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Abstract—In modern real-world applications, the need of
using a decentralized data processing approach has progressively
increased, facing complexity and handling issues. Pervasive data
and ubiquitous computational capacity have enabled the pro-
ficient use of distributed implementation of machine learning
algorithms, especially for forecasting problems. We provide in
this paper a new, fully distributed prediction approach based
on the Long Short-Term Memory deep neural network. When
placed in a network of interconnected agents, the single predictors
are able to improve the prediction accuracy by means of the
Alternating Direction Method of Multipliers consensus procedure
on some network parameters. Experimental tests on real-world
time series prove the efficacy of the proposed approach, which
regulates the information exchange in the network through high-
level structures in the considered models.

I. INTRODUCTION

In the past years, the most widespread feature in infor-
mation and communication technology (ICT) applications is
the pervasive demand of both data and computing power.
The trends associated with this development emerged rapidly
in several fields [1]–[5]. Consequently, new challenges arise
regarding supervised learning, particularly concerning multi-
ple data sources and distributed learning. Actually, in many
applications it cannot be considered feasible or convenient to
collect and process data at a single computing agent, mainly
for privacy concerns, communication constraints, and so on.
For this matter, the distributed learning paradigm has gained
paramount importance in solving a plethora of problems, such
as: feed-forward neural networks [6], [7]; multiple forecasting
[8]; deep architectures [9]; Physical Hybrid Artificial Neural
Network (PHANN) approaches [10]; more general hybrid
models [11].

Despite these innovations, although there are some com-
pletely distributed learning algorithms, most of the data driven
machine learning models adopted in the literature still lack of
a fully decentralized the training approach, especially in deep
learning, with consequent limits regarding their application to
real-world decentralized contexts.

An important remark is that there are some applications
for which the distributed paradigm not only solves the issues
related to big data aggregation and processing, it can also
improve the accuracy of the local model (i.e., a deep/shallow
neural network) trained on its local data only [12], [13].
Although not the data itself, the local training agents in a con-
nected network can exchange with their neighbors high-level
information about data and the model itself, gaining advantage
in the final generalization capability. A typical example where

distributed learning can improve the accuracy of local models
is time series forecasting. Actually, if each agent tries to share
learning-related data statistics, data representation or, as in our
case, the model parameters, this can help the local prediction
performance by introducing global knowledge into the model.

A distributed machine learning paradigm usually relies on
the same model to be deployed at the local agents. Regarding
the reference model used for the single agents, it is well known
that Deep Neural Networks (DNNs) are the state of the art
and that, in particular, Long Short-Term Memory (LSTM)
networks provide the best solution for the prediction problem
[14], [15]. The use of heterogeneous models and asynchronous
learning schedules are not considered in this paper, they could
be investigated in future research works, as they stand in a
brand new frontier.

In this paper, we propose a fully decentralized forecasting
algorithm based on LSTM deep neural networks. The core
concept of this new architecture is to train local models for
each agent in the network, each using the local set of training
data, then a global optimum is found sharing some network pa-
rameters through a distributed consensus approach. The latter
is carried out making use of the Alternating Direction Method
of Multipliers (ADMM) algorithm, which ensures good per-
formance and a relatively simple implementation [16]. We
tested our novel approach on real-world time series pertaining
to the output power of four interconnected photovoltaic (PV)
plants located in Colorado, USA. The obtained performances
are compared with respect to the basic approaches considered
so far: a theoretically optimal approach, although not really
feasible in practice, where all data is collected and processed
by a single (centralized) LSTM agent; the commonly adopted
(local) approach where the LSTM of each agent is trained
on its local data only, with no further consensus or data
exchanges.

II. LSTM PREDICTION MODEL

LSTM networks are adopted herein as the reference fore-
casting model. They were firstly presented in [17] to address
the issue regarding the persistence of information, introducing
loops in the basic recurrent structure that, otherwise, tends
to perform poorly when facing long-term dependencies in
time series [18]. Regarding their performance, they have
been employed with success in diverse machine learning and
artificial intelligence fields, such as language modeling [19],
machine translation [20], image captioning [21], hand writing
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generation [22], image generation [23], time series forecasting
[14], and so forth.

We adopted in this work the deep model reported in Fig. 1,
which is based on a standard architecture for dynamical pre-
diction. It is composed by a first LSTM layer that implements
the time series embedding so that its output, based on the
vector sequence of the LSTM hidden states, will represent
the evolution of the internal state of the unknown dynamical
system producing the observed time series [24]; a second
LSTM layer implementing the prediction model based on the
said dynamical reconstruction; a fully connected dense layer
for estimating the scalar value of the sample to be predicted
based on the sequence of hidden states of the second LSTM
layer.

Fig. 1. Architecture of the adopted LSTM network.

In the following, we introduce a brief description of the
LSTM model, in order to introduce the notation that will
be used for distributed consensus as proposed successively in
Sect. III.

Let S[n], n > 0, be the scalar time series to be predicted
at each time step n. The folded version of the LSTM layer is
illustrated in Fig. 2; at time n, the input xn ∈ RNi is in general
a column vector of Ni inputs, while the output is represented
by the column vector hn ∈ RNh of ‘hidden states’, where
each element is associated with one of the Nh hidden units
of the LSTM layer. Each hidden unit is based on four well-
known gate types and hence, the Nh quantities for each gate
can be grouped into the following column vectors: input gate
in ∈ RNh ; forget gate fn ∈ RNh ; cell candidate gn ∈ RNh ;
output gate on ∈ RNh :

in = σg (Wixn +Rihn−1 + bi) , (1)
fn = σg (Wfxn +Rfhn−1 + bf ) , (2)
gn = σc (Wgxn +Rghn−1 + bg) , (3)
on = σg (Woxn +Rohn−1 + bo) . (4)

where Wγ ∈ RNh×Ni is the matrix of input weights,
Rγ ∈ RNh×Nh is the matrix of recurrent weights, while the
biases are collected into the column vector bγ ∈ RNh . The
index γ denotes the specific gate type, with γ ∈ {i, f, g, o}.
The activation functions σg(·) and σc(·) apply to the vector
inputs entry-wise.

Let cn be the column vector of ‘cell states’ of the LSTM
layer at time n; the hidden states are obtained by:

cn = fn � cn−1 + in � gn , (5)

and

hn = on � σc(cn) , (6)

where � denotes the Hadamard product.

Fig. 2. Vectorized architecture of the LSTM layer at time n: each line
represents a vector of multiple elements associated with Nh hidden units;
blocks ‘D’ represent delays of the recurrent structure; at the output, the hidden
states hn will feed the next layer of the deep neural network.

At time n, the input to the first LSTM layer is the
scalar sample of the sequence under analysis, i.e. x(1)n = S[n],
N

(1)
i = 1, where superscript ‘(1)’ denotes the first layer while

the index of the second layer will be omitted in the following
in order to simplify notations. The hidden states h

(1)
n at the

output of the first LSTM layer are used as input to the
second LSTM layer, that is xn = h

(1)
n . The final output of

the network, which is the scalar sample yn to be predicted, is
obtained by projecting the hidden states hn at the output of
the second LSTM layer through the fully connected (dense)
layer:

yn = htnwd + bd , (7)

where wd ∈ RNh and bd are the weights (column vector) and
bias of the fully connected layer, respectively.

Using this forecasting architecture, the future values of
the time series are predicted using the network output as
S̃[n+ q] = yn, where S̃[n+ q] is the time series sample
estimated at a prediction distance q > 0.

III. DEFINITION OF DISTRIBUTED NETWORK

Having defined the general structure of the LSTM-based
DNN, which is used for prediction at each node, we can now
formalize the distributed learning approach proposed in this
paper. In the context of distributed forecasting, it is straight-
forward to imagine an operation mode where several agents are
interconnected and operate with their own prediction system
(an LSTM in this case). In our approach, the agents do not
run independently nor they contribute to a global prediction,
but they share some kind of information among the nodes in
the network to improve the local prediction accuracy.

By discarding the centralization of all data, which results
unfeasible in most operative conditions, we adopt a complete
distributed approach which has been investigated in other
fields, such as diffusion adaptation [25], sensor networks [26],
multimedia signal processing [27], distributed optimization
[16], [28], distributed databases [29], and others. The novelty
lies in exchanging information about the inner parameters of



the network via consensus algorithms, incorporating a global
information at the local level [30].

If we consider a number L of agents in a network, each
one representing a single LSTM network able to solve the
prediction task on a local time series Sk, k = 1 . . . L, we
can suppose that every kth agent sets its LSTM parameters,
as defined in the previous section. Let, at a given time, the
training algorithm running on each node k have determined a
current estimation of the network parameters for both LSTM
layers and the dense layer. It is possible to build a hidden
matrix Hk ∈ Rnp×Nh and an observation column vector
yk ∈ Rnp :

Hk =

htn1
1

...
...

htnp
1

 =

hn1,1 · · · hn1,Nh
1

...
. . .

...
...

hnp,1 · · · hnp,Nh
1

 , (8)

yk =

yn1

...
ynp

 , (9)

where n1, . . . , np are the time indexes of the p input-
output samples of time series Sk in the local training set,
hn1

, . . . ,hnp
are the related hidden states that feed the input

of the dense layer (node index ‘k’ is omitted in these vectors
for readability), yn1 , . . . , ynp are the consequent outputs of the
dense layer (i.e., the estimated predictions).

The previous quantities, obtained at the end of training
procedure, are linked through (7) that can be rewritten in this
case as:

yk = Hkwk , (10)

where (omitting node index ‘k’ also in this case for dense
layer parameters wd and bd):

wk =

(
wd

bd

)
=


wd,1

...
wd,Nh

bd

 . (11)

To regulate the exchange of information in the network and
to ensure the reaching of the optimum for each parameter, a
consensus strategy is put in place by means of a non-complete,
connected, undirected network of interconnected agents, where
a connectivity matrix C is defined. It is a square matrix of
dimension L, where each element Cij 6= 0 if and only if the
two nodes i and j can exchange information. Therefore, we
assume only local communication among neighboring nodes,
that no pairs of nodes can exchange data between each other,
and that no nodes can play a coordinating role.

IV. ADMM-BASED DISTRIBUTED LEARNING OF LSTM
NETWORKS

The task to be accomplished for all training agents in the
network is to agree to a single parameter vector w∗ of their
fully connected layers, which can approximate the optimal

solution represented by the following global formulation of
a regularized least square problem (RLS):

w∗ = argmin
w∈RNh+1

1

2

(
L∑
k=1

‖Hkw − yk‖22

)
+
λ

2
‖w‖22 . (12)

In the proposed ADMM formulation, we consider local
variables wk for every node, forcing them to convergence to
single quantity. The optimization problem can be reformulated
as:

w∗ADMM =minimize
z,w1,...,wL

1

2

(
L∑
k=1

‖Hkwk − yk‖22

)
+
λ

2
‖z‖22

subject to wk = z for k = 1 . . . L ,
(13)

where Hk and yk are the hidden matrix and output vector
computed for the local dataset Sk. This form is the classic
RLS extended to all the L agents in the network, with z being
the same as wk to be optimized separately. Then, we construct
the augmented Lagrangian as:

L =
1

2

(
L∑
k=1

‖Hkwk − yk‖22

)
+
λ

2
‖z‖22 +

+

L∑
k=1

ttk(wk − z) +
γ

2

L∑
k=1

‖wk − z‖22 ,

(14)

where L = L (z,w1, . . . ,wL, t1, . . . , tL), the vectors tk,
k = 1 . . . L, are the Lagrange multipliers, γ > 0 is a penalty
parameter, and the last term is introduced to ensure differen-
tiability and convergence [16].

The ADMM proceeds iteratively, separately optimizing wk

and z at each step, updating the Lagrangian multipliers using
a steepest-descent approach:

wk[m+ 1] = argmin
wk

L
(
z[m],w1, . . . ,wL,

t1[m], . . . , tL[m]
)
,

(15)

z[m+ 1] = argmin
z

L
(
z,w1[m+ 1], . . . ,wL[m+ 1],

t1[m], . . . , tL[m]
)
,

(16)

tk[m+ 1] = tk[m] + γ (wk[m+ 1]− z[m+ 1]) , (17)

where m is an internal iteration index of ADMM procedure.
In this case, the updates for wk[m + 1] and z[m + 1] can

be computed in closed form:

wk[m+ 1] =
(
Ht
kHk + γI

)−1 (
Ht
kyk − tk[m] + γz[m]

)
,

(18)

z[m+ 1] =
γŵ + t̂

λ/L+ γ
. (19)

The parameters ŵ and t̂ composing z in (19) can be
computed in a decentralized manner using the Distributed
Average Consensus (DAC) procedure, which is based on the
connectivity matrix C previously defined that is associated
with the specific network topology [31].



ALGORITHM I
PSEUDOCODE OF THE ADMM CONSENSUS OF FULLY CONNECTED

LAYERS

Input: Number of nodes L (global), regularization factor λ
(global), γ (global), maximum number of iterations M
(global), training set Sk (local), k = 1 . . . L.

Output: Optimal vector w∗k.
1: Compute Hk and yk from Sk and the training algorithm

of the LSTM-based DNN.
2: Initialize tk[0] = 0, z[0] = 0.
3: for m from 0 to M do
4: Compute wk[m+ 1] according to (15).
5: Compute averages ŵ and t̂ with DAC consensus with

other nodes over the network.
6: Compute z[m+ 1] according to (16).
7: Update tk[m] according to (17).
8: Check termination with residuals.
9: end for

10: return w∗k = z[m+ 1], k = 1 . . . L.

The terminating residual procedure employs the computa-
tion of the ‘primal residual’ rk[m] and the ‘dual residual’
s[m]:

rk[m] = wk[m]− z[m] , (20)

s[m] = −γ(z[m]− z[m− 1]) . (21)

A possible stopping criterion is that both residuals should be
less (in norm) than two thresholds:

‖rk[m]‖2< ε
(k)
primal , (22)

‖s[m]‖2< εdual . (23)

choosing the thresholds as in [16]:

ε
(k)
primal =

√
L εabs + εrel max

{
‖wk[m]‖2, ‖z[m]‖2

}
, (24)

εdual =
√
L εabs + εrel max

k

{
‖tk[m]‖2

}
, (25)

where εabs and εrel are user-specified absolute and relative tol-
erances, respectively. The algorithm can also be stopped when
a maximum number T of iterations is reached. The pseudocode
for the described algorithm is reported in Algorithm I.

The proposed ADMM consensus strategy, based on a gen-
eralized RLS solution, relies on a model that must be linear
in the parameters. Actually, this is not the case of a DNN as
the one in Fig. 1, which is made of several LSTM layers. To
this end, the whole training algorithm proposed in this paper
is based on an alternating procedure, in which the ADAM
algorithm [32] is adopted for training of every DNN. The
proposed method can be applied in the same way for any
other algorithm adopted for deep learning.

The whole training algorithm is based on the alternating
runs of the DNN training algorithm (ADAM), for Nloc it-
erations, and the said ADMM consensus procedure (until it

converges). Let t be the whole counter of ADAM iterations
during training and wk[t], k = 1 . . . L, be the estimated pa-
rameters of the fully connected layer at the generic iteration
t. After the first run of ADAM algorithm, i.e. at t = Nloc, the
ADMM procedure is launched to reach consensus on w∗k = z
over all agents of the network, by using as initial values
for the consensus procedure in Algorithm I the hidden and
observation matrices obtained by the DNN training algorithm
at t = Nloc. Then, the ADAM algorithm re-starts locally for
Nloc iterations, which means that the whole algorithm will
run from iteration t = Nloc + 1 up to t = 2Nloc. The initial
parameters at t = Nloc + 1 in each LSTM layer are kept the
same as obtained at t = Nloc, while the initial parameters used
for the fully connected layer will be the w∗k obtained at the end
of the ADMM consensus step. The whole procedure iterates
Nmax times (i.e., NmaxNloc iterations of ADAM algorithm) or
when convergence is reached comparing the averages of two
successive ADMM steps. The details on all the implementation
steps are described in the pseudocode reported in Algorithm II.

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed algorithm, we
applied it to a real-world case study. We considered the
irradiance taken at four interconnected solar plants (nominal
power of 100 kWp) located in Colorado, USA. The sequences
are collected every hour and retrieved via the Measurement
and Instrumentation Data Center (MIDC) database. Additional
information about the geography of the considered plants can
be drawn from Fig. 3; the actual coordinates can be found in
Table I.

Fig. 3. Map showing the locations of the considered PV plants (courtesy of
Google Maps™).

Each time series considered is the output power measured
from one of the PV plants, i.e. their hourly production curves.



ALGORITHM II
PSEUDOCODE OF THE DISTRIBUTED LSTM TRAINING ALGORITHM WITH

ADMM-BASED CONSENSUS

Input: Given a network of L agents, where each agent
has its own training set associated with the local time
series. Given numerical hyperparameters of LSTM layers
(hidden units, etc.), DNN training algorithm (learning
rate, L2 regularization factor, etc.), ADMM procedure
(maximum iterations, γ, λ, etc.). Given Nmax, Nloc, and
convergence thresholds.
Initialize, at iteration t = 0, the parameters of LSTM
layers and wk[0], k = 1 . . . L, for fully connected layers.

1: for r = 1 to Nmax do
2: Set. The DNN training algorithm (ADAM) will run

on every local DNN by using as initial parameters for
LSTM layers the ones obtained at the end of iteration
t0 = (r − 1)Nloc, while wk[t0] will be used as initial
parameters for fully connected layers.

3: Update. Run the network training algorithm
in every local node for Nloc iterations, from
t = (r − 1)Nloc + 1 to t = rNloc.

4: Consensus step. Run the ADMM procedure as in
Algorithm I and compute the optimal estimation w∗k[r].
The ADMM algorithm is initialized by using the Hk

and yk obtained at the end of iteration t = rNloc of
the DNN training algorithm.

5: Update. Set the parameters in the fully connected layer
of each agent, in order to initialize the next run of the
DNN training algorithm: wk[t] ← w∗k[r], k = 1 . . . L,
where t = rNloc .

6: Convergence step. Stop if any convergence criterion
is satisfied between w∗k[r] and w∗k[r − 1].

7: end for
8: return as the final DNN on each node the one associated

with the parameters of the latest iteration t = rNloc.

TABLE I
LIST OF PV PLANTS WITH GEOGRAPHIC COORDINATES

Plant Name Latitude Longitude Elevation [m]

SRRL 39◦44′31.2′′ N 105◦10′48.0′′ W 1828

VTIF 36◦44′31.6′′ N 105◦10′32.6′′ W 1793

NWTC 39◦54′38.2′′ N 105◦14′04.9′′ W 1855

STAC 39◦45′24.7′′ N 104◦37′12.9′′ W 1674

A linear mapping is used for normalization between -1 and
1, using the physical operation parameters for the extremes of
the normalization interval and hence, -1 will correspond to 0
kW and +1 to 100 kW. The problem of zero solar irradiation
is handled by considering the geographical data for each plant
and computing the sunrise and sunset times [33]. Thus, the
predicted values are forced to zero output during the night
period.

The tests are therefore carried out on a network of L = 4
agents, each corresponding to a single plant. The data com-
munication network among plants is chosen randomly with a
75% degree of connectivity (i.e., each node may be linked to
another one with a 0.75 probability), reflecting the realistic
capabilities of the network infrastructure. The resulting graph,
where each plant is a node, is therefore connected but not
complete, an example is illustrated in Fig. 4.

Fig. 4. An example of adopted topology with 75% degree of connectivity.

We compared three different algorithms:

• Centralized LSTM (C-LSTM): this option simulates the
case where all data is gathered at a single location and
the straightforward prediction of network in Fig. 1 is
applied by using the ADAM training algorithm. It should
be observed that the C-LSTM has only a theoretical
benchmark purpose, since it is unfeasible from a practical
point of view, requiring the transmission of all the data
collected in the peripheral PV sites to a central location.

• Local LSTM (L-LSTM): this is the case where data is
indeed distributed but there is no communication in the
network so every agent trains a single DNN from its local
time series. This corresponds to predictions made in each
plant independently of each other.

• Distributed LSTM (D-LSTM): This is the proposed net-
work trained by the ADMM-based distributed algorithm
described in Sect. IV.

The parameters of ADAM training algorithm in C-LSTM
and L-LSTM are set to the following default values: initial
learning rate 0.01, with a 75% reduction every 20 iterations;
maximum number of iterations 100; gradient decay factor
0.9; squared gradient decay factor 0.999. In D-LSTM, the
ADAM algorithm is used with the same default parameters



but Nmax = 5, Nloc = 20, and the convergence threshold is
set to 0.1% or relative variation from w∗k[r − 1] and w∗k[r].

The parameters of ADMM procedure are set to γ = 1,
εabs = 10−6, εrel = 10−6, maximum iterations M = 300.
The regularization factor λ of ADMM is set equal to the L2

regularization factor of ADAM algorithm, which is discussed
in the following.

In order to avoid overfitting, a grid search procedure
[34] is adopted for all algorithms by using data in the
training set only (i.e., known samples of the time series
only), so as to set in advance the main hyperparameters that
are number of hidden units Nh in both LSTM layers and
L2 regularization factor λ in ADAM algorithm. The same
values are adopted for all L nodes. We preliminary tested
different values of such parameters in the following ranges:
Nh = {10, 15, 20, 25, 30, . . . , 100} for both layers; λ = 2j ,
j = {−12, . . . ,−1, 0, 1, . . . , 12}. The final adopted values are
Nh = 50 in the first LSTM layer, Nh = 15 in the second
LSTM layer, λ = 2−11.

We considered a training set of 30 consecutive days (i.e.,
one month or 720 samples) for every experiment; the training
set contains the known samples that are used to forecast the
future ones. The latter are associated with a test set whose
length is one day (i.e., 24 samples) after the last available
sample of the training set. The tests are relative to six days
of 2018, which were chosen for showing a set of days with
variable weather conditions. Namely, the test set starts in the
mid of February, April, June, August, October, and December
2018 and it is composed by the 24 samples of the 15th day of
the month. The deep network predicts one sample at time and
hence, in order to use the available samples also for testing
the entire day ahead, the prediction distance is set accordingly
to q = 24.

For the numerical evaluation of performances, we used the
common Root-Mean-Square error (RMSE) measure on the
predicted samples of the test set. Every network is trained
on a same dataset considering 10 different runs, which are
carried out after a different (random) initialization of the layer
parameters and of the network topology as well (D-LSTM
only). On each run, once the network has been trained by using
one of the considered algorithms, it will be used to forecast
the time series of each plant; the total error over all plants will
be also computed and reported. All RMSE values are reported
in terms of mean and standard deviation over the 10 training
runs. All of the experiments described in the following were
carried on using Matlab™ R2019a on a machine equipped with
Intel® Core™ i7-3770K 64-bit CPU at 3.50 GHz, 32 GB RAM,
and NVIDA GTX 680 GPU.

The efficacy and overall soundness of the present work can
be assessed by analyzing the improvement of the proposed
ADMM-based distributed learning scheme with respect to the
centralized and local solutions. The RMSE results for the
three algorithms applied to test sets are reported in Table II.
The global performance of D-LSTM is extensively better
than the classical L-LSTM, with a gain in terms of reduced
RMSE up to 16% in some days of the year, while this

(a) Centralized

(b) Local

(c) Distributed

Fig. 5. Predicted (red) and real (blue) value of output power at Plant 2 in the
mid of June 2018, by applying C-LSTM (a), L-LSTM (b), and D-LSTM (c).

improvement achieves even 35% in some plants. It is important
to outline that the performance of D-LSTM on each plant
is also equivalent, and sometimes even better, to C-LSTM
that is only a theoretical baseline as it cannot be realized
in practice. The best accuracy is obtained in February and
December, whereas models show coherent behavior for every



(a) Centralized

(b) Local

(c) Distributed

Fig. 6. Predicted (red) and real (blue) value of output power at Plant 3 in the
mid of June 2018, by applying C-LSTM (a), L-LSTM (b), and D-LSTM (c).

other considered test day. A visual examination of the three
predictions in the month of June, which has an intermediate
performance among others, is reported in Fig. 5 and Fig. 6
for Plant 2 and Plant 3, respectively, conveying the same
conclusions.

VI. CONCLUSION

Considering the ubiquitous presence of large data and its
processing, distributed approaches based on neural network
processing are highly needed. In most real-world cases, the
aggregation of data in a single centralized unit is not feasible
for cost, computational complexity and privacy constraints.
In this regard, purely distributed versions of state of the
art machine learning models are hard to find. We presented
here a distributed method for enforcing a global information
extraction in a network of agents, relying on the LSTM for the
local model and the ADMM consensus algorithm. Tests were
carried out on a prediction problem with several energy-related
time series, stemming from different PV plants in a network.
Performance clearly show a better forecasting accuracy for the
proposed algorithm, which have been compared with the local
version of the LSTM and the centralized one. Future direc-
tions of this work can focus on developing a more complex
framework for energy-related prediction, including prices, load
and meteorological information. The whole prediction system,
based on deep learning techniques, could be applied in the
smart grid world, implementing a new multivariate scheme
encompassing all the variables in play for a better forecasting
and demand-side energy management.
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