

SoC Kohonen Maps Based on Stochastic Computing
Alejandro Morán

Department of Physics
University of the Balearic Islands

Palma of Majorca, Spain
a.moran@uib.eu

Josep L. Rosselló
Department of Physics

University of the Balearic Islands
Palma of Majorca, Spain

j.rossello@uib.es

Miquel Roca
Department of Physics

University of the Balearic Islands
Palma of Majorca, Spain

miquel.roca@uib.es

Vincent Canals
Department of Physics

University of the Balearic Islands
Palma of Majorca, Spain

v.canals@uib.es

Abstract—Mobile systems and by extension Internet of Things
(IoT) applications requests more and more Machine Learning
functions, thus requiring a big computational power with a small
power available. These demands have led to renewed interest in
unconventional hardware computing methods capable of to
implement complex functions in a simple way, with a very small
power consumption. This work proposes a novel System-on-Chip
(SoC) implementation of a Kohonen Map based on stochastic
computing. In turn, to support this development, several
stochastic block designs are presented as Winner-Take-All (WTA)
similarity check and the squared Euclidian distance. The
capabilities and performance of the proposed SoC solution is
tested over a well-known classification task over the Fisher's Iris
data set, archiving the same classification performance than the
software. The proposed solution requests few hardware resources
and low power, due to its inherent capacity to implement complex
functions in a simple way. This enables to implement large self-
learning classifiers based on Kohonen maps on tiny systems.

Keywords—Stochastic logic, Unsupervised learning, Kohonen
maps, Field programmable gate arrays, System-on-chip

I. INTRODUCTION

Internet of Things (IoT) devices span a wide range of
application domains including manufacturing, personal
wearables, logistics, smart-grid and agriculture applications [1].
At the same time, IoT requires diverse technology and
specialized skill areas such as specialized hardware and sensor
development, along with sophisticated real-time embedded
firmware, cloud applications, Big Data analytics and Machine
Learning (ML) [2] for massive real-time data into usable
information, delivery of data to human-scale and human-usable
platforms. The gradual integration of IoT devices with cloud
computing moves intelligence [3] to edge devices and allows
global decision-making based on local measurements. These
new capabilities demand new high performance and low-power
platforms to meet computational needs of data-intensive
applications. Generally, these high performance platforms
consist of a System-on-Chip (SoC) that incorporates embedded
GPUs, DSPs and FPGA [4] in order to balance power,
performance, size and cost. Recent advances in Hardware
Description Language (HDL) synthesis [5] have improved the
FPGA programming, which simplifies the use of FPGA’s in
SoC based applications.
Moreover, ML is vast and its applications are expanding rapidly
with the emergence of the IoT devices that also have access to
cloud computing. ML algorithms [6], [7] can be broadly

classified into three categories based on the properties,
mechanism of learning and the way data are used: supervised,
semi-supervised and unsupervised algorithms. These techniques
demonstrate unprecedented performance in solving complex
real world problems in which the traditional approaches are not
feasible or effective [8]. To support this technological
revolution, hardware companies are racing to build CPU, GPU,
SoC, tools, and frameworks that enables to achieve high
computing capabilities with low power consumptions. In turn,
silicon companies are focusing on alternative unconventional
computation methods to circumvent the technological limits of
the actual semiconductor industry [9] and obtain greater
computational capabilities per watt. This is the case of
probabilistic or stochastic computing architectures [10]–[13],
which apply probabilistic laws to digital logic gates, thus
performing pseudo analog operations with stochastic digital
signals.
This work proposes a SoC solution to accelerate an unsupervised
learning as the Kohonen or Self-Organizing Map (SOM) [14],
[15] on a FPGA platform based on stochastic logic. In this
context, stochastic logic is a candidate to reduce the power
consumption, while maintaining low overall energy depending
on the evaluation time. In addition, the tiny hardware resources
requirements potentially allow for massively parallel
implementations. Several complex functions design to
implement the SOM Best Matching Unit (BMU) are presented
and theoretically analyzed, as Winner-Take-All (WTA) module
[16] and the Pseudo-Euclidian Distance (PED) between inputs
and the neuron weights. The proposed approach is tested
through a pattern recognition task, based on the Fisher’s Iris
flower data set.
The paper is organized as follows: Section II briefly introduces
the basis of stochastic logic. Section III presents the stochastic
logic basic blocks to implement the Kohonen map Best
Matching Unit (BMU). Section IV shows and discuss a
classification task results task performed with the stochastic
BMU. Finally, the conclusions are presented in section V.

II. STOCHASTIC LOGIC

In stochastic logic, a global clock provides a time interval
during which each node of the circuit is stable. A probability p
to be at high state can be defined during this interval. This
probabilistic-based coding provides a natural way of operating
with analog quantities using digital circuits and stochastic bit
streams. The bit sequence follows probabilistic laws when they
are evaluated through logic gates. This coding can represent

This work was supported in part by the Spanish Ministry of Economy and
competitiveness and the EU with Regional European Development Founds
under Grant TEC2017-84877-R.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

only probabilities defined between 0 and 1, and is known as
unipolar coding. For instance, an AND gate provides an output
signal with a switching probability equal to the product of its
inputs (the collision probability between signals) (Fig. 1.1). In
turn, the square of a probability associated to a stochastic bit
stream can be implemented with an AND gate but now we must
include a delay to temporally de-correlate the bit stream to
operate it with itself. This can be done using a delay chain of D-
FF (Fig. 1.2). The subtraction of two unipolar signals (p and q)
is not supported by this coding, since it cannot encode negative
values; to circumvent this inconvenience is necessary to proceed
from an alternative way, using the max-min algebra properties.

The stochastic signals should be temporally correlated (sharing
the same random number value) to evaluate their similarity,
which is equivalent to determine the absolute value of the
probabilities difference |p - q| [16]. This operation may be
implemented with a XOR logic gate (Fig. 1.3). The addition of
two (u and v) or more stochastic bit streams has been done
historically with an OR logic gate that evaluate the sum of the
probability of both signals minus the probability of collision
between them, according to (1).

⎩
⎪
⎨

⎪
⎧

��� = � + � → �����(�, �)�

�(� + �) = �(�) + �(�) − �(�) · �(�) = ⋯

=
�

��
+

�

��
−

�·�

���
, �: ������ �� ����

⇓
��� = (Max 1 , � + � − � · �)

 (1)

But, OR based addition underestimates the sum for values of
the entries by up to 50%, and the output saturates for values
higher than the coding representation range [0, +1]. To
overcome both limitations, a circuit that implements the
weighted sum of the inputs with a multiplexer and a binary
counter is proposed (Fig. 1.4). The multiplexer has 4 inputs (X1
to X4 through which the stochastic signals will be introduced)
and a 2-bit selection word “sel” interconnected with a natural
Up-counter, thus obtaining a linear combination of the inputs
probability distributions, according to (2).

�

��� = �� + �� + �� + �� → �����(�� + �� + �� + ��)�

�(�� + �� + �� + ��) = ∑ �(��� = �) · ��
�
��� = ⋯

= ∑
�.��·��

���
�
��� , �: ������ �� ����

 (2)

In order to ensure that the sum is truly identically weighted
(1/4), the selection signal must be chosen in a way that all the
inputs signals are evaluated along the same number of cycles for
a given integration period. For any stochastic coding, the main
requirement to ensure the correct operation of these circuits is
that the input bit streams must be uncorrelated.

A. Stochastic Logic Architecture

Stochastic logic system based is composed at least of three
basic elements, as: A Binary-to-Pulse converter (B2P) to
interface between the digital and the stochastic spaces, a
stochastic circuit to carry out a certain task, and finally a Pulse-
to-Binary converter (P2B) to newly interface the stochastic and
digital spaces. An N-bit binary value can be converted to a
stochastic bit-stream with a B2P block. This block is composed
of a digital N-bit comparator that compares the digital input
value with a uniformly distributed random number value,
generated with a pseudo random number generator as a M-bit
LFSR circuit. The LFSR has to meet the condition of M-bit ≥ N-
bit. A stochastic bit-stream is converted to a N-bit binary value
with a P2B block composed of a pulse counter of the stochastic
bit-stream during k clock cycles (which corresponds to a system
evaluation period Teval = k·T, where T is the clock period). The
output is a binary number that remains fixed along k clock cycles
until it is updated by the next bit-stream input integration value.
This conversion incorporates a statistical error since the binary
output value follows a binomial distribution, archiving a
maximum conversion error of the order of Error≈k-0,5. Therefore
exists a relationship between the evaluation period and the
conversion error.

Fig. 1: Stochastic Logic basic circuits (Unipolar Coding)

III. KOHONEN MAP BASED ON STOCHASTIC LOGIC

This section briefly introduces the processes involved in the
formation of the Kohonen feature map: competition,
cooperation and synaptic adaptation. Below is presented the
algorithm responsible for the formation of the self-organizing
map, paying special interest in the description of the
cooperation and synaptic adaptation processes algorithm coded
in C++ on the embedded ARM Cortex-A9 processor in the Intel
SoC-FPGA. Finally, the stochastic circuits designed to
implement the competition process done by the Best Matching
Unit (BMU) are presented.

A. Architecture

The Kohonen Map is a type of Artificial Neural Network
(ANN) related to a feed-forward architecture composed by only
two layers [14]. However, this type of architecture is
fundamentally different in arrangement and motivation to the
feed-forward ANN. These ANN applies Competitive and
unsupervised learning method to train the network, based on
grid of artificial neuron whose weights are adapted to match the
input vectors in a training set. Specifically, Kohonen map
approximate an unlimited number of inputs by a finite set of
clusters/neurons arranged in a n-dimensional lattice (generally
1-D or 2-D), where the neighbor nodes correspond to more
similar models. Kohonen map is mainly useful for clustering and
visualization by creating a low dimensional feature map of high
dimensional data sets.

The network input layer given a set of n input vectors
{�� ∈ ℜ�, � = 1, … , �} k-dimensional has k units. The output

layer or the visible part of the Kohonen Map is the feature space,
which consist of m nodes or neurons. The feature map space is
defined beforehand, usually ranged in a n-dimensional region
where nodes are arranged in a regular hexagonal or rectangular
grid [17], but also its possible to use one-dimensional cyclic
arrangement like in this work (Fig. 2.b). While the neurons
positions in the feature map space remains fixed, the competitive
training consists in moving neurons weight vectors toward the
input data preserving the topology induced from the feature map
space. Each neuron or node is associated with a weight vector wj
with the same dimension as each input vector ��� ∈ ℜ�, � =

1, … , �� . Therefore, the input units are fully connected and
weighed with the output layer neurons. Thus, the output layer
shows a feature map that describes a mapping from a higher-
dimensional input space to a lower-dimensional map space.
Once trained the neural network, the feature map can classify a
vector from the input space by finding the neuron with the
closest weight vector to the input space vector.

B. Self-Learning Algorithm

On Kohonen map, learning the weights neurons participates
in a kind of competition for each input vector. Then, the winner
of the competition and neighborhood neurons are allowed to
change their weights following a Hebbian-Learning like rule
[18]. There are two basic steps involved in the application of the
self-learning algorithm after the output layer initialization, as:
the similarity matching and weight updating. These two steps
must be repeated until formation of the feature map has been
completed.

The initialization step consists in choosing uniformly
distributed random values for the initial weights vectors Wj(0) of
the output layer. The only restriction is related that the Wj(0) be
different for j=1,2,…,l, where “l” is the number of
neurons/clusters in the lattice. It may be desirable to keep the
magnitude of the weights small, in the representation range
selected [0, +1]. Another way to initializing the values on the
output layer weights vectors is to select the weights vectors

���(0)�
���

�
from the dataset of input vectors {��}���

� in a random

manner. In this work the weights initialization has been done in
a random way.

The second step consists in evaluating the similarity
matching to find the best-matching (winning) neuron index
“i(xi)” at time-step “t” by using the minimum-distance criterion.
In this work the discriminant function defined has been the
squared Euclidian Distance (ED) between the input vector

{��}���
� and the weight vector ���,�(�)�

���

�
for each neuron.

Therefore, the neuron whose weight vector comes closest to the
input vector is declared the winner. So, this step provides the
basic mechanism for competition among the neurons.

�
�(�) = ����������(�) − ��(�)�, � = 1,2, … , �

�(�) = ������� �∑ ���(�) − ��(�)�
�

�
��� � , �: ����� ���.

 (3)

The last step implements the synaptic-weights vector adaptive
process in the self-organized formation of the feature map, in
charge of adapting the output layer weights by using the update
formula [14]:

Fig. 2. (a) Kohonen Map. (b) 1D Lattice Ring Topology.

��(� + 1) = ��(�) + �(�) · ℎ�,�(�)(�) · ���(�) − ��(�)� (4)

Where �(�) is the learning-rate parameter and ℎ�,�(�)(�) is the

neighborhood function centered around the winning neuron
index i(xi) which also incorporates the lattice topology and
boundaries conditions. Both parameters are varied along the
epoch dynamically during the learning for best results. In turn,
neurobiological data suggest that the topological neighborhood
should be symmetric and monotonically decreasing with the
distance dj,i to the winning neuron lattice position. These
requirements make a good choice the Gaussian function.

ℎ�,�(�)(�) = �
�

��,�(�)
�

���(�), � = 1, … , � (5)
In this work, the topology selected has been an 1D ring

topology, ��,�(�) = |� − �(�)| �⁄ , due to its ease hardware
synthesis and software calculation. Another feature of the SOM
algorithm is that the size of the topological neighborhood
decays exponentially with time/epoch “n” [19], described by:

�(�) = �� · �
�

�

��, � = 0,1, … , #����ℎ (6)
Where �� is the value of �(0) at the initiation of the self-
learning algorithm and ��is a time constant to be chosen by the
designer. In practice, the appropriate weight update equation
must incorporate some kind of adaptive, time varying learning
rate �(�). In particular, it should start at some initial value ��
and then decrease gradually with increasing epochs “n”. This
requirement can be satisfied by the following heuristic function:

�(�) = �� · �
�

�

�� � = 0,1, … , #����ℎ (7)
Finally, the adaptive process could be repeated “n” epochs

until no noticeable changes in the feature map are observed.

C. Best Matching Unit

Kohonen Map training is an iterative process through epoch
which requires a lot of computational effort and thus is time-

consuming. This training takes the input data-set vectors and
infers them to the Kohonen map. The teaching consists of
choosing a winner neuron/cluster by the means of a similarity
measure and updating the values of the weights vectors in the
neighborhood of the winner neuron. This process is repeated a
large number of times until no changes in the feature map are
observed. A detailed analysis shows how parts of the Kohonen
map can be performed in parallel, to hardware accelerate the
process as squared Euclidian distance calculation between the
inputs vectors and the output layer neurons. To search for the
Best Matching Unit (BMU) whose distance is the minimum, all
distances are inevitably required to compare with each other. In
this sub-section, the SoC architecture proposed is presented.

1) Stochastic Logic Implementation
A Best Matching Unit (BMU) is a computational block that
evaluates the lattice index of the output layer neuron whose
weight vector is most similar to an input vector, i.e. whose
distance is the minimum, according to (3). Therefore, the search
for the winning neuron index can be divided into two processes.
One related with calculating similarity between the input vector
and the whole of the output layer neuron weights, and the other
in charge of selecting the winner neuron-index comparing all the
calculated similarities. The process of searching a winner in a
large lattice requires a long calculation time, because these
processes conventionally are serially estimated.

 The squared ED are one of the most popular ways to measure
the distance or similarity between input vector ��(�) ant the
lattice neuron weight vector ��,�(�) . This Squared Euclidian
Distance easily can be implemented stochastically using
unipolar coding. To digitally implement the k-dimension
squared ED, equation (3), calculation is necessary to combine a
set of three basic stochastic blocks. The first one is composed by
set of “k” unipolar subtractor blocks (as many as input vector
dimensions) to evaluate the absolute value of the distance

Fig. 3. (a) 4-D Stochastic Squared Euclidean Distance Circuit. (b) Winner-Take-All Circuit. (c) SoC Platform Architecture.

between the input vector ��(�)� and the neuron weight ��,�(�)�

for each dimension component ���(�)� − ��,�(�)��, as depicted
in Fig. 3a for the 4-D input vector case. Next, the subtractions
must be squared using an AND gate to multiply the distance
stochastic bit stream by itself delayed six clock cycles. Finally,
each squared dimension distance must be added to obtain the
squared ED. In this case the stochastic adder only can evaluate
the weighted sum of the k distances instead of the full sum. But
the target is to determine the similarity between vectors and
therefore independently how the addition is implemented the
most similar vector will be whose distance is smaller. The
Winner-Take-All (WTA) circuit, Fig. 3b, given a set of “l”
inputs (as many as lattice neurons) determines which input has
associated the minimum number of high level values in an
evaluation period. The WTA stochastic design takes each
neuron distance “��(��)” stochastic signal and through a Not
gate evaluates the complementary signal probability “ 1 −
��(��)” in order to associate to the minimum distance the bit-
stream with the highest number of ones. Then these distance
complementary signals attacks “l” binary counters (module-k).
In turn, only a maximum number of “z” clock cycles per
comparison are allowed (z>k), and therefore the minimum
number of cycles necessary needed to overflow a WTA counter
fixes a minimum distance value to be distinguished “����“, so

that ���� = � �⁄ . Therefore, for any distance value ��(��) >
���� between an input �� and the output layer weights ��(�) the
probability to identify this neuron “j” as winner is close to “1”.
In this work the value of k has set to 1024 and z to 4096. When
one of the counters overflows, its ripple carry-out signal resets
the counters and activate a flag (through a D-FF) indicating the
winning neuron. Finally, through an encoder, an unsigned binary
number containing the index of the winning neuron is generated.

2) System-on-Chip FPGA
An overview of the System-on-Chip FPGA for Kohonen Map
self-learning acceleration based on Stochastic logic for IoT
applications is presented in Fig. 3c. The proposed hardware is
coded in VHDL and synthesized with Intel Corp. Quartus Prime
18.1 software, and implemented on a low cost Terasic DE10-
Nano-SoC FPGA educative board, equipped with a Cyclone V
FPGA model 5CSEBA6U23I7. The proposed hardware in this
work consist of 9 circuits that performs 4-dimensional squared
pseudo Euclidean distance between the input vector and weight
vectors, both coded with 8-bit unsigned integer; and this circuit
operates at 50MHz. The Kohonen map application on the dual
core ARM Cortex-A9 embedded on the Cyclone V is coded in
C++ and runs on Ubuntu Linux 16.04. This application is
responsible for loading an external file with a data set, but also
can take as input the output of some sensors, and is responsible
for randomly cut the data set in two parts (training-set and test-
set). Then it randomly initializes the weights of the output layer
neurons completing the initialization of the self-learning
algorithm. Next, the application sends to the FPGA the weights
of the 9 neurons and an input vector Xi through a dual-port FIFO
implemented on Multiport DDR SDRAM Controller that
allows the communication between the Hard Processor System
(HPS) and the FPGA. So that once the winning category is
evaluated, the FPGA returns the winning neuron index i(x) to
the HPS, in a maximum of 82µs, using a new Memory-Mapped
FIFO. Once the embedded C++ application receives the
winning index, its adapts the output weights, following the
procedure described in the section III. Finally, the application
repeats this procedure for all the vectors of the training set up
to 100 epochs; at which time the variations in the output
weights are imperceptible. To later proceed to evaluate the
result of self-learning by classifying the vectors of the test-set.

IV. RESULTS

The Fisher’s Iris is a multivariate data set widely used to test
machine-learning algorithms. The data set consists of 50
samples from each of three Iris flower species (Setosa, Virginica
and Versicolor). Each sample has four features: the length and
the width of the sepals and petals, in millimeters. This dataset is
used to perform a pattern recognition task, in order to compare
the software-based model (MATLAB®) and the proposed SoC
Kohonen map acceleration system results. The dataset is divided
randomly into two identical parts, the first for training (75
vectors) and the second for testing (75 vectors). To carry out this
task, SoC acceleration system has been implemented and tested
on a FPGA. This SoC Kohonen map accelerator incorporates 9
neurons located on 1D lattice in ring topology for 4D inputs as
presented in section III. Table I presents the self-learning initial
parameters (��, ��, ��, ��) and the self-trained weights values

TABLE I

KOHONEN MAP PARAMETERS AND WEIGHTS

 Output Layer Neuron Self-Trained Weights (wj
k)

Neuronj/Dimensionk wj
1 wj

2 wj
3 wj

4
1 0.835 0.380 0.585 0.177
2 0.953 0.378 0.825 0.248
3 0.836 0.369 0.697 0.255
4 0.756 0.340 0.628 0.213
5 0.721 0.330 0.536 0.154
6 0.662 0.313 0.416 0.126
7 0.628 0.368 0.267 0.055
8 0.591 0.390 0.172 0.014
9 0.654 0.453 0.183 0.023

Kohonen Map initialization parameters
�� 0.5 �� 100
�� 0.5 �� 100

BMU counter
modulus “k”

1,024 # epoch 100

MATLAB® Classification Performance

Test Set
Archived

Classification Error
Classification

Error [%]
75 1 1.3

TABLE II

STOCHASTIC BMU MODULUS IN FRONT OF MISCLASSIFICATIONS

BMU Counter
Modulus “k”

Test-Set Number of
Misclassifications

Test-Set
Misclassifications [%]

128 46 61.3
256 24 32.0
512 14 18.7
1024 0 0

TABLE III

FPGA RESOURCES (CYCLONE V, 5CSEBA6U23I7NDK)

Adaptive Logic Module (ALM): 614 / 41,910 (1,46%)
Total Thermal Power Dissipation: 21.5 mW

obtained after 100 epochs along with the MATLAB® application
test set classification error. The classification task results for
each neuron carried on the SoC FPGA are presented in the Fig.
4, with WTA counters modulus 1024 and an evaluation period
of 4096 clock cycles or 82µs. The SoC implementation output
are depicted with a bar graph (color are related with Iris species).
As can be appreciated, the experimental classification results
with this configuration are identical to the obtained with the
reference software implementation, presenting a classification
error of only the 1.33% or 1 misclassification for 75 test-set
vectors. Additionally, in Table II is presented the relationship
between the BMU counter modulus and the number of test set
vector misclassified or unclassified respect the purely Matlab®
Kohonen Map results, for the presented in Table I self-trained
weights values. Finally, the FPGA hardware resources spent in
this implementation without considering the interface blocks
(Memory interface, Finite State Machine (FSM), …) are
presented in Table III.

V. CONCLUSIONS

The SoC FPGA architecture based on stochastic computing
have been presented and evaluated. Also, a set of stochastic
circuits has been described to efficiently implement self-
learning tasks in hardware. The results show for the SoC
Kohonen map acceleration solution can perform the self-
learning and classification tasks with the same error as
MATLAB® by an integration period of k = 1024 cycles, all
using simple digital blocks. Therefore, the solution proposed
can control the classification accuracy of the system based on
the integration period of the BMU block. In turn, the stochastic
BMU hardware accelerator circuit consumes 21.5 mW, i.e.
around 4 times less power consumption than the IoT devices
(typically 80-86 mW) [20] in the sensing or computation
phases, which makes it suitable for use in these applications.
Also, this implementation consumes few hardware resources
(614 ALM in a FPGA). In addition, the stochastic BMU is able
to work properly with a high level of noise at the inputs due to
its stochastic nature.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Commun. Surv. Tutorials, vol.
17, no. 4, pp. 2347–2376, 2015.

[2] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
Learning for IoT Big Data and Streaming Analytics: A Survey,”

IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2923–2960, 2018.

[3] L. Carnevale, A. Celesti, A. Galletta, S. Dustdar, and M. Villari,
“From the Cloud to Edge and IoT: a Smart Orchestration Architecture
for Enabling Osmotic Computing,” in 2018 32nd International
Conference on Advanced Information Networking and Applications
Workshops (WAINA), 2018, pp. 419–424.

[4] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-Core
Processors for Embedded Systems,” in 2006 International
Conference on Microelectronics, 2006, pp. 170–173.

[5] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru
Zhang, “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol.
30, no. 4, pp. 473–491, Apr. 2011.

[6] S. Shalev-Shwartz and S. Ben-David, Understanding Machine
Learning: From Theory to Algorithms. New York, NY, USA:
Cambridge University Press, 2014.

[7] S. Ray, “A Quick Review of Machine Learning Algorithms,” in 2019
International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), 2019, pp. 35–39.

[8] Xue-Wen Chen and Xiaotong Lin, “Big Data Deep Learning:
Challenges and Perspectives,” IEEE Access, vol. 2, pp. 514–525,
2014.

[9] R. W. Keyes, “Fundamental limits of silicon technology,” Proc.
IEEE, vol. 89, no. 3, pp. 227–239, Mar. 2001.

[10] T. Moreau et al., “A Taxonomy of General Purpose Approximate
Computing Techniques,” IEEE Embed. Syst. Lett., pp. 1–1, 2017.

[11] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rossello, “A
New Stochastic Computing Methodology for Efficient Neural
Network Implementation,” IEEE Trans. Neural Networks Learn.
Syst., vol. 27, no. 3, pp. 551–564, Mar. 2016.

[12] V. Canals et al., “Noise tolerant probabilistic logic for statistical
pattern recognition applications,” Integr. Comput. Aided. Eng., vol.
24, no. 4, pp. 351–365, Sep. 2017.

[13] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 1–19, May 2013.

[14] T. Kohonen, “Self-organized formation of topologically correct
feature maps,” Biol. Cybern., vol. 43, no. 1, pp. 59–69, 1982.

[15] N. R. Pal, J. C. Bezdek, and E. C.-K. Tsao, “Generalized clustering
networks and Kohonen’s self-organizing scheme,” IEEE Trans.
Neural Networks, vol. 4, no. 4, pp. 549–557, Jul. 1993.

[16] A. Morro, V. Canals, A. Oliver, M. L. Alomar, and J. L. Rossello,
“Ultra-Fast Data-Mining Hardware Architecture Based on Stochastic
Computing,” PLoS One, vol. 10, no. 5, p. e0124176, May 2015.

[17] Kangas, Kohonen, Laaksonen, Simula, and Venta, “Variants of self-

Fig. 4: SoC FPGA Fisher’s Iris classification task results (k = 1024); the height of the bars indicates the number of times a given node is the winner and

different colors represent different output classes (Iris species), so that overlaps represent misclassifications.

organizing maps,” in International Joint Conference on Neural
Networks, 1989, pp. 517–522 vol.2.

[18] R. H. White, “Competitive Hebbian learning,” in IJCNN-91-Seattle
International Joint Conference on Neural Networks, vol. ii, p. 949.

[19] K. Obermayer, K. Schulten, and G. G. Blasdel, “A Comparison
Between a Neural Network Model for the Formation of Brain Maps
and Experimental Data,” in Proceedings of the 4th International
Conference on Neural Information Processing Systems, 1991, pp.
83–90.

[20] N. Tamkittikhun, A. Hussain, and F. A. Kraemer, “Energy
Consumption Estimation for Energy-Aware, Adaptive Sensing
Applications,” in Mobile, Secure, and Programmable Networking.
MSPN 2017. Lecture Notes in Computer Science, vol 10566,
Springer, Cham, 2017, pp. 222–235.

