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Abstract—Recently, more researchers are interested in the
domain of quantum machine learning as it can manipulate and
classify large numbers of vectors in high dimensional space in
reasonable time.

In this paper, we propose a new approach called Quan-
tum Collaborative K-means which is based on combining
several clustering models based on quantum K-means. This
collaboration consists of exchanging the information of each
algorithm locally in order to find a common underlying
structure for clustering. Comparing the classical version of
collaborative clustering to our approach, we notice that we
have an exponential speed up: while the classical version
takes O(K x L x M x N), the quantum version takes only
O(K x Lxlog(MxN)). And comparing to the quantum version
of K-means, we get a better solution in terms of the criteria of
validation which means in terms of clustering. The empirical
evaluations validate the benefits of the proposed approach.

Index Terms—Quantum machine learning, Collaborative
learning.

I. INTRODUCTION

Machine learning is a branch of artificial intelligence that
aims to learn from data to give the correct predictions. It
is used in a wide variety of applications to solve prob-
lems like: clustering, text mining, regression, etc. There
are two main types of machine learning tasks: supervised
and unsupervised machine learning. In supervised machine
learning, the learner is given the labeled data and the desired
output. The aim is to classify new examples based on these
training sets. In unsupervised machine learning, the system
aims to classify the data into different groups without prior
information.

Clustering is an unsupervised learning method which aims
to discover the intrinsic structures of a set of objects by
forming clusters of similar units. When different clusters are
collaborating, we are in the collaborative clustering [12].
This latter has a purpose to reach an agreement on the
partitioning of a common dataset in order to have a better
overall solution.

Recent attention has been given to quantum machine
learning as it can provide an exponential speed-ups for
problems involving large vectors. Therefore, quantum com-
puting has the possibility to make machine learning solu-
tions exponentially faster than their traditional computing
counterparts. That’s why a lot of contributions exploring the
idea of using the advantages of quantum computing in order
to improve machine learning algorithms are done [16], [14],
[2]. For example, Seth Lloyd and his co-workers propose the
quantum version of principal component analysis [8]. Also,
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some works have been devoted to the development to the
quantum version of a field widely used in machine learning,
which are artificial neural networks [7].

In this paper, we propose a new approach called collab-
orative quantum K -means that aims to collaborate different
K -means models in order to get a better clustering compared
to QK -means and get a speed up compared to its classical
version. The empirical evaluations show the benefits of this
collaboration.

The rest of paper is organized as follows. Section 2
presents the classical machine learning namely K-means
and collaborative K -means. Section 3 describes quantum K-
means and our proposed approach quantum collaborative K-
means. Section 4 is devoted to experimental results. Finally,
the conclusion summarizes our contribution.

II. CLASSICAL MACHINE LEARNING
A. Classical K-means

The K-means clustering [10] is a type of unsupervised
clustering, one of the most widely used clustering method
early developed by Lloyd [9]. Let X = {x1,2z9,...,2N}
be the data set, each row vector z,, € RM, 1 < n < N
is composed of M attributes (features). The K-means clus-
tering allows to divide the set of data X into K clusters
C = {C,...,Ck} by minimizing the following sum of
squared errors:
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where w;, € RM is the centroid of the data within the
cluster Cy, and G € Rf *K s the binary classification matrix
defined by g, = 1, if the data z,, € C, and 0 otherwise.
Firstly, the K-means algorithm initialize randomly K cen-
troids wy, wo, ....,wxg € RM. Then the algorithm usually
iterativelly unfolds in two phases:

1) at first we go over every point and assign each to the
cluster of the nearest centroid.

2) at the second phase, the centroid of each cluster is
updated.

The algorithm converges when there is no further change in
the assignment of instances to clusters. The idea behind K-
means clustering is very natural. It just puts every new data
point you ask it to classify into the group that it is closest
to.



Algorithm 1: K-means algorithm

Input: Set of vectors z,, € RM n = {1,2,...,
initial centroids w1, wo, ...., wx € RM,
Output: The set of K clusters Cy, |Cy]| is the
number of vectors within the cluster k.
repeat
Assignment step (clustering): Assign each data to
the cluster Cy~, k* is computed by:

k" =

N},

argmin ||z, — wy||?

ke{1,2,...,K}

Update step: For all £ = {1,2, ...,
centroid wy, of each cluster C by:

K}, update the

1
W = 75 kT

until a stopping condition is satisfied.

B. Collaborative K-means

The aim of collaborative clustering is to make different
clustering methods collaborate, in order to reach an im-
provement on each partitioning of some dataset. One of
the first collaborative clustering algorithm was introduced in
2002 by Pedrycz [11], [12] under the name Collaborative
Fuzzy Clustering” (CoFC). This method was designed for
the specific case of distributed data where the information
cannot be shared between the different sites. This method
was based on a modified version of the Fuzzy C-Means
algorithm [13]. In collaborative clustering [4], the group of
algorithms solve together learning problems, affecting an
individual task to each learner. Interactions are recurrent
between each algorithms, responsibility is collective, the
action of each algorithm is geared to the performance of
the group and vice versa.

The hope is that by collaborating several clustering solu-
tions, each one with its own bias and imperfections, we will
achieve a better overall solution. There are three main types
of collaboration: horizontal, vertical and hybrid collaboration
[4], [6]. Horizontal collaborative clustering: all datasets de-
scribe the same observations, so all the collaborative datasets
have the same number of observations but a different number
of variables. Vertical collaborative clustering: all datasets
have the same variables. Hybrid collaborative clustering:
when we use the two approaches vertical and horizontal
collaborative clustering at the same time.

As K-means is not stable, so in our approach we generate
L instances of K-means and we make a collaboration
between these different instances in the context of quantum
learning.

Suppose that we have L instances of K-means algorithm.
The general collaborative clustering scheme consists of two
phases:

- Phase 1: Generating a local K -means algorithm L times
on the data set X. The number of clusters would be the
same for all data sets. K-means identifies K cluster

centers for each data set. The objective function to
minimize on the first phase is:
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where [ refers to the data set where the local cluster
analysis is performed [ =1,2,..., L.

- Phase 2: After the local phase where each instance gets
an initial set of cluster centroids wg), [=1,2,...,L.In
the second phase, we perform a collaboration between
the solutions of each instance algorithm. The goal is
that after the collaboration, if an observation of the
X@_th data set is projected onto the I’-th centroid of
the [-th instance algorithm, then the same observation of
the X (")-th data set is projected on the same I’ centroid.
The collaborative function to minimize is:
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where ;s is the weight of the pairwise collaborative
C® term between the instances [ and I, and it’s a
non-negative coefficient that represents the intensity of
collaboration whose value is provided by the user.

Therefore, the global objective function to minimize is given
in the following form:

L
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The objective function R¢,;; consists of two terms. The
first term represents the sum of objective functions used
by L instances of K-means clustering. The second term
reflects the impact of the clustering structures found in other
instances. To obtain the update rule for the prototypes let us
consider:
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In the calculations of the prototypes, the necessary condition
for the minimum of the objective function is in the form:
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Recall that, by definition we have:
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By using (6) and by differentiation with respect to wffl)k we

get:
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Therefore, the straightforward computation gives the follow-
ing update rule for centroids:
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where k=1,... K.
Collaborative K-means clustering algorithm is presented
in Algorithm 2.

Algorithm 2: Collaborative Clustering algorithm

Phase 1: Local phase
foreach X | | =11t0 L do
Minimize the objective function of K -means:
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end
Phase 2: Collaboration phase
foreach X() | 1 =110 L do

Minimize the objective function of collaborative

clustering:
l
(492 12 — w2
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Update the centroids by using Equation (8).
end

1I1. QUANTUM MACHINE LEARNING
A. Quantum K-means

In this section, we show the different steps of () K-means:
first of all, we transform the data to quantum states. Then,
we compute the distance between each state and centroids.
Indeed, the estimation of the distance between states in the
context of quantum learning is totally different from the
classical learning.

While in the classical version the distance computation
involve coordinates, in quantum learning we need to define
the distance with respect to the probabilistic nature of
qubits. In quantum learning notions as phase differences
or amplitudes of different probabilities are easy to measure
and quantify, unfortunately the estimation of the distance
between two states can not be directly defined because of
its instability.

More precisely, let’s consider that w and z are two
position vectors corresponding to some centroid cluster in
the available data and to some new data point for which
we want to decide the cluster assignment, respectively. In
the quantum context, we associate to those two vectors two
quantum states denoted by |¢) and |¢), we will therefore
estimate the so-called distance between the states |¢) and
|t)). As already mentioned this can not be done directly.

In a nutshell, our strategy detailed below, consist to
associate the inner product of x and w to the probability
that some ancillary qubit is measured on the state 0.

Then we starts by considering an ancillary qubit |0) and
the two quantum states |¢) and |¢)). In these two quantum
states are stored the normalized position vector x and w.
Since we are in the quantum context the distance between
the state |¢) and the state |¢)) entangled with the ancillary
qubit |0) will give us the distance between x and w.

To this end, we apply a Hadamard gate to the ancillary
qubit |0), to define the superposition. After that, we use
the entanglement between the states |¢) and [¢)) and the
concerning ancillary qubit, and then we use a swap gate
controlled on the ancillary qubit between the quantum state
|¢) and |¢)).

After that, we apply another Hadamard gate to the an-
cillary qubit, and finally we measure the ancillary qubit. In
this way we recover the inner product of x and w as the
ancillary probability, see Equation (9) below.

Once, we have computed the distance between each state
and centroids using swap test circuit, we assign each state
to the closest cluster centroid using Grover’s algorithm [5].
Finally, we update the centroids of each cluster. We detail
the described strategy in the next paragraphs.

1) Data preparation and states construction:

Normally, there are several methods to prepare the data
and construct the states. According to [2] the method of
Wiebe, Kapoor and Svore [17] gives good results in terms
of clustering and also stability.

In what follows, we use this method for the preparation
and the construction of the states |¢)) and |¢) for the local
phase and the states |y} and |§()) for the collaborative
phase.

Given N = 2" dimensional complex vectors z and
w with components z; = |z;le”* and w; = |w;|e”"
respectively. Assume that {|z;|,o;} and {|w;|,B3;} are
stored as floating point numbers in quantum random access
memory.

Wiebe, Kapoor and Svore [17] suggested a representation
of the states that aims to write the parameters into amplitudes
of the quantum states.



With the definitions of z and w, we define the quantum
states:
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where j = {1,...,n}, and 7,4, is an upper bound on
the maximum value of any feature in the dataset. The input
vectors are d-sparse, i.e., contain no more than d non-zero
entries.

The idea behind this algorithm is to adjoin an ancillary
qubit to the states creating an entangled state [¢)). The
bigger difference between the states |x,,) and |wy), the more
entangled the resulting state is, and therefore we can use this
entanglement to estimate the distance between vectors [3] .

2) Fidelity as a similarity measure of quantum states:
Swap test circuit allows to compare two quantum states.
Thus, we apply this circuit to compute the distance between
quantum states and cluster centroids.

Similarity measure between two quantum states |¢)) and
|¢) could be done using the fidelity | (|¢) |, see [1]. This
fidelity can be obtained through the quantum swap test
circuit described as follows:
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Fig. 1. Swap test circuit

The swap test circuit is composed of two Hadamard gate
and a Control-Swap gate, the control qubit is on the state:

0) +11)
V2
After applying the controlled swap test, we get:
10) [¥) [9) + (1) |6) [4)
V2

By applying the second Hadamard gate, we obtain:

+) =
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2
While measuring the ancillary qubit, we get:
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After measurement, we have P(|0)) = 1 + 1| (y|¢) 2. A
probability of 1/2 shows that the two quantum states |v)
and |¢) are orthogonal, while a probability of 1 indicates
that they have maximum overlap.

Using the swap test in our case, the distance between the
states and cluster centroid is evaluated by:

dg(|7) , [w)) = d*ry,0,(2P(|0) — 1) ©

3) Cluster assignment:
After computing the distance between each training state
and each cluster centroid. We assign each state |x,) to
the closest centroid |wy) by using Grover’s algorithm [5].
More precisely, we should find the solution of the following
minimization problem:

argm1nD(|:c> |w)) fargmlnz Z d2 (|zn) , |Jwg))
€ k=ljanecs

(10)
While the best classical algorithms for a search over
unordered data requires O(N) time, Grover’s algorithm
performs the search on a quantum computer in only O(\/N )
operations, which means a quadratic speed-up over its clas-
sical version. This speed is done thanks to the superposition
of states, in other words, the search is done globally, which

means a significant improvement in optimization routines.
Grover’s algorithm [5] performs a search over an un-
ordered set of 2V items to find the unique element that
satisfies some conditions. Its goal is to look in the function
inputs to check if the function returns true for that input. This
function can be represented as a quantum oracle and could
be constructed from a large number of combined quantum

gates.

4) Update the centroid:
Let X = (z1,29,...,0n) € RVXM be the data matrix,
and G € RN *K be the binary matrix. The classical K-
means diate rule for the centroids is given by wy =
ICH Zn 1 GnkTrn. As the columns of X T are the vectors
x,, , this can be rewritten as wy = GTX So, the update of
the centroid of each cluster k is given by:

=|GEX)

|wi)
where

1 ifz, €C,
|Gr) =

and g, =

\/|07k Zgnk ‘n

0 otherwise.

We repeat the steps above until convergence is reached,
which means until the position of cluster centroid doesn’t
change.

The algorithm of () K-means [2] is the following:



Algorithm 3: Quantum K-means algorithm
Input: |X) = {|z,) e CM ,n=1,..,N}, K
number of clusters C}, initial centroids of the
clusters: |wy) , |wa) ..., |Wk).
Output: K clusters Cj.
repeat
Assignment step (clustering): Each data is assigned
to the cluster with the nearest center using Grover’s
search:

Che +— {|zn) :
VE,1<k<K)

Update step: For all k = {1,2,..., K}, update the
centroid |wy) of each cluster Cy, by:

wi) +— |G X)

until Convergence is reached

B. Quantum Collaborative K-means

In this section, we study the collaboration between several
clustering results, in particular the collaboration between
several models of quantum K-means.

The general quantum collaborative clustering scheme con-
sists of two phases:

Phase 1: Generating | = 1,2,...,L clusters without
collaboration, using a local QK -means algorithm on
the dataset as we explained previously. @ K-means
minimizes the following objective function Rg).

RY = @1 (GO (P10 D) 2 (D)
where
|GQ \Ck Z Ik M)
and
1 ifx, € Cy
gik =

0 otherwise.

Phase 2: In the second phase, we perform a quantum
collaboration between different clusters. In collabora-
tive QK -means algorithm, when a data instance is
presented from the clustering [, the optimization is done
to minimize the distance between that instance and the
centroids of each local (QK-means 1terat10n U # 1.
Therefore the pairwise collaborative CQ term between
the QK -means clustering [ and [’ is:
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Where |v()) and |§(")) are the two states that are associ-
ated to the vectors w® and w(®") The preparation of the data
and the construction of the states [y()) and [§()) follows
the same steps as explained previously for the states |1) and
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Where ¢ = {1,...,k}, and r/,,. is an upper bound on
the maximum value of any feature in the dataset. The input
vectors are d’-sparse.

For simplification, let’s assume in what follows that Z =
d’rd and Z' = d’’r'* . So, the objective function to

"max T"maa-
minimize is:
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The objective function presented in Equation (13) is
composed of two terms, the first one corresponds to the local
phase which is the sum of L instances of (QK-means and
the second one corresponds to the collaborative phase.

The idea of collaboration is to make the algorithms share
their results with the goal of getting a better clustering re-
sults, and this can be done by adding a collaborative term to
constraint the similarity between clustering elements. Where
B is a non-negative matrix coefficient that represents the
intensity of collaboration whose value is provided by the
user.

Finally, the computation of the gradient of Rg)cou gives
the following update rule of the centroid [15]:
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Quantum collaborative K-means clustering is presented
in Algorithm 4.



Algorithm 4: Quantum Collaborative Clustering al-
gorithm

Phase 1: Local phase

foreach X , 1 =1 to L do
Minimize the objective function of ) K-means:

RY = Z|(G)T) | (VD) 2

end
Phase 2: Collaboration phase

foreach X , 1 =1 to L do
Minimize the objective function of collaborative

clustering:

RO = Z1G)T) (6P p®) 2

L
1 2\ '
+2 Y s (G = G)2) ) 101 2
=1,
V£l
Update the centroids using Equation (14).

end

1V. EMPIRICAL EVALUATIONS
A. Quantum Davies Bouldin index

As a validation criteria, we use the Quantum Davies-
Bouldin (QDB) index [2]. It can be calculated as follows:

W) + O (Wi )
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And K is the number of clusters, ¢,, is the average distance
of all elements from the cluster C}, to their cluster center wy,,
0(wg, wy) is the distance between clusters centers wy, and
wgs. This index well evaluates the quality of unsupervised
clustering because it’s based on the ratio of the sum of
within-clusters scatter to between-clusters separation. The
main objective is to evaluate the quality of the clustering.
The lower the value of QD B, the better the clustering is.

B. Datasets

o Iris - Iris data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant.

o Wine - Wine is a dataset that is related to a chemical
analysis of wines grown in the same region in Italy but
derived from different cultivars.

o Wisconsin Diagnostic Breast Cancer (WDBC) - This
data has 569 instances with 32 variables (ID, diagnosis,
30 real-valued input variables). Each data observation
is labeled as benign (357) or malignant (212).

C. Experimental results of the collaborative approach on
different datasets

We used three different datasets to compare the quantum
Davies-Bouldin (QDB) index for quantum K -means before
and after collaboration. These results are represented in
Table 1. For example in the Iris dataset, we can notice
that QDB of the collaboration shows a decreasing behaviour
compared to QK -meansy which means that the quality of
clustering increases. However, if we compare the collabora-
tion with () K-means;, we see that QDB increases which is
normal because the collaboration isn’t all the time beneficial
for both collaborators it could be good for one as in our case
@ K-meansy and doesn’t improve the quality of the other
collaborator () K -means.

Dataset QK-means; | QK-meansy | QK-means.q;
Iris [0.35,0.57] 0.63,1.36 0.47,0.84
wine 0.49,0.56 0.43,0.60 0.47,0.59
Breast Cancer 0.48,0.77 0.53,0.97 0.52,0.66
TABLE I

QK-MEANS & QK-MEANS.,;; USING QDB INDEX

Figure 2 and 3 represent the projection of iris dataset using
the principal component analysis. These figures shows the
classical collaborative K-means and the quantum collabo-
rative K -means respectively. We can notice that the algo-
rithm of collaborative () K -means has identified the different
clusters which are different from each other. Therefore, the
quantum collaborative K -means gives a good classification
just like it’s classical version, the main difference resides in
that with a quantum version the clustering can be done in a
time faster than the classical version.
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D. Computational time complexity

Let us consider the K-means problem of assigning N
vectors to K clusters such that the average distance from
each cluster centroid to all points of the cluster is minimized.

After randomly choosing the initial centroids, the standard
method to solve this minimization problem suppose two
different steps (i) assign each vector to the closest centroid
and (ii) update all the centroids. This strategy is repeated
until the assignment become stationary. The euclidian dis-
tance to the centroids in some /N-dimensional is obtained
in O(N). Therefore each iteration of the classical algorithm
takes time O(K x M x N?). The factor M arises since
each vector is tested eventually for some reassignment. This
complexity analysis is valid for classical K-means. In the
case of collaboration of L instances of K-means algorithm
the complexity is therefore O(K x M x L x N?).

Let us now analyze the quantum version of the K-means
algorithm. In our strategy the assignment step in quantum
version is based on the application of several quantum gates.
Instead to compute the euclidean distance based on the
coordinates list of two different points in R”, in quantum
version we directly compare the two quantum states. Also
finding the problem of the closest centroid is optimized since
is based on Grover’s algorithm [5].

The cluster assignment in the quantum context is no more
a list of the different cluster assignments as in the classi-
cal K-means problem. The assignment is a quantum state
which contains the different clusters labels correlated with
the corresponding cluster assignments by using a quantum
superposition.

Therefore the unsupervised quantum K-means has a
complexity of order O(K x log(M x N)). And for the
collaborative version of the quantum K-means we get at
most O(K x L x log(M x N)).

Compared to the classical version of collaborative K-
means, we notice that we have an exponential speed up.
Indeed, classical machine learning algorithms take time
polynomial in manipulating and classifying large numbers
of vectors in high dimensional spaces. On the contrary of
quantum computers that can manipulate high dimensional
vectors in large tensor product spaces in logarithmic time.

collaborative K -means collaborative @ K-means
Time com-
putational O(K x M x Lx N2) | O(K x L xlog(M x N))
complexity

TABLE 1T
K-MEANS COLLABORATIVE & QQ K-MEANS COLLABORATIVE

V. CONCLUSION

In the present work, our focus was on unsupervised
methods for pattern clustering tasks, we started by presenting
the classical K -means and collaborative K -means algorithm.
Afterwards, we explained quantum K-means and our pro-
posed approach which is quantum collaborative K -means.
This approach is based on collaborating several clusters
to allow the interaction between clusters. Therefore, the

underlying structures and the regularities from the datasets
could be detected.

The success of the quantum algorithms encourage us to
propose a quantum version of the collaborative K-means
algorithm that can be done in a logarithmic time in the
contrary of the classical version that takes a polynomial
time especially in large datasets. Our proposed approach is
illustrated on various databases and the experimental results
have shown very promising performance.
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