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Abstract—Mobile systems and by extension Internet of Things 
(IoT) applications requests more and more Machine Learning 
functions, thus requiring a big computational power with a small 
power available. These demands have led to renewed interest in 
unconventional hardware computing methods capable of to 
implement complex functions in a simple way, with a very small 
power consumption.  This work proposes a novel System-on-Chip 
(SoC) implementation of a Kohonen Map based on stochastic 
computing. In turn, to support this development, several 
stochastic block designs are presented as Winner-Take-All (WTA) 
similarity check and the squared Euclidian distance.  The 
capabilities and performance of the proposed SoC solution is 
tested over a well-known classification task over the Fisher's Iris 
data set, archiving the same classification performance than the 
software. The proposed solution requests few hardware resources 
and low power, due to its inherent capacity to implement complex 
functions in a simple way. This enables to implement large self-
learning classifiers based on Kohonen maps on tiny systems. 

Keywords—Stochastic logic, Unsupervised learning, Kohonen 
maps, Field programmable gate arrays, System-on-chip 

I. INTRODUCTION 

Internet of Things (IoT) devices span a wide range of 
application domains including manufacturing, personal 
wearables, logistics, smart-grid and agriculture applications [1]. 
At the same time, IoT requires diverse technology and 
specialized skill areas such as specialized hardware and sensor 
development, along with sophisticated real-time embedded 
firmware, cloud applications, Big Data analytics and Machine 
Learning (ML) [2] for massive real-time data into usable 
information, delivery of data to human-scale and human-usable 
platforms. The gradual integration of IoT devices with cloud 
computing moves intelligence [3] to edge devices and allows 
global decision-making based on local measurements. These 
new capabilities demand new high performance and low-power 
platforms to meet computational needs of data-intensive 
applications. Generally, these high performance platforms 
consist of a System-on-Chip (SoC) that incorporates embedded 
GPUs, DSPs and FPGA [4] in order to balance power, 
performance, size and cost. Recent advances in Hardware 
Description Language (HDL) synthesis [5] have improved the 
FPGA programming, which simplifies the use of FPGA’s in 
SoC based applications.  
Moreover, ML is vast and its applications are expanding rapidly 
with the emergence of the IoT devices that also have access to 
cloud computing. ML algorithms [6], [7] can be broadly 

classified into three categories based on the properties, 
mechanism of learning and the way data are used: supervised, 
semi-supervised and unsupervised algorithms. These techniques 
demonstrate unprecedented performance in solving complex 
real world problems in which the traditional approaches are not 
feasible or effective [8]. To support this technological 
revolution, hardware companies are racing to build CPU, GPU, 
SoC, tools, and frameworks that enables to achieve high 
computing capabilities with low power consumptions. In turn, 
silicon companies are focusing on alternative unconventional 
computation methods to circumvent the technological limits of 
the actual semiconductor industry [9] and obtain greater 
computational capabilities per watt. This is the case of 
probabilistic or stochastic computing architectures [10]–[13], 
which apply probabilistic laws to digital logic gates, thus 
performing pseudo analog operations with stochastic digital 
signals.  
This work proposes a SoC solution to accelerate an unsupervised 
learning as the Kohonen or Self-Organizing Map (SOM) [14], 
[15] on a FPGA platform based on stochastic logic. In this 
context, stochastic logic is a candidate to reduce the power 
consumption, while maintaining low overall energy depending 
on the evaluation time. In addition, the tiny hardware resources 
requirements potentially allow for massively parallel 
implementations. Several complex functions design to 
implement the SOM Best Matching Unit (BMU) are presented 
and theoretically analyzed, as Winner-Take-All (WTA) module 
[16] and the Pseudo-Euclidian Distance (PED) between inputs 
and the neuron weights. The proposed approach is tested 
through a pattern recognition task, based on the Fisher’s Iris 
flower data set. 
The paper is organized as follows: Section II briefly introduces 
the basis of stochastic logic. Section III presents the stochastic 
logic basic blocks to implement the Kohonen map Best 
Matching Unit (BMU). Section IV shows and discuss a 
classification task results task performed with the stochastic 
BMU. Finally, the conclusions are presented in section V. 

II. STOCHASTIC LOGIC 

In stochastic logic, a global clock provides a time interval 
during which each node of the circuit is stable. A probability p 
to be at high state can be defined during this interval. This 
probabilistic-based coding provides a natural way of operating 
with analog quantities using digital circuits and stochastic bit 
streams. The bit sequence follows probabilistic laws when they 
are evaluated through logic gates. This coding can represent 
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only probabilities defined between 0 and 1, and is known as 
unipolar coding. For instance, an AND gate provides an output 
signal with a switching probability equal to the product of its 
inputs (the collision probability between signals) (Fig. 1.1). In 
turn, the square of a probability associated to a stochastic bit 
stream can be implemented with an AND gate but now we must 
include a delay to temporally de-correlate the bit stream to 
operate it with itself. This can be done using a delay chain of D-
FF (Fig. 1.2). The subtraction of two unipolar signals (p and q) 
is not supported by this coding, since it cannot encode negative 
values; to circumvent this inconvenience is necessary to proceed 
from an alternative way, using the max-min algebra properties. 

The stochastic signals should be temporally correlated (sharing 
the same random number value) to evaluate their similarity, 
which is equivalent to determine the absolute value of the 
probabilities difference |p - q| [16]. This operation may be 
implemented with a XOR logic gate (Fig. 1.3). The addition of 
two (u and v) or more stochastic bit streams has been done 
historically with an OR logic gate that evaluate the sum of the 
probability of both signals minus the probability of collision 
between them, according to (1).  
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But, OR based addition underestimates the sum for values of 
the entries by up to 50%, and the output saturates for values 
higher than the coding representation range [0, +1]. To 
overcome both limitations, a circuit that implements the 
weighted sum of the inputs with a multiplexer and a binary 
counter is proposed (Fig. 1.4). The multiplexer has 4 inputs (X1 
to X4 through which the stochastic signals will be introduced) 
and a 2-bit selection word “sel” interconnected with a natural 
Up-counter, thus obtaining a linear combination of the inputs 
probability distributions, according to (2). 

�

��� =  �� + �� + �� + ��  →  �����(�� + �� + �� + ��)�

�(�� + �� + �� + ��) = ∑ �(��� = �) · ��
�
��� = ⋯

= ∑
�.��·��

���
�
��� , �: ������ �� ����

    (2) 

In order to ensure that the sum is truly identically weighted 
(1/4), the selection signal must be chosen in a way that all the 
inputs signals are evaluated along the same number of cycles for 
a given integration period. For any stochastic coding, the main 
requirement to ensure the correct operation of these circuits is 
that the input bit streams must be uncorrelated. 

A. Stochastic Logic Architecture 

Stochastic logic system based is composed at least of three 
basic elements, as: A Binary-to-Pulse converter (B2P) to 
interface between the digital and the stochastic spaces, a 
stochastic circuit to carry out a certain task, and finally a Pulse-
to-Binary converter (P2B) to newly interface the stochastic and 
digital spaces. An N-bit binary value can be converted to a 
stochastic bit-stream with a B2P block. This block is composed 
of a digital N-bit comparator that compares the digital input 
value with a uniformly distributed random number value, 
generated with a pseudo random number generator as a M-bit 
LFSR circuit. The LFSR has to meet the condition of M-bit ≥ N-
bit. A stochastic bit-stream is converted to a N-bit binary value 
with a P2B block composed of a pulse counter of the stochastic 
bit-stream during k clock cycles (which corresponds to a system 
evaluation period Teval = k·T, where T is the clock period). The 
output is a binary number that remains fixed along k clock cycles 
until it is updated by the next bit-stream input integration value. 
This conversion incorporates a statistical error since the binary 
output value follows a binomial distribution, archiving a 
maximum conversion error of the order of Error≈k-0,5. Therefore 
exists a relationship between the evaluation period and the 
conversion error. 

 
Fig. 1: Stochastic Logic basic circuits (Unipolar Coding) 



III. KOHONEN MAP BASED ON STOCHASTIC LOGIC 

This section briefly introduces the processes involved in the 
formation of the Kohonen feature map: competition, 
cooperation and synaptic adaptation. Below is presented the 
algorithm responsible for the formation of the self-organizing 
map, paying special interest in the description of the 
cooperation and synaptic adaptation processes algorithm coded 
in C++ on the embedded ARM Cortex-A9 processor in the Intel 
SoC-FPGA. Finally, the stochastic circuits designed to 
implement the competition process done by the Best Matching 
Unit (BMU) are presented. 

A. Architecture 

The Kohonen Map is a type of Artificial Neural Network 
(ANN) related to a feed-forward architecture composed by only 
two layers [14]. However, this type of architecture is 
fundamentally different in arrangement and motivation to the 
feed-forward ANN. These ANN applies Competitive and 
unsupervised learning method to train the network, based on 
grid of artificial neuron whose weights are adapted to match the 
input vectors in a training set. Specifically, Kohonen map 
approximate an unlimited number of inputs by a finite set of 
clusters/neurons arranged in a n-dimensional lattice (generally 
1-D or 2-D), where the neighbor nodes correspond to more 
similar models. Kohonen map is mainly useful for clustering and 
visualization by creating a low dimensional feature map of high 
dimensional data sets. 

The network input layer given a set of n input vectors  
{�� ∈ ℜ�, � = 1, … , �}  k-dimensional has k units. The output 

layer or the visible part of the Kohonen Map is the feature space, 
which consist of m nodes or neurons. The feature map space is 
defined beforehand, usually ranged in a n-dimensional region 
where nodes are arranged in a regular hexagonal or rectangular 
grid [17], but also its possible to use one-dimensional cyclic 
arrangement like in this work (Fig. 2.b). While the neurons 
positions in the feature map space remains fixed, the competitive 
training consists in moving neurons weight vectors toward the 
input data preserving the topology induced from the feature map 
space. Each neuron or node is associated with a weight vector wj 
with the same dimension as each input vector  ��� ∈ ℜ�, � =

1, … , �� . Therefore, the input units are fully connected and 
weighed with the output layer neurons. Thus, the output layer 
shows a feature map that describes a mapping from a higher-
dimensional input space to a lower-dimensional map space. 
Once trained the neural network, the feature map can classify a 
vector from the input space by finding the neuron with the 
closest weight vector to the input space vector. 

B. Self-Learning Algorithm 

On Kohonen map, learning the weights neurons participates 
in a kind of competition for each input vector. Then, the winner 
of the competition and neighborhood neurons are allowed to 
change their weights following a Hebbian-Learning like rule 
[18]. There are two basic steps involved in the application of the 
self-learning algorithm after the output layer initialization, as: 
the similarity matching and weight updating. These two steps 
must be repeated until formation of the feature map has been 
completed.  

The initialization step consists in choosing uniformly 
distributed random values for the initial weights vectors Wj(0) of 
the output layer. The only restriction is related that the Wj(0) be 
different for j=1,2,…,l, where “l” is the number of 
neurons/clusters in the lattice. It may be desirable to keep the 
magnitude of the weights small, in the representation range 
selected [0, +1]. Another way to initializing the values on the 
output layer weights vectors is to select the weights vectors 

���(0)�
���

�
from the dataset of input vectors {��}���

� in a random 

manner. In this work the weights initialization has been done in 
a random way. 

The second step consists in evaluating the similarity 
matching to find the best-matching (winning) neuron index 
“i(xi)” at time-step “t” by using the minimum-distance criterion. 
In this work the discriminant function defined has been the 
squared Euclidian Distance (ED) between the input vector 

{��}���
�  and the weight vector ���,�(�)�

���

�
for each neuron. 

Therefore, the neuron whose weight vector comes closest to the 
input vector is declared the winner. So, this step provides the 
basic mechanism for competition among the neurons.   

�
�(�) = ����������(�) − ��(�)�,                     � = 1,2, … , �

�(�) = ������� �∑ ���(�) − ��(�)�
�

�
��� � , �: ����� ���.

   (3) 

The last step implements the synaptic-weights vector adaptive 
process in the self-organized formation of the feature map, in 
charge of adapting the output layer weights by using the update 
formula [14]: 

 

Fig. 2. (a) Kohonen Map. (b) 1D Lattice Ring Topology. 



��(� + 1) = ��(�) + �(�) · ℎ�,�(�)(�) · ���(�) − ��(�)�    (4) 

Where �(�) is the learning-rate parameter and ℎ�,�(�)(�) is the 

neighborhood function centered around the winning neuron 
index i(xi) which also incorporates the lattice topology and 
boundaries conditions. Both parameters are varied along the 
epoch dynamically during the learning for best results.  In turn, 
neurobiological data suggest that the topological neighborhood 
should be symmetric and monotonically decreasing with the 
distance dj,i to the winning neuron lattice position. These 
requirements make a good choice the Gaussian function. 

ℎ�,�(�)(�) = �
�

��,�(�)
�

���(�), � = 1, … , �                      (5) 
In this work, the topology selected has been an 1D ring 

topology, ��,�(�) = |� − �(�)| �⁄ , due to its ease hardware 
synthesis and software calculation. Another feature of the SOM 
algorithm is that the size of the topological neighborhood 
decays exponentially with time/epoch “n” [19], described by: 

�(�) = �� · �
�

�

��, � = 0,1, … , #����ℎ                     (6) 
Where ��  is the value of �(0)  at the initiation of the self-
learning algorithm and ��is a time constant to be chosen by the 
designer. In practice, the appropriate weight update equation 
must incorporate some kind of adaptive, time varying learning 
rate �(�). In particular, it should start at some initial value �� 
and then decrease gradually with increasing epochs “n”. This 
requirement can be satisfied by the following heuristic function:  

�(�) = �� · �
�

�

�� � = 0,1, … , #����ℎ                     (7) 
Finally, the adaptive process could be repeated “n” epochs 

until no noticeable changes in the feature map are observed. 

C. Best Matching Unit 

Kohonen Map training is an iterative process through epoch 
which requires a lot of computational effort and thus is time-

consuming. This training takes the input data-set vectors and 
infers them to the Kohonen map. The teaching consists of 
choosing a winner neuron/cluster by the means of a similarity 
measure and updating the values of the weights vectors in the 
neighborhood of the winner neuron. This process is repeated a 
large number of times until no changes in the feature map are 
observed. A detailed analysis shows how parts of the Kohonen 
map can be performed in parallel, to hardware accelerate the 
process as squared Euclidian distance calculation between the 
inputs vectors and the output layer neurons. To search for the 
Best Matching Unit (BMU) whose distance is the minimum, all 
distances are inevitably required to compare with each other. In 
this sub-section, the SoC architecture proposed is presented.  

1) Stochastic Logic Implementation 
A Best Matching Unit (BMU) is a computational block that 
evaluates the lattice index of the output layer neuron whose 
weight vector is most similar to an input vector, i.e. whose 
distance is the minimum, according to (3). Therefore, the search 
for the winning neuron index can be divided into two processes. 
One related with calculating similarity between the input vector 
and the whole of the output layer neuron weights, and the other 
in charge of selecting the winner neuron-index comparing all the 
calculated similarities. The process of searching a winner in a 
large lattice requires a long calculation time, because these 
processes conventionally are serially estimated.  

 The squared ED are one of the most popular ways to measure 
the distance or similarity between input vector ��(�)  ant the 
lattice neuron weight vector ��,�(�) . This Squared Euclidian 
Distance easily can be implemented stochastically using 
unipolar coding. To digitally implement the k-dimension 
squared ED, equation (3), calculation is necessary to combine a 
set of three basic stochastic blocks. The first one is composed by 
set of “k” unipolar subtractor blocks (as many as input vector 
dimensions) to evaluate the absolute value of the distance 

 
Fig. 3. (a) 4-D Stochastic Squared Euclidean Distance Circuit. (b) Winner-Take-All Circuit. (c) SoC Platform Architecture. 



between the input vector ��(�)� and the neuron weight   ��,�(�)� 

for each dimension component ���(�)� − ��,�(�)��, as depicted 
in Fig. 3a for the 4-D input vector case. Next, the subtractions 
must be squared using an AND gate to multiply the distance 
stochastic bit stream by itself delayed six clock cycles. Finally, 
each squared dimension distance must be added to obtain the 
squared ED. In this case the stochastic adder only can evaluate 
the weighted sum of the k distances instead of the full sum. But 
the target is to determine the similarity between vectors and 
therefore independently how the addition is implemented the 
most similar vector will be whose distance is smaller.  The 
Winner-Take-All (WTA) circuit, Fig. 3b, given a set of “l” 
inputs (as many as lattice neurons) determines which input has 
associated the minimum number of high level values in an 
evaluation period. The WTA stochastic design takes each 
neuron distance “��(��)” stochastic signal and through a Not 
gate evaluates the complementary signal probability “ 1 −
��(��)” in order to associate to the minimum distance the bit-
stream with the highest number of ones. Then these distance 
complementary signals attacks “l” binary counters (module-k). 
In turn, only a maximum number of  “z” clock cycles per 
comparison are allowed (z>k), and therefore the minimum 
number of cycles necessary needed to overflow a WTA counter 
fixes a minimum distance value to be distinguished “����“, so 

that ���� = � �⁄ . Therefore, for any distance value ��(��) >
���� between an input �� and the output layer weights ��(�) the 
probability to identify this neuron “j” as winner is close to “1”.  
In this work the value of k has set to 1024 and z to 4096. When 
one of the counters overflows, its ripple carry-out signal resets 
the counters and activate a flag (through a D-FF) indicating the 
winning neuron. Finally, through an encoder, an unsigned binary 
number containing the index of the winning neuron is generated. 

2) System-on-Chip FPGA 
An overview of the System-on-Chip FPGA for Kohonen Map 
self-learning acceleration based on Stochastic logic for IoT 
applications is presented in Fig. 3c. The proposed hardware is 
coded in VHDL and synthesized with Intel Corp. Quartus Prime 
18.1 software, and implemented on a low cost Terasic DE10-
Nano-SoC FPGA educative board, equipped with a Cyclone V 
FPGA model 5CSEBA6U23I7. The proposed hardware in this 
work consist of 9 circuits that performs 4-dimensional squared 
pseudo Euclidean distance between the input vector and weight 
vectors, both coded with 8-bit unsigned integer; and this circuit 
operates at 50MHz. The Kohonen map application on the dual 
core ARM Cortex-A9 embedded on the Cyclone V is coded in 
C++ and runs on Ubuntu Linux 16.04.  This application is 
responsible for loading an external file with a data set, but also 
can take as input the output of some sensors, and is responsible 
for randomly cut the data set in two parts (training-set and test-
set). Then it randomly initializes the weights of the output layer 
neurons completing the initialization of the self-learning 
algorithm. Next, the application sends to the FPGA the weights 
of the 9 neurons and an input vector Xi through a dual-port FIFO 
implemented on Multiport DDR SDRAM Controller that 
allows the communication between the Hard Processor System 
(HPS) and the FPGA. So that once the winning category is 
evaluated, the FPGA returns the winning neuron index i(x) to 
the HPS, in a maximum of 82µs, using a new Memory-Mapped 
FIFO. Once the embedded C++ application receives the 
winning index, its adapts the output weights, following the 
procedure described in the section III.  Finally, the application 
repeats this procedure for all the vectors of the training set up 
to 100 epochs; at which time the variations in the output 
weights are imperceptible. To later proceed to evaluate the 
result of self-learning by classifying the vectors of the test-set. 

IV. RESULTS 

The Fisher’s Iris is a multivariate data set widely used to test 
machine-learning algorithms. The data set consists of 50 
samples from each of three Iris flower species (Setosa, Virginica 
and Versicolor). Each sample has four features: the length and 
the width of the sepals and petals, in millimeters. This dataset is 
used to perform a pattern recognition task, in order to compare 
the software-based model (MATLAB®) and the proposed SoC 
Kohonen map acceleration system results. The dataset is divided 
randomly into two identical parts, the first for training (75 
vectors) and the second for testing (75 vectors). To carry out this 
task, SoC acceleration system has been implemented and tested 
on a FPGA. This SoC Kohonen map accelerator incorporates 9 
neurons located on 1D lattice in ring topology for 4D inputs as 
presented in section III. Table I presents the self-learning initial 
parameters (��, ��, ��, ��) and the self-trained weights values 

TABLE I 

KOHONEN MAP PARAMETERS AND WEIGHTS 

 Output Layer Neuron Self-Trained Weights (wj
k) 

Neuronj/Dimensionk wj
1 wj

2 wj
3 wj

4 
1 0.835 0.380 0.585 0.177 
2 0.953 0.378 0.825 0.248 
3 0.836 0.369 0.697 0.255 
4 0.756 0.340 0.628 0.213 
5 0.721 0.330 0.536 0.154 
6 0.662 0.313 0.416 0.126 
7 0.628 0.368 0.267 0.055 
8 0.591 0.390 0.172 0.014 
9 0.654 0.453 0.183 0.023 

Kohonen Map initialization parameters 
�� 0.5 �� 100 
�� 0.5 �� 100 

BMU counter 
modulus “k” 

1,024 # epoch 100 

MATLAB® Classification Performance 

Test Set 
Archived 

Classification Error 
Classification 

Error [%] 
75 1 1.3 

TABLE II 

STOCHASTIC BMU MODULUS IN FRONT OF MISCLASSIFICATIONS 

BMU Counter 
Modulus “k” 

Test-Set Number of 
Misclassifications 

Test-Set 
Misclassifications [%] 

128 46 61.3 
256 24 32.0 
512 14 18.7 
1024 0 0 

TABLE III 

FPGA RESOURCES (CYCLONE V, 5CSEBA6U23I7NDK) 

Adaptive Logic Module (ALM): 614 / 41,910 (1,46%) 
Total Thermal Power Dissipation: 21.5 mW  

 



obtained after 100 epochs along with the MATLAB® application 
test set classification error. The classification task results for 
each neuron carried on the SoC FPGA are presented in the Fig. 
4, with WTA counters modulus 1024 and an evaluation period 
of 4096 clock cycles or 82µs. The SoC implementation output 
are depicted with a bar graph (color are related with Iris species). 
As can be appreciated, the experimental classification results 
with this configuration are identical to the obtained with the 
reference software implementation, presenting a classification 
error of only the 1.33% or 1 misclassification for 75 test-set 
vectors. Additionally, in Table II is presented the relationship 
between the BMU counter modulus and the number of test set 
vector misclassified or unclassified respect the purely Matlab® 
Kohonen Map results, for the presented in Table I self-trained 
weights values. Finally, the FPGA hardware resources spent in 
this implementation without considering the interface blocks 
(Memory interface, Finite State Machine (FSM), …) are 
presented in Table III. 

V. CONCLUSIONS 

The SoC FPGA architecture based on stochastic computing 
have been presented and evaluated. Also, a set of stochastic 
circuits has been described to efficiently implement self-
learning tasks in hardware. The results show for the SoC 
Kohonen map acceleration solution can perform the self-
learning and classification tasks with the same error as 
MATLAB® by an integration period of k = 1024 cycles, all 
using simple digital blocks. Therefore, the solution proposed 
can control the classification accuracy of the system based on 
the integration period of the BMU block. In turn, the stochastic 
BMU hardware accelerator circuit consumes 21.5 mW, i.e. 
around 4 times less power consumption than the IoT devices 
(typically 80-86 mW) [20] in the sensing or computation 
phases, which makes it suitable for use in these applications. 
Also, this implementation consumes few hardware resources 
(614 ALM in a FPGA). In addition, the stochastic BMU is able 
to work properly with a high level of noise at the inputs due to 
its stochastic nature. 
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