
Robust Reinforcement Learning-based Autonomous
Driving Agent for Simulation and Real World

Péter Almási, Róbert Moni, Bálint Gyires-Tóth
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics, Budapest, HUNGARY
peter.almasi@cs.bme.hu, {robertmoni,toth.b}@tmit.bme.hu

Abstract—Deep Reinforcement Learning (DRL) has been suc-
cessfully used to solve different challenges, e.g. complex board
and computer games, recently. However, solving real-world
robotics tasks with DRL seems to be a more difficult challenge.
The desired approach would be to train the agent in a simulator
and transfer it to the real world. Still, models trained in a
simulator tend to perform poorly in real-world environments
due to the differences. In this paper, we present a DRL-based
algorithm that is capable of performing autonomous robot control
using Deep Q-Networks (DQN). In our approach, the agent is
trained in a simulated environment and it is able to navigate
both in a simulated and real-world environment. The method
is evaluated in the Duckietown environment, where the agent
has to follow the lane based on a monocular camera input. The
trained agent is able to run on limited hardware resources and
its performance is comparable to state-of-the-art approaches.

Index Terms—deep learning, deep reinforcement learning,
DQN, convolutional neural network, robotics, simulation, domain
randomization

I. INTRODUCTION

Artificial Intelligence (AI) has become a very focused
research area in the past years. Among its subfields, deep
learning has been one of the most important ones due to the
state-of-the-art results reached in several application scenar-
ios, e.g. image recognition, speech recognition and synthesis,
natural language processing and reinforcement learning.

Deep learning has an important role in autonomous driving.
The development of deep neural networks and the supporting
hardware and software solutions made it possible to build
robust computer vision models. Deep convolutional neural
networks [1] are outstanding in object detection and semantic
segmentation [2] [3]. I.e. it is possible to find and localize
certain objects (e.g. cars, pedestrians, cyclists or traffic signs,
etc.) on the images, which is critical for autonomous vehicles.

A further method described in [4] trains a convolutional
neural network (CNN) to map raw images of the camera
directly to steering commands. They use an end-to-end ap-
proach, eliminating explicit image preprocessing and object
detection steps. This can lead to better performance since the
system is trained to maximize overall performance instead of
finding manually selected features, e.g. lane detection. [5] uses
CNNs to predict simple indicators, that describe the actual
road situation (e.g. distance from lane markings and other
vehicles, the angle relative to the road). With these indicators,
they utilize a controller that can make driving decisions at a

high-level. The indicators are more compact than, for example,
creating segmentation for the image.

Reinforcement learning (RL) is an area of machine learning
where an agent is optimized to take actions in an environment
to reach a specified goal, which is represented as a scalar
value (called reward). Utilizing deep neural networks in RL
enables the agent to be able to learn complex contexts and
short and long-term strategies. Recent advances in RL made
it possible to achieve superhuman level in complex board and
computer games, such as Go [6]. [7] shows an example of
an agent, that was trained on a human-level performance to
play many kinds of Atari games (e.g. Breakout) by using high-
dimensional images as input only. RL agents are also capa-
ble of surpassing human players in more complex computer
games: the AlphaStar [8] successfully overcome a professional
player in the StarCraft II game, and the OpenAI Five [9] can
win against human players in the Dota 2 game.

The application of DRL algorithms in autonomous vehicles
is currently in an initial phase. Training agents for real-world
problems in a simulator is a promising approach, as it is much
safer to simulate incidences that must be avoided in the real
world (e.g. collisions, running over pedestrians). Also, with
sufficient GPU resources, the agents can be trained in a much
faster pace than real-time. Collecting sufficient training data is
also much more convenient within a simulator. The simulator
can also provide additional metrics (e.g. accurate distance
between objects and their location) which may be difficult to
be measured in the real world but help to evaluate the perfor-
mance of the agent. However, simulators often have significant
differences compared to the real world, and these differences
(e.g. details, colors, lighting conditions, or dynamics) can
cause the trained models to suffer significant performance
degradation in the real world. Training autonomous vehicle
agents in simulators with reinforcement learning and transfer-
ring the agents to the real world are both active research areas
that are in the early stages.

This paper presents a reinforcement learning pipeline for
training an agent in an autonomous driving simulator and
running the trained agent in the real world. The rest of this
paper is organized as follows. Section II gives an introduction
to reinforcement learning and domain randomization, Section
III describes the details of the proposed method, Section IV
presents the Duckietown environment in which the proposed
method was tested. Evaluation and results are introduced in

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Section V, and conclusions are drawn in Section VI.

II. BACKGROUND

A. Reinforcement learning

In this paper, we focus on basic RL settings where an agent
interacts with an environment by following a policy in order
to maximize a reward. There are two main approaches of RL
settings: model-based and model-free methods.

Model-based methods construct an internal model of the
environment by experiencing transitions and learning the dy-
namics of the environment. Using this internal model actions
are taken either by searching or planning in this world model.

Model-free methods also rely on prior experiences and aim
to learn the state-action values, or policy, or both of them.
These are the: value learning, policy optimization and actor-
critic methods respectively. Value learning methods focus
on estimating the value of being in a given state. Policy
optimization methods focus on finding the optimal policy that
maximizes the expected return, also called reward. The actor-
critic method is a hybrid method where a policy optimization
method (”actor”) is learning from the feedback of the value
function (”critic”).

Each of these methods are constructed to fit the Markov
Decision Process (MDP). We selected the model-free value
learning (Q learning) method, which tailored to our setup
works as follows: in each timestep t, the environment provides
the agent its state st in the form of a high-dimensional RGB
image. The agent chooses an action at from a given set of
possible actions according to a policy π(a|s). The environment
computes a reward rt based on the chosen action at the given
state which describes how ’good’ the selected action was. The
agent tries to maximize the total reward Rt =

∑t+T
u=t ruγ

u−t,
where γ is the discount factor (γ ∈ [0, 1]), and T is the length
of the episode. The goal during learning is to find an optimal
policy π∗ which maximizes the expected reward the agent
receives in each episode.

Since the observed states of the environment are represented
by RGB images and the action space is discrete, we chose the
model-free and off-policy Deep Q-Networks [10] [7] method
with experience replay. Despite a basic Deep Reinforcement
Learning method is utilized, it is capable of learning an op-
timal policy in simulated traffic environment which performs
nearly as good in the real environment by using proper domain
randomization methods. In this work, we propose a CNN
+ DQN system that can be trained with low expenses in
a simulated traffic environment and can be transferred to a
robot to perform autonomous driving in a miniaturized urban
environment.

B. Reinforcement Learning in Autonomous Driving

The new era of Advanced Driving Assistance Systems
(ADASs) tend to apply deep learning methods for scene
perception, object localization, path planning, behavior arbitra-
tion, and motion control [11]. These system gather information
from the environment using cameras and localization systems

such as RADAR and Li-DAR. Scene perception, object lo-
calization, and behavior arbitration are generally supervised
learning problems where the training requires large amounts
of labeled data. Path planning and motion control can also
be tackled using supervised learning methods. One of the
first deep learning based autonomous driving solution was
ALVINN [12] published in 1989 consisting of a simple 3-
layered neural network trained with simulated road images.
[13], [14] and [15] applies imitation learning technique to train
the agent with a CNN architecture using monocular camera
images and recorded human-driver speed and steering angles.
This method tends to learn promptly the expert’s (human
driver) behavior, but performs poorly in new environments.
Also the producing, labeling and storing of the training
data is both time inefficient and expensive. [16] proposes
a CNN+RNN+DQN architecture which performs well in a
car racing simulated environment, but the environment is
observed from a top-view which is not adequate for real-world
scenarios.

C. Domain randomization

Training or transferring robot control agents to the real
world is challenging. Domain randomization improves the
agent in the training phase in the simulator to have similar
performance in the real world. [17] uses this method for object
localization on real-world images by training a neural network
in a simulator with generated images. The images are highly
manipulated (e.g. objects’ position, textures, camera position,
lighting conditions, etc.) and these manipulated data are used
to train the network in the simulator. [18] also utilizes object
localization with images generated in a simulator and modified
using domain randomization. They show that their method is
comparable to the case of training on manually annotated real-
world images. [19] uses domain randomization to generate
different dynamics in the simulator, and train a neural network
which makes a robotic arm able to move objects to an
assigned location. They show that training in the simulator
with randomized dynamics makes the robotic arm in the real
world able to work without any further training on the physical
system. [20] solves the problem of transferring models to real-
world robots by adapting simulation randomization using real-
world data to learn simulator parameter distributions that are
suitable for a successful policy transfer. They change the dis-
tribution of the simulations in iterative steps to improve policy
transfer by matching the policy behavior in simulation and the
real world. [21] introduces Automatic Domain Randomization,
which utilizes incrementally challenging environments in the
simulation. They used this technique to train a robotic arm
to solve Rubik’s cube. Starting with a single, non-randomized
environment, the amount of domain randomization is regu-
larly increased as the model learns to perform well in the
previous environments. This way the neural network learns to
generalize in randomized environments and becomes able to
solve the task in difficult conditions, thus making it possible
to successfully transfer the model trained in a simulator to the
physical robot.

Fig. 1: Overview of our method.

Domain randomization includes diversified technologies to
help to transfer the agents trained in the simulator to the real
world. Currently, there is no common solution for autonomous
driving. Hence, it was our motivation to develop a pipeline to
train RL agents in simulators and run them in the real world
without severe degradation in performance.

III. PROPOSED METHOD

In this section, we present the details of the proposed
method. Fig. 1 shows an overview of the proposed pipeline.
First, the camera images go through several preprocessing
steps. Next, a sequence is formed from the last k camera
images, which will be the input of the CNN policy network
(the agent). The agent is trained in the simulator with the DQN
algorithm based on the reward. The output of the network is
mapped to wheel speed commands.

A. Image preprocessing

Before the images of the simulator’s monocular virtual
camera are fed to the neural networks, we preprocess them. In
the case of the real-world monocular camera, the same steps
are performed.

• Resizing: The images are downscaled from their original
size (e.g. 640 × 480) to a smaller resolution (e.g. 80 ×
60). This step makes training the neural networks and
inference faster, while the smaller resolution image still
provides enough information for navigating the robot.

• Cropping: The part of the image that doesn’t contain
useful information is cropped. This is typically done
above the horizon.

• Color segmentation: To make it easier for the neural
network to recognize the important parts of the image,
the key colors are segmented based on their values.

Fig. 2: Original image in the simulator (left) and after prepro-
cessing it (right).

The original image’s channels are substituted with the
segmented parts. E.g. for lane following, the yellow and
the white parts of the image (that define the two lanes)
are separated in the image’s red and green channels,
respectively.

• Normalization: The pixel values are normalized to the
[0, 1] range, which helps to train the CNN faster.

• Image sequence: The last k camera images are concate-
nated into a 3D tensor with dimensions (height, width,
sequence length × channels). This way a time series
is formed from the previous states of the environment,
which provides richer information and results in better
policy networks, compared to a single instance.

An example of an original and a preprocessed single image
is shown in Fig. 2.

B. Policy network

We trained a convolutional neural network with the pre-
processed images. The network was designed such that the
inference can be be performed real-time on a computer
with limited resources. The input of the network is a ten-
sor with the shape of the image sequence (height, width,
sequence length× channels), e.g. (40, 80, 15), which is the

Fig. 3: The policy network we used for modeling the input
image sequences.

result of stacking five RGB images. For fast inference and for
demonstration purposes we utilized a simple neural network.
The neural network consists of three convolutional layers,
each followed by ReLU (nonlinear activation function) and
MaxPool (dimension reduction) operations. The convolutional
layers use 32, 32, 64 filters with size 3 × 3. The MaxPool
layers use 2× 2 filters, so they reduce the size of their input
to its 1/4-th. The convolutional layers are followed by fully
connected layers with 128 and 3 outputs. The output of the
last layer corresponds to the selected action. The architecture
of the policy network is shown in Fig. 3. In the case of more
complex environments, the size of the policy network can be
increased, indeed.

The output of the neural network (one of the three actions)
is mapped to wheel speed commands. The actions correspond
to turning left, turning right or going straight, respectively.

IV. ENVIRONMENT

We used the Duckietown1 environment for evaluation.
Duckietown is an educational and research platform where
low-cost robots (’Duckiebots’) can travel in a small city
(’Duckietown’) [22]. The Duckietown and the Duckiebot are
shown in Fig. 4. The Duckiebots are small three-wheeled
vehicles built almost entirely from off-the-shelf parts. They
have only one sensor: a forward-facing wide-angle monocular
camera, which they can use to get information about the
surrounding objects. The computation is performed by a
Raspberry Pi 3, which is responsible for getting the images
and controlling the robot. Duckietowns are the cities where the
Duckiebots have to operate. These consist of roads, intersec-
tions, traffic signs, houses, rubber ducks and other obstacles.
The platform is highly flexible: using the standardized road
elements, different kinds of cities can be built.

A general goal of the Duckietown project is to provide
an environment similar to a real-world autonomous driving
environment for a much lower price, which makes it available
for educational and research purposes for a wider range

1https://www.duckietown.org/

(a) An example setup for the Duckietown Platform.

(b) Duckiebot

Fig. 4: The Duckietown platform and the Duckiebot.

of researchers. While being much cheaper, the environment
provides similar challenges to those that are accessible in a
more complex autonomous driving platform.

1) Duckietown Simulator: The Duckietown software li-
brary contains a Duckietown Simulator [23]. The Simulator
provides a similar environment to the real-world Duckietowns:
it simulates roads, intersections, obstacles (e.g. vehicles or
duckies on the road) and other Duckiebots. Using the simula-
tor, it is possible to manually drive an agent around the map
or to test how the trained agent can navigate. The simulator
places the robot onto a given map and generates the image that
the robot’s camera would see in a real-world environment. The
robot can be controlled by specifying the speeds of the wheels
(two values between -1 and 1 for the two wheels).

2) Real-world Duckietown: After training the models in the
Duckietown simulator, we tested the trained agent in a real-
world environment, which is shown in Fig. 4a.

Testing in the real-world environment poses new challenges
in addition to the simulator. For example, the real-world
images seen by the robots are different than those provided
by the simulator (a comparison can be seen in Fig. 5.) It
is visible that the simulator images, while being similar to
the real ones, has different lighting conditions, camera angle,
and has a simpler setup regarding the objects surrounding the
track, which makes it harder to transform the agent to the real-
world robot. Another challenge that arises when evaluating
on the real robot is that the robot has to be controlled in
real-time: while in the simulator it is possible to simulate a
slower algorithm, in the real world, the camera image must be
processed in a few milliseconds, which means that the neural
network has to be designed carefully such that it can predict

Fig. 5: Images from the Duckietown simulator (left) and the
camera of the robot (right). The robot’s only sensor is its
camera, so it has to be controlled based only this informa-
tion. Notice that the real-world image has different lighting
conditions and camera angle, which makes transferring the
trained models to the real robot more difficult.

TABLE I: Discrete actions predicted by the DQN algorithm
are mapped to wheel speeds. (Maximum speed is 1.0.)

Action Left wheel speed Right wheel speed

0 (Left) 0.04 0.4
1 (Right) 0.4 0.04
2 (Straight) 0.3 0.3

driving commands from the camera images fast. Currently, the
images are processed on a x86 CPU (instead of the robot’s
Raspberry Pi computer), which results in smaller inference
time. It is also worth noting that there are other factors which
make it harder to evaluate the solutions on the real robot
compared to the simulator (e.g. network delays).

3) Training details: We used the DQN implementation
available in the Stable Baselines collection [24]. The algorithm
chooses one of three possible actions at each timestep; the
mapping between these actions and the robot wheel speeds
can be seen in Table I. We experimented with different
hyperparameter settings, including different values and settings
for the learning rate, input image size, experience replay
buffer size, image segmentation parameters, camera distortion,
discount value, policy network parameters, and wheel speeds.
The parameters that gave the best results were the following.
We used a batch size of 32, gamma=0.99, the learning rate
for the Adam optimizer was set to 0.00005, the size of the
replay buffer was 50000, and the agent collected 10000 steps
of experience from random actions before actually starting
learning. We ran the training for 500000 timesteps, which took
approximately 40 hours on an NVIDIA DGX Workstation,
which contains 4 pieces of V100 GPUs.

The simulator provides a reward function, which can be
used for reinforcement learning-based methods. This reward
reflects how accurately the agent follows its lane. When the
agent is going in the right lane, it receives a positive reward.
When it starts to drift away from the optimal curve, it receives
smaller rewards; when it goes to the oncoming lane, it receives
smaller negative rewards, and it gets penalty when it leaves
the track (the simulated episode also ends at this point).

We slightly modified the default reward provided by the
simulator. When the robot is in the right lane, the reward is

Fig. 6: Received rewards during the episodes of the training
of the agent.

calculated according to the following formula:

reward = 10 · speed · dot dir − 100 · dist+ 400 · col pen,

where speed is the speed of the robot in the simulator, dot dir
is calculated as the dot product of the vectors pointing towards
the heading of the robot and the tangent of the curve, dist is
the distance from the center of the right lane, and col pen is a
penalty for collisions. When the robot is not in the right lane,
the reward is:

reward = 400 · col pen.

When the robot leaves the track, it gets a reward of −40.
The rewards achieved throughout the episodes of training

phase are shown in Fig. 6.

V. RESULTS

Our primary goal was to train an agent in the simulator
which can navigate the robot along the track both in the
simulator and the real world. We tested our method on several
maps, different from the one we used during training, to
eliminate the possibility of overfitting to one single map.
We trained on a larger, more complicated map, to make
it possible for the network to learn diverse turns and road
situations. A video of our robot in action can be seen at
http://bit.ly/wcci20duckie.

1) Performance in the simulator and in real world: We
used three maps for testing: Map #1, Map #2 and Map #3
can be seen in Figs. 7a-7f, 7g and 7h respectively. The real-
world environment is built according to Map #1 (see Fig. 4a).
We placed the robot on 50 randomly selected positions of
the map and counted the number of occasions it was able
to drive for a complete lap on the track. We excluded those
randomly generated situations from our tests where the robot
was dropped to the side of the track facing outwards, where it
was impossible to navigate back to the track. In the simulator,
we limited the lengths of the episodes for 2500 and 3500
timesteps (approx. 50-70 seconds), which is enough time for
the robot to take a whole lap on the maps. In the real-world
environment, we ran the evaluation for 45 seconds, which also

TABLE II: Rates of successful drives on three simulated and
one real-world map.

Environment Tests
Total Successful Success rate

Simulator Map #1 50 38 76%
Simulator Map #2 50 49 98%
Simulator Map #3 50 41 82%

Real world 50 48 96%

was enough for completing a full lap. The results of our tests
can be seen in Table II. We also ran two longer tests in the
simulator (50000 timesteps) and found that when the robot
was able to take at least one complete lap, it was also able to
drive for 50000 timesteps without leaving the track. Therefore,
we decided to test our model more thoroughly for only the
duration of one complete lap, since after it takes one lap, it
has successfully gone through all parts of the track, and we
can assume that it could do the same in the following laps
too.

2) Agent navigation patterns: Fig. 7 shows the paths of the
robot after starting it from various randomized locations in the
simulator. The robot was able to navigate to the center of its
lane and drive a whole lap there even when it was started from
an invalid location, the oncoming lane (see 7e). Fig. 8 shows
the paths of the real-world robot. To created these images, we
placed an ArUco marker [25] [26] on the top of the robot.
We created a plan view video of the evaluation with a fixed
camera and ran the ArUco detector algorithm for each frame
of the video. The found locations of the marker are drawn on
the map. Although occasionally the robot touched the middle
yellow line during the evaluation, mostly it successfully ran in
its lane. (As the camera was not completely above the robot
all the time, the images have a small distortion: the marker on
the top of the robot is not projected directly under the center
of the robot due to the angle between the robot and the plan
view camera.)

3) Analysis of the predictions: Fig. 9a shows the histogram
of the probabilities predicted by the model for the selected
action in the simulator, separated by the predicted actions. Fig.
9b shows the same metrics for the real world. Both histograms
are made from the predictions generated while driving one lap
on the track. We assume that the differences are due to the
physical aspects of running the agent in the real world. To
predict the Straight action, the robot has to be approximately
in the middle of the lane, facing forward (otherwise, it can
get closer to the middle of the lane by turning, and thus can
get a higher reward). Positioning to the middle of the lane is
easier in the simulator, as the agent generates predictions and
gives commands more frequently (around 2500 times in the
simulator and 700 times in the real world during one whole
lap), which means that more corrections are required in the real
world to stay in the lane. Also, the control commands have
an unsteady delay in the real world consisting of the network
delay and inference time, which results in the need for more

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: The paths of the robot on the maps after starting it from
different locations in the simulator. The initial location of the
robot is marked red. 7a-7e, 7g, 7h show attempts where the
robot was able to drive successfully a complete lap, with 7e
showing a situation where the robot was started from an invalid
position but still was able to go to the right lane. 7f shows a
scenario where the robot failed to take a whole lap. 7a-7f, 7g
and 7h show Map #1, Map #2 and Map #3, respectively.

corrections accomplished by generating turning commands.
4) Comparing with state-of-the-art results: The AI Driving

Olympics (AI-DO) is a series of competitions focusing on
AI for self-driving vehicles in the Duckietown environment
[27]. The competition had three rounds in 2018 and 2019
organized at the NeurIPS and ICRA conferences. The goal
of the competition is to make it possible to test the recent
theoretical advances in the area in practice. Different tasks can
be solved at the competition: the simplest is lane following,
but more complex ones, such as navigating in the presence of
other vehicles and handling intersections, are also available.
In the case of lane following, the task is to process the image
of the robot’s camera and give wheel speed commands based
on it to navigate the robot on the map. The competition makes
it possible to compare different methods and algorithms and
evaluate their performance.

(a) (b)

(c) (d)

Fig. 8: The paths of the real robot on the map after starting it
from different locations in the real-world environment.

(a) Simulator

(b) Real world

Fig. 9: Histogram of the predictions of the model in the
simulator (9a) and in the real world (9b), separated based on
the predicted action.

We compared our method to the ones that were used by the
winners of the 3rd AI Driving Olympics. In the competition,
the submissions were tested on a real robot for 30 seconds.
The goal was to drive as far as possible without leaving
the track in the given time limit. The driven distance was
discretized to the number of map tiles the robot successfully
passed. The submissions were tested from two different initial
locations. While we are not able to test our method on the
same track, the competition track and ours are built from
the same standardized elements (straight roads and turns). We

TABLE III: Results of the best performing, state-of-the-art
agents in AI-DO 3 competition and our approach.

Team Distance driven (tiles)
Run #1 Run #2

JBRRussia1 11 19
phmarm 10 18
JBRRussia 8 2
miksaz 8 1

Our approach 12 13

performed the tests by starting our robot from two different
initial locations for 30 seconds, and measured the distance
it covered. The results can be seen in Table III. The top
submissions in the competition mostly used imitation learning-
based methods in contrast to our reinforcement learning-based
approach. It is worth noting that while our method is currently
not optimized for driving the robot as fast as possible, it has
comparable performance to the state-of-the-art solutions.

5) Other experiments: We ran several experiments to find
the best training parameters and image preprocessing method.
In the following, we present our experiences regarding the
use of each image preprocessing step. Resizing the image is
required to make it possible to control the robot in real-time
with as little latency as possible. We used a single laptop
with no dedicated graphics card and a 4-core Intel®Core™i7-
4500U CPU @ 1.80GHz. We measured that creating one
prediction takes approx. 3-4 milliseconds, which is adequate
with the camera frames arriving at a rate of 30fps. Cropping
the upper part of the images helps to transfer to the real
robot, as this step eliminates most of the objects around the
track that would otherwise fall into the field of view of the
robot and thus could make navigating more difficult. The color
segmentation also improves the transfer to the real robot, as
it highlights the important parts of the image and hides the
objects surrounding the track. Normalization is required for
the more effective training of the neural network. The image
buffer has an important role in stabilizing the movement of the
robot. Without this, the agent usually navigates in a straight
line by alternating between actions 0 and 1 (according to Table
I), which results in an oscillating movement. Using the image
buffer helps the robot to find the center of its lane and go
straight there; while the oscillating movement sometimes still
occurs, it is much less frequent than in the absence of the
image buffer. The oscillating movement of the robot can be
smoothed by using a larger number of discrete actions (e.g. 5
or 7), however, it makes training the agent more difficult.

We tested the robustness of our method by running exper-
iments in real-world environment in different lighting condi-
tions and robot speeds. We changed the lighting conditions
by varying the number and position of the lights turned on
in the evaluation room. We changed the speed of the robot
by multiplying the original speed values with constants, thus,
making the general movement of the robot slower or faster.
We found that these changes had no effect on the performance

of the robot, i.e. it produced similar performance with and
without these changes.

VI. CONCLUSIONS

The difference between the simulator and the real world is a
major challenge for applications of reinforcement learning in
robotics and autonomous driving. In this paper, we presented a
pipeline for a Deep Reinforcement Learning-based algorithm
to perform autonomous robot control using Deep Q-Networks.
We proposed a method to train the agent in a simulator, which
can later control the robot both in the simulated and the
real-world environment. We used the Duckietown environment
to evaluate our method. We showed that using the proposed
approach, the trained model is capable of navigating the robot
along the track both in the simulator and the real world.
Our method has comparable performance to the state-of-the-
art solutions and can be run real-time on limited hardware
resources.

ACKNOWLEDGEMENTS

The research presented in this paper has been supported
by Continental Automotive Hungary Ltd., by the European
Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013), by the BME-Artificial Intelligence FIKP
grant of Ministry of Human Resources (BME FIKP-MI/SC).
Bálint Gyires-Tóth is supported by the Doctoral Research
Scholarship of Ministry of Human Resources (ÚNKP-19-4-
BME-189) in the scope of New National Excellence Program
and by János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. Péter Almási expresses his gratitude for
the financial support of the Nokia Bell Labs Hungary.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,”
in Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds., Curran Associates, Inc., 2015, pp. 91–99.
[Online]. Available: http://papers.nips.cc/paper/5638-faster-
r - cnn - towards - real - time - object - detection - with - region -
proposal-networks.pdf.

[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for se-
mantic image segmentation,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 801–818.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, et al.,
“End to end learning for self-driving cars,” arXiv preprint
arXiv:1604.07316, 2016.

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous driv-
ing,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2722–2730.

[6] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering
the game of go without human knowledge,” nature, vol. 550,
no. 7676, pp. 354–359, 2017.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
no. 7540, p. 529, 2015.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, et al., “Grand-
master level in starcraft ii using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[9] C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with
large scale deep reinforcement learning,” arXiv preprint
arXiv:1912.06680, 2019.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing
atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[11] G. Sorin, T. Bogdan, C. Tiberiu, and M. Gigel, “A survey
of deep learning techniques for autonomous driving,” arXiv
preprint arXiv: 1910.07738, 2019.

[12] D. Pomerleau, “Alvinn: An autonomous land vehicle in a
neural network,” in NIPS, 1988.

[13] M. Bechtel, E. McEllhiney, and H. Yun, “Deeppicar: A low-
cost deep neural network-based autonomous car,” Dec. 2017.

[14] M. Bojarski, P. Yeres, A. Choromanska, et al., “Explaining
how a deep neural network trained with end-to-end learning
steers a car,” Apr. 2017.

[15] Y. Pan, C.-A. Cheng, K. Saigol, et al., “Agile autonomous
driving using end-to-end deep imitation learning,” Jun. 2018.
DOI: 10.15607/RSS.2018.XIV.056.

[16] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep
reinforcement learning framework for autonomous driving,”
Electronic Imaging, vol. 2017, pp. 70–76, Jan. 2017. DOI:
10.2352/ISSN.2470-1173.2017.19.AVM-023.

[17] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain randomization for transferring deep neu-
ral networks from simulation to the real world,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2017, pp. 23–30.

[18] J. Tremblay, A. Prakash, D. Acuna, et al., “Training deep net-
works with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2018,
pp. 969–977.

[19] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Sim-to-real transfer of robotic control with dynamics ran-
domization,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2018, pp. 1–8.

[20] Y. Chebotar, A. Handa, V. Makoviychuk, et al., “Closing
the sim-to-real loop: Adapting simulation randomization with
real world experience,” in 2019 International Conference on
Robotics and Automation (ICRA), IEEE, 2019, pp. 8973–
8979.

[21] I. Akkaya, M. Andrychowicz, M. Chociej, et al., “Solv-
ing rubik’s cube with a robot hand,” arXiv preprint
arXiv:1910.07113, 2019.

[22] L. Paull, J. Tani, H. Ahn, et al., “Duckietown: An open,
inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2017, pp. 1497–1504.

[23] M. Chevalier-Boisvert, F. Golemo, Y. Cao, B. Mehta, and
L. Paull, Duckietown environments for openai gym, https :
//github.com/duckietown/gym-duckietown, 2018.

[24] A. Hill, A. Raffin, M. Ernestus, et al., Stable baselines, https:
//github.com/hill-a/stable-baselines, 2018.

[25] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas,
and R. Medina-Carnicer, “Generation of fiducial marker dic-
tionaries using mixed integer linear programming,” Pattern
Recognition, vol. 51, pp. 481–491, 2016.

[26] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-
Carnicer, “Speeded up detection of squared fiducial markers,”
Image and vision Computing, vol. 76, pp. 38–47, 2018.

[27] J. Zilly, J. Tani, B. Considine, et al., “The ai driving olympics
at neurips 2018,” arXiv preprint arXiv:1903.02503, 2019.

