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Abstract—Generative adversarial network (GAN) can greatly
improve the quality of unsupervised image generation. Previous
GAN-based methods often require a large amount of high-quality
training data. This work aims to reduce the use of high-quality
data in training, meanwhile scaling up GANs to thousands
of classes. We propose an image generation method based on
conditional transferring features, which can capture pixel-level
semantic changes when transforming low-quality images into
high-quality ones. Self-supervision learning is then integrated
into our GAN architecture to provide more label-free semantic
supervisory information observed from the training data. As
such, training our GAN architecture requires much fewer high-
quality images with a small number of additional low-quality
images. Experiments show that even removing 30% high-quality
images from the training set, our method can still achieve better
image synthesis quality on CIFAR-10, STL-10, ImageNet, and
CASIA-HWDB1.0, compared to previous competitive methods.
Experiments on ImageNet with 1,000 classes of images and
CASIA-HWDB1.0 with 3,755 classes of Chinese handwriting
characters also validate the scalability of our method on object
classes. Ablation studies further validate the contribution of our
conditional transferring features and self-supervision learning to
the quality of our synthesized images.

Index Terms—Conditional transferring feature, generative ad-
versarial network, high-quality image, image generation, low-
quality image, self-supervision.

I. INTRODUCTION

As one of the most exciting breakthroughs in unsupervised

machine learning, generative adversarial network (GAN) [1]

has been successfully applied to a variety of applications,

such as face verification [2], human pose estimation [3], and

small object detection [4]. In principle, GANs are trained

in an adversarial manner: a generator produces new data

by mimicking a targeted distribution; and a discriminator
measures the similarity between the generated and targeted

distributions, which in turn is used to adapt the generator.

A major performance metric of GAN is the quality of

generated data, which can be measured by Inception score [5]

and Fréchet inception distance (FID) [6]. Higher Inception or

lower FID score indicates better image quality. The quality

of generated data highly relies on both volume and quality
of the training data. For example, our experiments on GAN-

based image generation and image-to-image translation show
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(a) Image generation using SN-GAN. The top and bottom rows are generated
mushroom images by using 60% of and 100% of theImageNet training set,
respectively.

(b) Image-to-image translation (DayÑNight) using Cycle-GAN. Columns from
left to right: input day images, input night images, generated image with
respectively 60% of and 100% of training data.

Fig. 1: Our experiments on (a) image generation and (b)

image-to-image translation. We compare the quality of gen-

erated images by using 60% of and 100% of training data.

dramatic performance degradation when reducing the number

of high-quality training images.

Figure 1(a) shows several mushroom images generated by

SN-GAN [7] trained with 60% of (top row) or 100% of

(bottom row) ImageNet training data [8]. The images in the

bottom row obtained by using the entire training dataset

present a more distinguishable appearance (e.g., cap and stem

of mushroom) and have much better quality. When removing

40% of the training data, the Inception score decreases from

21.1 to 14.8, and FID increases from 90.4 to 141.2. Figure 1(b)

shows the image-to-image translation (DayÑNight) by using
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Fig. 2: Our proposed image generation method. The data-flow in blue extracts our proposed CTFs and provides CTFs to

generator GA. Tasks 2© (in blue) and 3© (in dotted lines) are first adversarially trained, followed by the training of adversarial

tasks 1© and 3©. The number of high-quality images IH and low-quality images IL are not required to be the same.

CycleGAN [9]. Comparably, the generated Night images in

the fourth column trained with the full set of training data

maintain both Day and Night features well, while those in

the third column that use only 60% of the training data are

blurred and miss some Day details. The high demand for high-

quality training data has emerged as a major challenge of

GAN-based methods—it is very difficult or even impossible

to collect sufficient data for producing satisfactory results in

real-world applications.

Another major challenge of GAN-based image generation is

the scalability of object classes. Traditional image generation

methods [10]–[15] produce images for tens of categories, such

as MNIST classes, CIFAR-10 classes, STL-10 classes, and a

subset of LSUN scenes [16]. Recently, AC-GAN [17], SN-

GAN [7], and SN-GAN+Projection [7], [18] presented the

results of all 1,000 ImageNet classes. AC-GAN does not

directly tackle so many classes as a whole. Instead, it splits

them into 10 subsets of 100 classes and processes each subset

using a different GAN. Both SN-GAN and Projection run

directly on all 1,000 classes. Compared to AC-GAN with

Inception score 28.5 ˘ 0.20 and FID 260.0, SN-GAN has a

worse Inception score 21.1˘0.35 and a better FID 141.2. SN-

GAN+Projection gets both better Inception score 36.8 ˘ 0.44
and FID 92.4, while the results of using Projection only were

not reported [18].

To address these two major challenges, we propose an

image generation method based on conditional transferring
features (CTFs) with three key solutions. First, we construct

the training data with a portion of the original high-quality

images and a small number of low-quality images. Second,

our method extracts the CTFs by transforming low-quality

images into high-quality images. Third, we further enhance our

method with more label-free supervisory information observed

from the training data. Our major contributions are:

‚ Our proposed CTFs reduce the required amount of high-

quality training samples without sacrificing image synthe-

sis quality. The self-supervision strategy further enhances

the image synthesis quality. Ablation studies validate the

effectiveness of our CTFs and self-supervision learning

strategy.

‚ Experiments show that even removing 30% high-quality

images from the training set, our method can still achieve

better image synthesis quality (measured by Inception

score and FID) on CIFAR-10, STL-10, ImageNet, and

CASIA-HWDB1.0, compared to previous competitive

methods [7], [18].

‚ Experiments on ImageNet (1,000 classes) and CASIA-

HWDB1.0 (3,755 classes) also validate the scalability of

our method on object classes.

II. RELATED WORK

Many GAN research studies explore how to stabilize GAN

training by modifying network architecture [11], [14] and

optimizing algorithms [13], [15]. This is because the original

GAN [1] suffers from instability-induced vanishing gradients

and model collapse [19]. DC-GAN [11], as one of the early

successful attempts, provides guidelines for designing a stable

GAN such as the use of strided convolutions. Based on DC-

GAN, Gulrajani et al. [14] further improve the discriminator

design using deep residual blocks. LS-GAN [15] replaces

previous cross-entropy loss functions with the least square

loss functions to alleviate vanishing gradients. Wasserstein-

GAN [13] theoretically improves the GAN architecture (e.g.,



Fig. 3: Data-flow (in green) for extracting the conditional transferring features CTFm in mth ResBlock+Unpooling block in

the generator GLH .

removing sigmoid at the end of the discriminator ) and the

optimization algorithm (e.g., avoiding the use of momentum

and Adam [20]). SN-GAN [7] stabilizes the discriminator

by using a weight normalization method. Projection [18]

improves the way of incorporating conditional information into

a discriminator. In this work, we propose a new approach that

is rarely considered in traditional GAN-based methods, that is,

using low-quality training data to facilitate the generation of

high-quality images. Our GAN-based method can also scale

to thousands of classes with significantly fewer high-quality

training data.

Image generation and image-to-image translation are two

typical use scenarios of GANs. GAN-based image generation

methods [5], [6], [10], [17], [21]–[28] tackle the issues of

multi-resolution, variation observation, architecture changing,

energy estimation for samples, embedding recursive structures,

integrating condition information into GANs, and quality

evaluation of generated images. Recently, BigGAN [29] dra-

matically improves image synthesis quality by adding orthog-

onal regularization to the generator. Both subjective [10] and

objective methods [5], [6], [11], [17] have been developed for

quality evaluation. Here, we take the widely adopted objective

methods, Inception score and FID, to measure the variation of

generated images, and detect model collapse.

Traditional image-to-image translation studies [30]–[33]

typically focus on a specific task. The prevalence of deep

neural networks (DNNs), especially conditional GAN, further

encourages higher translation accuracy and more translation

tasks [23], [34]–[39]. A recent work [9] designs a com-

mon model for general transfer tasks and studies unpaired

image-to-image translation. Our proposed CTFs are inspired

by traditional image-to-image translation methods but take

a different approach. Specifically, our CTFs are obtained

by translating low-quality images to high-quality images. In

contrast, traditional image-to-image translation methods often

translate a set of images to another set of images with the

same quality.

III. IMAGE GENERATION BASED ON CTFS

Figure 2 shows our proposed image generation method. Fol-

lowing traditional GAN-based methods, the proposed design

consists of a generator GA and a discriminator DLH . Our

discriminator is also used for self-supervision (SP) learning.

We introduce a generator GLH for extracting CTFs. There are

three learning tasks in our method:

‚ Task 1© adopts GA and DLH to produce images that

are similar to the high-quality IH by using noise

zA „ N p0, 1q and the conditional transferring features

CTFm pm “ 1, 2, ...,Mq as GA’s input. The Conv
layers in GA convolute CTFm pm “ 1, 2, ...,Mq by

taking the output from the previous layer under the same

resolution.

‚ Task 2© (highlight in blue) adopts GLH and DLH to

transform the low-quality images to high-quality images

similar to IH and provides the extracted CTFm pm “
1, 2, ...,Mq to GA. Noises zm pm “ 1, 2, ...,Mq are

injected into each Res.+Unpool (ResBlock+Unpooling)

block in GLH , respectively, to increase the randomness

of the generated images.

‚ Task 3© distinguishes the real images from the synthetic

images using DLH .

During operation, the adversarial tasks 2© and 3© are first

trained for extracting the CTFs until no significant improve-

ment can be observed. Afterwards, tasks 1© and 3© are

adversarially trained for image generation based on the CTFs.

A. Extracting CTFs

In GLH , the mth ResBlock+Unpooling block is used

to extract the conditional transferring feature CTFm. Fig-

ure 3 shows the detailed extraction data-flow (in green).

The random noise zm „ N p0, 1q is embedded and con-

catenated to the input of the block. The Embed operator

is previously described in [7], [18], [40]. We replace the

batch-normalization layers in traditional ResBlock with con-
ditional batch-normalization (CBN) [41] layers CBNm,1 and



CBNm,2 in ResBlock+Unpooling. CBNm,1 and CBNm,2 are

conditional to the label information c P t1, ..., cHu of the

high-quality images where cH is the class number of the high-

quality images. According to the CBN’s definition [41], for the

layer CBNm,1, an input activation xm,1 is transformed into a

normalized activation ym,1 specific to a class c P t1, ..., cHu
calculated as:

ym,1 “ γc
m,1

xm,1 ´ μ

σ
` βc

m,1 , (1)

where μ and σ are respectively the mean and standard de-

viation taken across spatial axes, and γc
m,1 and βc

m,1 are

trainable parameters specific to class c of CBNm,1. Thus,

the trainable parameters of CBNm,1 are γm,1 “ tγc
m,1uCH

c“1

and βm,1 “ tβc
m,1uCH

c“1. Similarly, γm,2 “ tγc
m,2uCH

c“1 and

βm,2 “ tβc
m,2uCH

c“1 denote the trainable parameters across all

the classes of CBNm,2.

The label information of both low-quality and high-quality

images are concatenated to feature the differences between

adjacent blocks of ResBlock+Unpooling. CTFm is calculated

by:

CTFm “ Concat
´
Hm, Embed

`
Concatpγm,2,βm,2, gLq˘¯

,

(2)

where Hm “ tHt
muTt“1 is the aggregated difference maps

between the feature maps Fm “ tF t
muTt“1 and Fm´1 “

tF s
m´1uSs“1 respectively in the mth and the pm´ 1qth blocks

of ResBlock+Unpooling. Note that T might not be equal

to S. To make it more clear, given a feature map F t
m, the

difference map between F t
m and each F s

m´1 ps “ 1, 2, ..., Sq
is calculated, and then Ht

m is obtained by aggregating all S
difference maps together. gL is the labels of input low-quality

images IL, and γm,2 and βm,2 include label information

of high-quality images. The class information of low-quality

and high-quality images are first concatenated together before

they are concatenated to the difference maps Hm. The class

conditional parameters γm,1 and βm,1 of the layer CBNm,1

are not used in Equation (2) because the layer CBNm,2 is

in front of the Unpooling layer as shown in Figure 3, i.e., its

resolution corresponds to Fm´1 but not Fm. The feature maps

Fm´1 will be upsampled to the same size of Fm using bilin-

ear interpolation. For the first block of ResBlock+Unpooling
(m “ 1), the previous Fm´1 is replaced by the gray-level

version of low-quality image IL. The differences between a

pair of feature maps are evaluated in a DCT-based frequency

domain D . Ht
m pt “ 1, 2, ..., T q is calculated as shown in

Equation (3) when m “ 1:

Ht
m “ D´1

´
DpF t

mq ´ DpUpscalepCvtGraypILqqq
¯
, (3)

where Dp¨q and D´1p¨q are DCT and inverse DCT transforms,

Upscale function unsamples an image using bilinear interpo-

lation, and CvtGray function converts a color image into a

gray-level image. Ht
m pt “ 1, 2, ..., T q is calculated as shown

in Equation (4) when 1 ă m ď M :

Ht
m “ D´1

˜ řS
s“1pDpF t

mq ´ DpUpscalepF s
m´1qqq

S

¸
. (4)

Fig. 4: The generators GLH (top) and GA (bottom) for

synthesizing CIFAR-10.

Fig. 5: The generators GLH (top) and GA (bottom) for

synthesizing STL-10 (CASIA-HWDB1.0).

B. Self-supervision (SP) loss

We adopt a different SP learning task compared to tradi-

tional tasks [42]–[44] on predicting chromatic transformations,

rotation, scaling, relative position of the image patches, etc.

Specifically, for any image ILH sampled from the high-

quality image dataset tIHu or generated by GA (or GLH ),

we randomly cut an image patch from the image, paste it to

a random location of the image, and record the bounding-

box coordinates CoorpILHq of the patch. The “cut and paste”

operation is denoted as SP p¨q. Formally, our SP loss is defined

as min||ConvpDLHpSP pILHqqq ´ CoorpILHq||22. The SP

loss is thus to minimize MSE loss between the recorded co-

ordinates CoorpILHq and coordinates predicted by the layers

ConvpDLHp¨qq with transformed image SP pILHq as input.



TABLE I: Conditional image generation on CIFAR-10 and STL-10. Higher Inception score means higher image quality.

Method1 CIFAR-10 STL-10

Training data Inception score Training data Inception score

DC-GAN [11]

50,000

(CIFAR-10

training set)

6.58

5,000

(STL-10

training set)

-

Improved-GAN [21] 8.09 ˘ .07 -

AC-GAN [17] 8.25 ˘ .07 -

SGAN [45] 8.59 ˘ .12 -

WGAN-GP [14] 8.67 ˘ .14 -

Splitting-GAN [27] 8.87 ˘ .09 -

PROG-GAN [28] 8.88 ˘ .05 9.34 ˘ .06
SN-GAN+Projection [7], [18] 9.01 ˘ .04 9.38 ˘ .08

Ours (Fewer HQ) 32,500+10,000 9.05 ˘ .06 3,250+1,000 9.44 ˘ .04
Ours (Entire HQ) 50,000+10,000 9.17 ˘ .04 5,000+1,000 9.63 ˘ .05

1 Inception scores are obtained from the paper PROG-GAN [28] or by running source code of PROG-GAN and SN-GAN+Projection.

IV. EXPERIMENTS

Our generator GA has a similar architecture with the gen-

erator adopted in SN-GAN+Projection [7], [18], but differs

in the followings two components: our GA has additional

layers for convoluting with CTFs provided by the generator

GLH ; and our GA uses a regular BN (instead of CBN in SN-

GAN+Projection), while our GLH uses CBN.

The training optimization method used in all experiments

is Adam [20] with α “ 0.0001, β1 “ 0, β2 “ 0.9, and

ε “ 10´8. The objective function used for the adversarial loss

is the standard version described in [1]. The scaling factors of

the adversarial loss and auxiliary SP loss are fixed to 0.7 and

0.3, respectively, for all experiments. The mini-batch size is

16 for the experiments on CIFAR-10, STL-10, and CASIA-

HWDB1.0, and 8 for the experiments on ImageNet. The

training iterations we adopt are 100K for CIFAR-10 and STL-

10, 450K for CASIA-HWDB1.0, and 650K for ImageNet.

A. Conditional Image Generation on CIFAR-10 and STL-10

For CIFAR-10, the architectures of the generators GA and

GLH are shown in Figure 4, and the discriminator DLH has

the same architecture as SN-GAN+Projection’s discriminator

for CIFAR-10. For STL-10, the architectures of the generators

GA and GLH are shown in Figure 5, and the discriminator

DLH is the same as SN-GAN+Projection’s discriminator for

STL-10.

Table I compares the quality of image generation of our

method with previous works [7], [11], [14], [17], [18], [21],

[27], [28], [45]. All the previous approaches take the full

CIFAR-10 training set of 50,000 images. Our training data is a

mixed-up of high-quality (HQ) images sampled from CIFAR-

10 or STL-10 training set and low-quality (LQ) images. Since

CIFAR-10 or STL-10 are already the “simplest” datasets,

we take their down-sampled versions as LQ images. For

comparison purpose, Ours (Fewer HQ) uses 32,500 CIFAR-

10 and 10,000 down-sampled images as training data, and

Ours (Entire HQ) applies the entire CIFAR-10 training set

and 10,000 down-sampled images. According to the popular

testing protocol [7], [14], [27], we scale all the generated

images to 32ˆ32 for CIFAR-10 classes and 48ˆ48 for STL-10

classes.

The experiment shows that Ours (Fewer HQ) with fewer

training data slightly outperforms previous methods. Using the

entire CIFAR-10 or STL-10 training sets further improves the

image quality of our method: Ours (Entire HQ) is respectively

1.7% and 2.7% better in Inception score, compared to previ-

ously best SN-GAN+Projection [7], [18]. Figure 6 visualizes

examples of generated images and the corresponding Inception

scores at seven sampling points during training. Compared to

SN-GAN+Projection, the image quality of Ours (Entire HQ)
is slightly better at each sampling point. The images after 62K

iterations are not presented here, as the increase of Inception-

score is not significant.

B. Conditional Image Generation on 3755-Class CASIA-
HSWB1.0

This experiment takes the same architecture of STL-10 for

the generator (GA and GLH ) and discriminator GLH .

To further validate the scalability on object classes,

we compare the generation of 3,755 classes of CASIA-

HWDB1.0 Chinese characters by using our method and SN-

GAN+Projection [7], [18]. SN-GAN+Projection adopts the

entire CASIA-HWDB1.0 training set (1,246,991 images) as

the training data. Our training data takes 810,544 CASIA-

HWDB1.0 training set as HQ images and 70,000 MNIST

handwriting images as LQ images. The total number of our

training data is (880,544) is 29.4% smaller than the entire

CASIA-HWDB1.0 training set. The resolution of the gener-

ated images is set to 48ˆ48 which is the same as original

CASIA-HWDB1.0 dataset.

The quantitative comparison in Table II validates that Ours
(Fewer HQ) and Ours (Entire HQ) can produce higher-

quality Chinese characters in 3,755 CASIA-HWDB1.0 classes,

compared to SN-GAN+Projection. The quality gap between

SN-GAN+Projection and Ours (Fewer HQ) is larger than the

gap presented in Table I, which implies our advantage on



Fig. 6: Quality comparison of generated images of SN-GAN+Projection [7], [18] and Ours (Entire HQ) on CIFAR-10 during

training. The iteration indexes and averaged Inception scores (the higher the better) are provided.

Fig. 7: Comparison of generated Chinese characters using SN-GAN+Projection [7], [18] and Ours (Fewer HQ).

TABLE II: Conditional image generation on CASIA-

HWDB1.0. Higher Inception score means higher image qual-

ity.

Method Training data Inception score

SN-GAN+Projection 1,246,991 10.2 ˘ .17
Ours (Fewer HQ) 880,544 (810,544+70,000) 11.3 ˘ .13
Ours (Entire HQ) 1,316,991 (1,246,991+70,000) 13.6 ˘ .15

more image classes. Qualitatively, the strokes of our generated

characters are more distinguishable, as example images in

Figure 7 show.

C. Conditional Image Generation on ImageNet

The architectures of the generators GA and GLH are shown

in Figure 8, and the discriminator GLH is the same as SN-

GAN+Projection’s discriminator for ImageNet.

We use our method for conditional image generation on

ImageNet classes and compare it to AC-GAN [23], SN-

GAN [7] and SN-GAN+Projection [7], [18]. The training of

the three previous GANs adopt the entire ImageNet training

set (1,282,167 images). The training data of Ours (Fewer
HQ) contains 833,408 ImageNet training set as HQ images

and 60,000 CIFAR-100 images as LQ ones. Thus, the total

number of Ours (Fewer HQ) is 30.3% smaller than the entire

ImageNet training set used in previous methods [7], [17], [18].

The resolution of the generated images is set to 128ˆ128 to

compare with previous methods.

Fig. 8: The generators GLH (top) and GA (bottom) for

synthesizing ImageNet.

Table III summarizes the comparison with previous meth-

ods, and Figure 9 shows some examples of the generated

images by Ours (Entire HQ). Ours (Fewer HQ) outperforms

previous methods, even though it uses 30.3% fewer training

data. Using the entire ImageNet training set and CIFAR-100

images, Ours (Entire HQ) is 19.3% better than the previous

best SN-GAN+Projection [7], [18] in Inception score.

D. Ablation studies and sensitivity analysis

Our method brings in two new components: CTFs and SP.

We evaluate the respective contribution of each component



TABLE III: Conditional image generation on ImageNet. Higher Inception score (or lower FID) means higher image quality.

Method Training data Inception score FID

AC-GAN [23]
1,282,167

(ImageNet training set)

28.5 ˘ .20 260.00
SN-GAN [7] 21.1 ˘ .35 141.20
SN-GAN+Projection ( [7], [18]) 36.8 ˘ .44 92.40

Ours (Fewer HQ) 893,408 (833,408+60,000) 39.4 ˘ .43 83.0
Ours (Entire HQ) 1,342,167 (1,282,167+60,000) 43.9 ˘ .46 76.7

Fig. 9: Our generated images of the ImageNet classes (Ours (Entire HQ)).

TABLE IV: Ablation study of Ours (Entire HQ) on CASIA-

HWDB1.0 and ImageNet. Higher Inception score means

higher image quality.

Method
Inception score Inception score

(CASIA-HWDB1.0) (ImageNet)

Ours (Entire HQ) w/o CTFs 7.2 ˘ .12 32.1 ˘ .47
Ours (Entire HQ) w/o SP 10.9 ˘ .16 37.0 ˘ .50
Ours (Entire HQ) 13.6 ˘ .15 43.9 ˘ .46

TABLE V: Performance comparison of adding more Res-

Blocks to SN-GAN+Projection. Higher Inception score means

higher image quality.

Method
Inception score

(ImageNet)

SN-GAN+Projection with 1 more ResBlock 37.3 ˘ .46
SN-GAN+Projection with 2 more ResBlocks 37.9 ˘ .44
SN-GAN+Projection with 4 more ResBlocks 37.9 ˘ .48
SN-GAN+Projection with 6 more ResBlocks 37.6 ˘ .48
SN-GAN+Projection 36.8 ˘ .44
Ours (Entire HQ) 43.9 ˘ .46

on CASIA-HWDB1.0 and ImageNet. Table IV presents the

ablation studies in Inception score. As can be seen, our image

synthesis quality severely drops when CTFs or SP is removed.

Our proposed approach has one more generator GLH

compared to SN-GAN+Projection but is not the same as

simply adding more layers/blocks in previous methods. For

example, we gradually increase the number of ResBlock in

SN-GAN+Projection. Table V lists its performance change.

The Inception score improves slightly with a maximum of

37.9˘ .48, which is much smaller than 43.9˘ .46 obtained by

Ours (Entire HQ). The results demonstrate the effectiveness

of CTFs enabled by GLH in our design.

V. CONCLUSION

Previous GAN-based image generation methods face the

challenges of heavy dependency on high-quality training data.

In contrast, collecting low-quality images is relatively easier

and more economical. By observing the learning process

when transforming low-quality images into high-quality ones,

we find that combining intermediate output with the class

information, or conditional transferring features (CTFs), can

improve the quality of image generation and the scalability

of the object classes of GAN. Moreover, we integrate self-

supervision learning into our GAN architecture to further

improve the learning ability of the GAN. Experiments on

conditional image generation tasks show that our method

performs better than previous methods, even after removing

30% high-quality training data. And our method successfully

scales GANs to thousands of object classes such as the 1,000

ImageNet classes and 3,755 CASIA-HWDB1.0 classes.
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