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Abstract—Deep neural networks are black boxes by con-
struction. Explanation and interpretation methods therefore are
pivotal for a trustworthy application. Existing methods are mostly
based on heatmapping and focus on locally determining the
relevant input parts triggering the network prediction. However,
these methods struggle to uncover global causes. While this is a
rare case in the image or NLP modality, it is of high relevance
in the time series domain.

This paper presents a novel framework, i.e. Conceptual Expla-
nation, designed to evaluate the effect of abstract (local or global)
input features on the model behavior. The method is model-
agnostic and allows utilizing expert knowledge. On three time
series datasets Conceptual Explanation demonstrates its ability
to pinpoint the causes inherent to the data to trigger the correct
model prediction.

Index Terms—Machine Learning, Deep Learning, Inter-
pretability, Explainability, Time Series

I. INTRODUCTION

Deep Neural Networks (DNNs) have been applied success-
fully in various domains on tasks like regression, classification,
or anomaly detection. Due to their ability to extract important
features of the input data automatically, they can be easily
adapted to new problems [1].

By construction, DNNs are black boxes. Therefore, un-
derstanding the reason for a specific network decision or
even the overall model behavior is difficult. This lack of
transparency significantly hampers the applicability of DNNs
in many sectors, e.g. health care, finance, and Industry 4.0. It
has already been pointed out in the literature that network
explanations are required to fully exploit the potential of
DNNs [2].

Explainability of DNNs is an active field of research and a
variety of interpretation methods have been proposed [3]. The
methods differ strongly in resulting explanations, referring to
input parts [4], relevant training samples [5] or to concepts
relevant for the network decisions [6].

Most interpretation methods try to assign relevance to
individual input parts. There are various variants of such
heatmapping methods, for example Integrated Gradients [7],
Layerwise Relevance Propagation [8], SmoothGrad [9] or
Guided Backpropagation [10]. Other methods, like LIME [11]
or Meaningful Perturbation [12] also point out the relevant
input parts. These heatmapping methods are especially popular
for natural language processing (NLP) and the image domain,

as pinpointing towards a special shape or object in the input
image or towards certain words makes the network decision
more intelligible.

However, the use of heatmapping methods suffers greatly if
the important input aspect cannot be localized, but is spread
over the whole signal. While this is rarely the case for images,
and certainly not meaningful for language processing, it is
often an inherent property of time series. Trend, seasonality
or frequency ranges are obviously non local, to name a few.

Conceptual Explanation has been developed specially for
describing global input properties and is one of the few works
directly addressed toward neural network interpretation for the
time series domain. A concept is an abstract (local or global)
input property that can be manipulated by a suitable filter.
Conceptual Explanation evaluates the effect preprocessing the
network input by different filters has on the network perfor-
mance. This makes the method model-agnostic and ensures
easily intelligible results.

The main contribution of this work is the introduction and
characterization of Conceptual Explanation (Sec. III) as well
as its evaluation on different datasets (Sec. IV).

II. RELATED WORK

Conceptual Explanations is a mask-based interpretation
approach. In contrast to [4], [11], [12] it does not mask input
regions, but input properties. While region-based masking
usually adds unwanted side effects to the input, e.g. jumps
and seasonality breaks, this problem does not occur for global
filter-based masking.

Heatmapping methods [7], [8], [9], [10] are, as described
above, suitable for finding relevant local, but not global input
properties. A drawback of these methods is that they are
sample-based. The relevant information is not the position of
the important pixels (which has no dataset-wide meaning),
but the object parts these pixels refer to. Therefore, manual
inspection of the highlighted areas and aggregation for many
samples is necessary. An automatic extraction together with a
statistical evaluation is not possible.

TSXplain [13] combines heatmapping methods for finding
the relevant input segments with the computation of statis-
tical time-series properties to provide the user with a more
insightful interpretation of the relevant input. As it is still based
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on heatmapping methods, it also struggles with global input
properties.

Kim et al. [6] propose testing concepts via corresponding
activation vectors (TCAV). While our method is completely
model-agnostic, TCAV utilizes the hidden layers of a network.
Another difference worth pointing out is the different meaning
of a concept: [6] defines a concept by a set of samples having
the property of interest whereas we define a concept by its
modification on given data.

Goyal et al. [14] estimate the causal concept effect. As
the data generation process is usually unknown, the authors
propose to approximate this process by a generative model,
e.g. a conditional variational autoencoder. In the time series
domain, the data generation process is usually simpler than for
images and concepts can rather easily be added to or removed
from a signal by using a suitable filter.

Palacio et al. [15] use a fine-tuned autoencoder to extract
the input aspects relevant for a network and to suppress
unimportant parts. This approach is also suitable if global
input properties are relevant for the network. However, man-
ual inspection is again necessary. Furthermore, the modified
autoencoder adds some opaqueness to the explanation.

III. METHOD

Conceptual Explanation quantifies the effect of different
properties of the time series inputs on the network behavior.
For this, the data is preprocessed by a filter removing or adding
the property before feeding it to the network. This allows
spotting both relevant as well as irrelevant signal properties.
Each tested filter can be seen as a hypothesis regarding the
relevant input aspects, making the result of each evaluation
easily intelligible.

Conceptual Explanation makes use of the fact that many
relevant concepts for time series can indeed be formulated
mathematically. In fact, directly looking at (parts of) the
input is much less informative for time series than it is
for images. These functional concepts have the advantage of
allowing statistical evaluation of their relevance for the model
performance on the full data set.

A. Details

The systematics of Conceptual Explanation are described
in Fig. 1. Given a data set and a model trained on said data,
one starts with a pre-defined set of basic filters, see Tab. I.
Parametric filters allow for a fine-grained look on the effect

Filter Parameter
Offset Removal -
Trend Removal -

Moving-Average Window Size
Lowpass Cutoff Frequency
Highpass Cutoff Frequency

Additive Noise Noise Scale
TABLE I

BASIC FILTERS USED FOR CONCEPTUAL EXPLANATION.

of different model-properties.

For each filter, model output for the filtered and the unfil-
tered data are compared. This informs if the checked property
was used in the network decision process. Conceptual Ex-
planation is an iterative process where filters can be added by
construction of new ones or combination of existing ones. This
way an ever deeper understanding of the network prediction
can be achieved. In addition, prior knowledge may be utilized
by experts to construct sophisticated filtering methods.

The result for each filter is a quantitative, data set wide
score of the properties relevance. A manual inspection of
individual samples is therefore not required. Note that this
method does not add any additional complexity (like, for
example, explanatory networks). Therefore, the quality and
reliability of the interpretation are easily accessible.

Filter / Concept

- Offset
- Trend
- Lowpass

- Highpass
. . .

Data

Model

Model

cf.
Results
- Offset
- Trend
- Lowpass

- Highpass
. . .

Filter Crafting

Fig. 1. Structure of Conceptual Explanations: A stack of filters (hypotheses)
is tested for the given model and dataset by comparing the network behavior
for filtered and unfiltered data. The filter stack is iteratively increased to allow
for more detailed insights.

B. Filter Crafting / Concept Definition

The design of suitable filters is a vital step for Conceptual
Explanations, as the quality of the insights provided here
directly depend on the filtered signal properties. The iterative
filter design by construction allows for very case-specific
filters, i.e. case-specific hypotheses on the given model and
dataset. One can make use of previously tested filters by
(visually) inspecting the effect of relevant filters. A common
question in this regard is whether a filter can be localized, i.e.
whether it has a similar effect if it is only applied to a subset
of the signal defined by another function. An example for this
is given in Sec. IV-C3.

Contrary to heatmapping methods, which require the in-
spection of single samples, Conceptual Explanation, like
TCAV [6], requires the design of hypotheses. The hypotheses
then need to be translated into a functional form.

While the evaluation of a hypothesis is straightforward, the
design of suitable filters depends on the user. To help novice
users, a stack of basic filters can be provided. Experts might
utilize their dataset insights to define more fine-grained filters
and to test their ideas on the network reasoning.

Other works use machine learning or other optimization
techniques to find suitable input modifications, e.g. minimal
modifications flipping the prediction or an autoencoder trained
to reconstruct the essential input components. Transferred to



our setting, these approaches would allow for an easier filter
crafting at the cost of (filter) interpretability. In this work, we
do not try to automate the concept definition as we would like
to ensure that the results are always intelligible to the user.

C. Local and global concepts

The filters presented so far are related to global properties,
as they modify the whole time series. Local properties can be
described by filters modifying only few related timesteps, e.g.
by masking peaks of the considered signal, see for example
Sec. IV-C3.

Once a suitable global filter is found, one can evaluate if the
relevant signal property is indeed global or can be localized.
For this, the effect of applying the (global) filter only to
parts of the signal is investigated. This either ensures that the
relevant property is truly globally represented in the signal, or
it helps to further specify the relevant aspects by localizing
them.

Finally, working the other way round can also be useful:
If heatmapping methods point to certain time intervals in
the data, but the important aspect of those intervals is not
directly intelligible, one can apply Conceptual Explanation on
the marked areas to get a better understanding of the network’s
decision process.

D. Multivariate Time Series

The procedure can directly be extended to a multivariate
setting. One can apply filters to single signals, to all signals,
or - based on previous experiments or dataset insights - on
suitable subsets of data.

E. Further Benefits

The Conceptual Explanation of a network can be used for
creating new and possibly smaller networks by utilizing it for
feature extraction.

Another benefit is that it hints at suboptimal performing
networks. If the network performance improves due to a
certain filter, one can conclude that the network has not enough
capacity or training.

IV. EVALUATION

A. Data

1) Trend Anomaly: The first data set is synthetic, consisting
of 100,000 univariate time series with 50 time steps each1.
The time series are noisy (std 0.6), have random offsets
(in [−10, 10]) and - in 30% of the samples - a seasonality.
A fifth of the data is anomalous, i.e. has a small positive
trend (0.02). Samples of both normal signals as well as
anomalies are given in Fig. 2.

By design, the relevant property of anomalous signals is
global and all time steps of the input signal are equally
important for classification. Hence, heatmapping methods fail
to provide a meaningful explanation.

1The data is available at https://tinyurl.com/TrendAnomaly.

Fig. 2. Normal and anomalous samples of the Trend Anomaly Data Set. The
positive trend of anomalous samples is barely visible.

2) Ford-A: The FordA-Dataset [16] describes an anomaly
detection problem for an automotive subsystem. Each mea-
surement is a univariate time-series of the engine noise. There
are 3601 training and 1320 test samples with 500 time steps
each. Examples of a normal and an anomalous measurement
are given in Fig. 3. The data set was used in a competition
in WCCI 2008, details on the anomaly properties are not
available.

Fig. 3. Normal and anomalous sample of the Ford-A dataset.

3) Machine Anomaly Detection: The Machine Anomaly
Detection Data Set is a synthetic multivariate time series data
set curated by [17]. It consists of 60,000 samples, having
three channels with 50 time steps each. The samples labeled
anomalous contain a peak in one of the three channels. A
third of the data are anomalous. The relevant data property is
inherently local. See Fig. 4 for examples.

https://tinyurl.com/TrendAnomaly


Fig. 4. Normal and anomalous sample of the Machine Anomaly Detection
Data Set. The peak in the anomalous sample is clearly visible.

B. Models

Conceptual Explanation is completely model agnostic.
Hence we do not put any emphasis on the network mod-
eling. The explanatory abilities of Conceptual Explanations
are illustrated using simple networks. For Trend Anomaly,
we use a single layer dense network with a test set accuracy
of 96.2%. In the case of Ford-A the network chosen is a five-
layer CNN with a test set accuracy of 91.7%. Last but not least
the Machine Anomaly Data Set is evaluated on a three-layer
CNN with a test set accuracy of 95.8%.

C. Results

We applied the filters given in Tab. I with different pa-
rameters. The presentation here is restricted to the most
insightful ones. In order to access the effect of different filters,
considering the model accuracy as well as the class recalls
turned out to be most helpful. The model accuracy gives
a good impression of the overall effect a filter has on the
network behavior. The class recall, i.e. the fraction of class
samples predicted correctly, allows to access the filter effect
on individual classes.

1) Trend Anomaly: As one can see in Tab. II, the data
offset has no effect on the model prediction. Filtering the data
trend drastically reduces the model performance below that of
the most simple model. (80% of the data is normal.) While
filtering the trend has little effect on the prediction of normal
samples, it flips the prediction of most anomalies. This shows
that Conceptual Explanation is able to spot the data trend as
the signal property crucial for the the network prediction.

As noted before, each data point is equally important
for the network prediction. Hence, localization methods like
heatmapping cannot give meaningful explanations for this data
set. An example is given in Fig. 5.

2) Ford-A: The data set has neither trends nor offset.
Looking at the effect of smoothing the data by a moving
average filter of window size k, denoted by MAk, we obtain

Filter Accuracy Recall Normal Recall Anomaly
Unfiltered 96.2% 98.3% 88.0%

Offset 96.3% 98.3% 88.1%
Trend 70.0% 83.0% 17.0%

TABLE II
FILTER EFFECTS FOR THE TREND ANOMALY DATA SET. SMALL NUMBERS

INDICATE STRONG EFFECT.

Fig. 5. This anomalous sample of the Trend Anomaly Dataset is correctly
classified by the network. The heatmap provided by LRP ([18]) is illustrated
by the point markers ranging from blue (very negative effect on the anomaly
prediction) to red (very positive effect). Apparently, the heatmap is not helpful
for explaining the network prediction of this example. Indeed, a heatmap
cannot explain the network prediction for anomalies of this dataset.

the results presented in Tab. III. Here, a closer look at the

Filter Accuracy Recall Normal Recall Anomaly
Unfiltered 91.7% 89.5% 93.8%
MA5 90.5% 92.6% 87.8%
MA9 65.7% 92.6% 40.4%

Highpass 52.4% 1.6% 100%
Lowpass 62.1% 94.8% 31.4%

TABLE III
FILTER EFFECTS FOR THE FORD-A DATA SET. SMALL NUMBERS INDICATE

STRONG EFFECT.

modified data shows that for the larger smoothing window,
many local extrema vanish. Thus washing out the signal too
much.

The most insightful results for this model are obtained by
looking at different frequency parts of the data. For the high-
and lowpass-filter, we set the cutoff frequency to 0.15 times
the Nyquist-frequency. This cutoff frequency was chosen by
evaluating the effect of different filter parameters.

Removing high-frequency parts by using a lowpass filter

Fig. 6. The Trend filter explains the Trend Anomaly Dataset. As for most
anomalous samples, the prediction for the given sample flips after applying
the trend filter.



strongly affects the model performance on the anomalous sam-
ples, see Tab. III. Contrary the low-frequency part (evaluated
by using the highpass filter) is important for the prediction of
normal samples. This shows that high frequencies are crucial
for the prediction of an anomaly. The moving-average-filter
gives a consistent result as it ’smoothens out’ high frequencies.

In Fig. 7 both filters are applied to the same sample.
Interestingly, it is the highpass-filter which modifies the data
visibly. This shows that the high frequencies amount little to
the overall signal, while having an enormous effect on the
network prediction.

Fig. 7. An anomalous sample of the Ford-A data set together with filtered
versions of the sample. The lowpass has visually little impact on the signal,
but changes the model prediction. The highpass affects the signal strongly,
but does not affect the model prediction.

Again the relevant input properties are indeed global: To see
this, we compare the MA9 mask to a localized version of it.
As shown in Tab. III, the MA9 mask has an immense effect
on the prediction of anomalous signals. By MAfirsthalf

9 and
MAsecondhalf

9 we define variants of MA9 restricted to the first
and second half of the time interval, respectively. Compared
to MA9, their effect on the anomaly recall is rather small, see
Tab. IV. Even combined, the cannot explain the large drop
in the anomaly recall of MA9. One gets comparable results
using other subset strategies. Thus, the network apparently ag-
gregates information over the full sample rather than focusing
on short intervals. As one would expect by this, heatmapping
methods do not yield helpful insights here.

Filter Accuracy Recall Normal Recall Anomaly
Unfiltered 91.7% 89.5% 93.8%
MA9 65.7% 92.6% 40.4%

MAfirsthalf
9 88.3% 93.0% 84.0%

MAsecondhalf
9 90.5% 90.1% 90.8%

TABLE IV
FILTER EFFECTS FOR THE FORD-A DATA SET. SMALL NUMBERS INDICATE

STRONG EFFECT.

3) Machine Anomaly Detection: An additive noise (nor-
mally distributed with zero mean and standard deviation 0.5,

denoted by AddNoise(0,0.5)) hampers the prediction of nor-
mal samples while not affecting the model performance for
anomalies, see Tab. V. A moving-average filter of window size
five (MA5), on the other hand, is able to mask the anomalies
almost completely. MA5 is a global filter, affecting the whole
signal. By restricting this mask to particular time intervals, we
can show that the relevant signal property is actually local.

Filter Accuracy Recall Normal Recall Anomaly
Unfiltered 95.8% 97.8% 91.7%

AddNoise(0,0.5) 65.8% 52.4% 92.6%
MA5 67.9% 100.0% 3.3%

MaskPeak 67.6% 98.7% 4.9%
TABLE V

FILTER EFFECTS FOR THE MACHINE ANOMALY DATA SET. SMALL
NUMBERS INDICATE STRONG EFFECT.

The filter can be localized by applying it only to regions
where the signal x deviates significantly from the averaged
signal MA5(x), i.e. where it holds

|x−MA5(x)| > 3 · std(x−MA5(x))︸ ︷︷ ︸
=:K

where std is the standard deviation. This results in a peak
filter:

MaskPeak(x) =

{
MA5(x), if |x−MA5(x)| > K,

x, else.

Fig. 8. Applying the MA5-filter flips the prediction for the anomalous sample,
but affects the full time series. The MaskPeak-filter has almost the same
effect on the network prediction, but modifies only few data points. Here, it
affects the peak of Signal 1. (Modified data areas are marked gray.)

The MaskPeak-Filter has a comparable effect on the model
as the MA5-Filter while only modifying 0.9% of the data.



An example is given in Fig. 8. Hence, the explanation given
by this refined filter is much more precise than that of the
moving-average filter. It shows that the relevant data aspects
are local and also allows their localization. Tab. VI shows
that the Conceptual Explanation given by the peak-filter is
comparable to that of Layerwise-Relevance-Propagation (LRP)
in terms of both completeness of the explanation and precision.

Masked Accuracy
Method Data Points After Masking

Peak Filter 0.9% 67.6%
LRP [8] 2.2% 70.4%

TABLE VI
COMPARISON OF CONCEPTUAL EXPLANATION (PEAK-FILTER) AND LRP

FOR THE MACHINE ANOMALY DATA SET.

V. CONCLUSION

Conceptual Explanations is a novel neural network inter-
pretation framework designed specifically for time series. It
is conceptually simple and transparent, but allows for easily
understandable, quantitative and data set based evaluations.

With the help of hand crafted data, namely the trend
anomaly, Conceptual Explanations demonstrates its function-
ality in principle. Furthermore, using the publicly available
Ford-A data Conceptual Explanations is able to pinpoint the
trigger of the network decision to the existence of non-local
high frequencies present in the signal. A result certainly not
possible with local methods and a fact unknown at least to the
authors. Last but not least Conceptual Explanations is able to
handle the transition from global to local allowing to interact
with other methods, too.

Little user-interaction is required for this method, whose
insights differ significantly from other network interpretation
methods. Therefore, more useful and most notably statistically
meaningful interpretations can be expected in the future.
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