.

[9] N. Sünderhauf, O. Brock, W. J. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke,
“The limits and potentials of deep learning for robotics,” CoRR,
vol. abs/1804.06557, 2018.

[10] J. Tobin, W. Zaremba, and P. Abbeel, “Domain randomization and
generative models for robotic grasping,” CoRR, vol. abs/1710.06425,
2017.

[11] F. Sadeghi and S. Levine, “(cad)$ˆ2$rl: Real single-image flight
without a single real image,” CoRR, vol. abs/1611.04201, 2016.

[12] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” CoRR, vol. abs/1703.06907, 2017.

[13] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” CoRR,
vol. abs/1710.06537, 2017.

[14] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
CoRR, vol. abs/1703.06870, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015.

[16] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft COCO: common objects in context,” CoRR,
vol. abs/1405.0312, 2014.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27 (Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
eds.), pp. 2672–2680, Curran Associates, Inc., 2014.

[18] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
CoRR, vol. abs/1312.6114, 2013.

[19] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” CoRR, vol. abs/1707.09405, 2017.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[21] T. Laue, K. Spiess, and T. Rfer, “Simrobot a general physical robot
simulator and its application in robocup,” vol. 4020, pp. 173–183, 07
2005.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

[23] N. Cruz, K. Lobos-Tsunekawa, and J. Ruiz-del-Solar, “Using convolu-
tional neural networks in robots with limited computational resources:
Detecting NAO robots while playing soccer,” Lecture Notes in Com-
puter Science, vol. 11175, (RoboCup Symposium), 2017, pp. 19-30.

[24] F. Leiva, N. Cruz, I. Bugueño, and J. Ruiz-del-Solar, “Playing soccer
without colors in the SPL: A convolutional neural network approach,”
Lecture Notes in Computer Science, vol. 11374 (RoboCup Sympo-
sium), pp. 122-134., 2018.

