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Abstract—Triplet networks are deep metric learners which
learn to optimise a feature space using similarity knowledge
gained from training on triplets of data simultaneously. The ar-
chitecture relies on the triplet loss function to optimise its weights
based upon the distance between triplet members. Composition of
input triplets therefore directly impacts the quality of the learned
representations, meaning that a training scheme which optimises
their formation is crucial. However, an exhaustive search for the
best triplets is prohibitive unless the search for triplets is confined
to smaller training regions or batches. Accordingly, current
triplet mining approaches use informed selection applied only to
a random minibatch, but the resulting view fails to exploit areas
of complexity in the feature space. In this work, we introduce
a locality-sensitive batching strategy, which uses the locality of
examples to create batches as an alternative to the commonly
adopted randomly minibatching. Our results demonstrate this
method to offer better performance on three image and two text
classification tasks with statistical significance. Importantly most
of these gains are incrementally realised with as little as 25% of
the training iterations.

Index Terms—Deep Metric Learning, Triplet Network, Ap-
proximate Nearest Neighbour, Locality Sensitive Hashing, Batch
Selection, Self-Paced Learning

I. INTRODUCTION

Deep metric learners are a branch of neural network archi-
tectures which use similarity knowledge between input exam-
ples to improve representation [1] and create a latent space
optimised for similarity-based return [2], [3]. This similarity
knowledge is extracted by training on multiple input examples
simultaneously. For example, the Triplet Network (TN) is a
deep metric learner which learns from three examples concur-
rently (an anchor, positive and negative example respectively),
giving the network its namesake [4]. Throughout training,
the network learns to minimise the distance between an
anchor and its associated positive example while maximising
the distance between an anchor and its associated negative
example [4]. Their capability on this task has translated into
impressive results on applications such as face recognition/re-
identification [5]–[7], image-based search [8] and human ac-
tivity recognition [9]. Though convergence of these networks
can be achieved through creating random triplets, work has
shown that a training strategy which optimises triplet creation
through active learning can improve training efficiency [5],
[8].

Often, these training strategies make use of random mini-
batches extracted from the training set to offset the complexity
of utilising the full set. For example, in [5], the authors ’mine’
optimal triplets for network training from within this minibatch
by identifying what they describe as semi-hard combinations
- i.e. triplets which produce sufficiently large loss to im-
prove weight formation without causing oscillation. Though
mining triplets from minibatches offers reduced complexity
to methods which target the full training set, it has a key
disadvantage. While random minibatches allow an overview
of the distribution of the training set, they offer no additional
measures to target complex areas such as class boundaries.
This is particularly important for triplet networks, because (as
with other deep metric learners) their loss is distance-based.
We suggest convergence can be achieved faster by considering
the locality of examples to inform the creation of minibatches.

In this work we highlight the importance of optimising
batch selection before triplet mining approaches are applied.
To this end, we propose a novel algorithm, Locality-Sensitive
Batching (LSB), which uses locality sensitive methods to focus
on example clusters as a substitute for random minibatches
as a starting point of further triplet mining. This method can
provide the necessary focus on complex class boundary areas
to improve training efficiency. In addition, inspired by self-
paced learning [10], LSB is able to leverage up to date locality
information to inform the creation of training batches. Though
locality-sensitive methods can be more expensive than random
minibatching, this can be offset by adopting Approximate-
Nearest Neighbour (a-NN) methods. In this work we suggest
Locality Sensitive Hashing (LSH).

Our findings demonstrate that different batching strategies
offer different insights into the space. Training on the full
space using a brute force method allows a triplet network
to understand the entire distribution of examples, but using
the extent of available knowledge quickly becomes expensive.
Minibatched strategies provide a randomly sampled overview
of the space, but omit potentially useful information about
complex areas. On the other hand locality-sensitive batches
offer comprehensive focus on a region in the space. However
one needs to be aware that focusing in this manner can be
detrimental unless an understanding of the full space is also
maintained (see Figure 1). Accordingly in this paper we make
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Fig. 1: Visualisation of the different insights offered into the feature space by different training schemes. Left (Minibatch) is created by
randomly sampling the original distribution. Right (Locality-Sensitive Minibatch) is created by applying LSB to the original distribution.

the following contributions:

1) We demonstrate that batching strategies are an important
design consideration for triplet networks.

2) We present an incremental locality-sensitive batching
strategy which allows the batching to evolve alongside
example representations over the course of training.

3) Lastly, we present a framework to perform a locality-
sensitive batching strategy.

This paper is divided into the following sections: in Sec-
tion II we discuss related work. In Section III we review
the triplet network architecture and identify several different
training strategies for our evaluation. In Section IV we present
our method for creating locality-sensitive triplets. In Section V
we layout the details of our evaluation while in Section VI
we discuss the results of our experiments on several datasets.
Finally in Section VII we provide some conclusions.

II. RELATED WORK

Other research has shown that sampling is incredibly im-
portant in the field of deep metric learning [11]. As the
amount of triplet candidates increase in a near cubic manner
with the number of examples, it is not feasible to train on
all possible combinations. Furthermore, in many situations
not every triplet is valuable. Therefore there is much work
targeting the optimisation of training triplet networks through
sample selection via triplet mining [5], [6], [8].

In [8], the authors use a deep similarity ranking to guide
triplet formation for use in learning image similarity. Using
a calculated image relevance, they suggest that a relevant
but non-matching image should be selected as the negative
example and a non-relevant but matching example as the
positive example for an anchor image. The authors of [5]
expanded upon this idea and removed the concept of rely-
ing on an external ranking to decide relevant triplets. They
selected pairs by calculating their loss value to preemptively
identify their input to the network. They observed that triplets
which produced the maximum amount of loss (the ’hardest’
triplets) actually caused training to destabilise and network
convergence took longer. Instead, focusing on triplets where
the distance between the anchor and the negative was greater

than the anchor and the positive, but less than the margin (the
’semi-hard’ triplets) were more effective for training.

Both of the highlighted approaches operated on a subset of
the training set, which was selected randomly from the full
distribution, to make computations cheaper. This is consistent
with other examples in the literature [6], [7], where authors
apply an active learning approach after a subset of the training
set has been extracted. We argue that triplet selection actually
begins with the selection of that subset, rather than the mining
within. Although mining is an important concern, the best
triplet cannot be selected if one of the components is not within
that initial subset. Identifying this subset is an important aspect
of training a triplet network in its own right.

To answer these disadvantages, we are inspired by tech-
niques in Case-Based Reasoning (CBR) to create a locality-
based batching method which is not reliant on class infor-
mation or previously trained models and iteratively updates
in response to latest network output. Specifically we highlight
work which leverages similarity knowledge to cluster the case-
base and reduce the complexity of case retrieval. Examples
include cluster-based retrieval from large-scale case-bases of
image [12], text [13] and simulation data [14]. Research in this
field has established that the coverage knowledge generated by
clustering approaches can be exploited for sample selection.
For example, in [15] the authors use clustering methods
to identify the most important cases for labeling from an
unlabeled set. We are motivated by these findings to develop
a batch selection technique. However clustering can be an
expensive process, thus we explore a method to approximate
it using an approximate-Nearest Neighbour algorithm (a-NN).

A-NNs are a set of techniques to inexpensively perform
neighbourhood computations on large sets of examples. They
offer a means to extract similar examples from a dataset at a
fraction of the cost of brute-force nearest neighbour methods,
with the drawback of usually being less accurate [16], [17].
In particular, in this work we suggest the use of Locality-
Sensitive Hashing (LSH). LSH is a data independent a-NN
method to economically estimate nearest neighbour compu-
tations by randomly dividing the feature space into distinct
areas known as ’buckets’, which preserve locality knowledge
from the original space [18]. When a query is presented,



it is indexed into a bucket. Similarity metrics are there-
fore performed only between a query and the contents of
the relevant bucket to establish similarity knowledge in that
neighbourhood. Though indexing examples offers a means to
decrease the complexity of pairwise similarity computations
such that we could consider using informed selection on the
full space, we suggest that this is unnecessary. Instead, we
can use the buckets created in the initial stages of LSH as
a minibatch for input to the network. More details on this
process is available in Section IV.

There has been some previous work in using clustering
techniques to inform network training by altering the triplet
loss function [19], [20]. However, these methods typically
require a priori knowledge [19], or offer reduced flexibility
to incorporate other training methods (such as hard sample
mining) because the clustering mechanism is tightly coupled to
loss calculation [20]. It would be desirable to have a solution
with no previous knowledge requirements, and which could
function as part of an ecosystem of training methods.

We are aware of only limited work which directly targets
minibatching of instances before input to the network [21]. In
this work, the authors process images of faces through a clas-
sifier to improve representations, before passing those learned
representations to a k-means algorithm to perform clustering
for initial batch selection. However, this approach presents
several disadvantages. Most importantly, it is a learned clus-
tering method with corresponding overhead and dependence
upon access to labelled data. This is problematic, as triplet
networks perform best in situations where labelled data is
scarce or totally unavailable. The process is also not iterative
as clustering is performed on the output of the classification
model at the start of training and remains static. Ideally,
locality-based minibatching should exploit the latest network
output to ensure its batches are relevant to the network at
that point in training. In response and inspired by research in
curriculum learning [22], in particular self-paced learning [10],
the proposed method in this paper uses latest network output to
inform its clustering. The result is that the batches of input data
created by LSB are based upon an up to date representation
of the latent space, and as such faithfully represent current
’difficult’ potential triplets for network input.

III. TRIPLET NETWORKS

Triplet networks are deep metric learners which learn from
three input examples simultaneously. These inputs are the
anchor example (xa), a positive example (x+) and a negative
example (x−), which together are described as a triplet.
The anchor example acts as a point of comparison, meaning
that the positive and negative examples are dictated by their
relationship to the anchor (i.e. matching and not matching
respectively). The goal of training is to create a space op-
timised for similarity-based return by minimising the distance
between an anchor and its associated positive example while
maximising the distance between an anchor and its associated
negative example.

A triplet network is comprised of three identical ’sub-
networks’ (see Figure 2). Typically a deep learning archi-
tecture, which can be as shallow or as deep as necessary.
Each sub-network creates an embedding for one input (i.e. an
individual member of the triplet) before the error is calculated
using triplet loss.

A. Training a Triplet Network

Let us introduce the notation used in this paper. Let X be a
set of labeled examples, such that example, x ∈ X and y(x) is
a function that returns the class label, y, of x. In the context of
this paper, we will define matching examples as those which
have the same class (y(x+) = y(xa)) while non-matching
examples will have differing classes (y(x−) 6= y(xa)). The
embedding function θ is a parametric model of any one of the
identical sub-networks creating the learned representation of
a given x. We can then represent triplet loss L as so:

L = max(0, (DW (θ(xa), θ(x+))−DW (θ(xa), θ(x−)) + α))
(1)

Where DW is a function to calculate the distance between
two embeddings and α is the margin which must exist between
an anchor and negative example. This formula will generate a
loss value in situations where the anchor example is closer to
the negative example than it is to the positive example. The
network is therefore penalised until similar cases are placed
closer together in the feature space. The max() function
ensures that only loss values greater than zero impact network
weights.

However, there are some issues with this. As the network
approaches convergence, random formation of triplets has an
increased likelihood to provide triplets which will generate
a loss of zero. This is because the feature space will be
approaching optima. The result is the network will train for
increasing periods of time with decreasing improvements to its
weights; hence the importance of sample selection and training
optimisation. Simply put, we want to form triplets which will
maximise loss for the improvement of the network and allow
it to converge towards optima more quickly.

B. Creating Triplets

Let us first identify a baseline algorithm for randomly
creating triplets from the full training set, where T () is a
function to create a triplet.

In Algorithm 1, is matching() is a function which sepa-
rates X (or any subset) into two sets, Pos and N eg, based
on each member’s relationship to a given anchor example xa.
Members of Pos have a matching class label with xa and N eg
have a non-matching class label. Note that this function could
be adapted to be non-class reliant. Algorithm 1 is relatively
inexpensive to perform, but as mentioned above, there is no
guarantee that the created triplets will result in any loss for
the network. This is a problem which gets worse over the
course of training as the optimal representation of the space
is approached.















ௐܦ

ௐܦ







Fig. 2: Batched triplet network training on the CIFAR10 dataset. The representations learned by each sub-network for each input image are
improved over time by using knowledge around the relationship between inputs during training.

Algorithm 1: Create random triplets from full training
set.

1 Random: XRND(n)
2 for xa in X do
3 Pos, N eg = is matching(xa,X )
4 x+ := rnd selection(Pos)
5 x− := rnd selection(N eg)
6 Ti := T (xa, x+, x−)
7 T = T ∪ Ti
8 end
9 return T

To counter these issues, there must be some concept of
identifying triplets which are meaningful for training - an
informed approach. However, checking every example is too
expensive. Hence the importance of extracting minibatches. By
examining minibatches of the data at a time, the complexity of
an informed approach is considerably reduced. The question
then becomes how best to identify subsets of the data which
lend themselves to minibatches. In the literature [5], [7], [8],
authors suggest randomly sampling to get an overview of the
space. We suggest that the batching method is an important
design consideration, and by selecting the appropriate method
significant improvements can be made.

C. Creating Triplets from a Random Minibatch (MR)

Hereon, we use the term ’minibatch’ to refer to any subset of
X . Minibatches which are representative of the original space
can be easily created using Algorithm 2. This can be trivially
adapted to ensure stratification in cases of class imbalance.

In Algorithm 2 m is a minibatch of examples from X , such
that m ⊂ X . M is then the complete set of minibatches and
the functionM() creates a set of minibatches from within X .

Though training using minibatches of examples in this way
reduces the potential number of triplets (thereby reducing
pairwise similarity computations and complexity), it does not
provide any focus on complex areas of the feature space. This
is because the random selection of the minibatch allows it to

Algorithm 2: Develop random triplets from a mini-
batch.

1 Random Minibatch: XMR(n)
2 M =M(X )
3 for mi . . .M do
4 for xa in mi do
5 Pos, N eg = is matching(xa,mi)
6 x+ := rnd selection(Pos)
7 x− := rnd selection(N eg)
8 Ti := T (xa, x+, x−)
9 T = T ∪ Ti

10 end
11 end
12 return T

be representative of the data distribution as a whole, without
allowing any room for specific localised knowledge of the
feature space. Clustering methods offer potential to fill this
gap, but are difficult to justify due to their high initial resource
requirements. In the next section, we will describe how we
adopted methods from locality-sensitive hashing to inform the
creation of clusters.

IV. LOCALITY-SENSITIVE BATCHING (LSB)

It is clear that the greater the loss generated by a given input,
the greater its contribution to the network weights (hence
the intuition behind [5]). Because triplet networks utilise a
distance-based loss, the contribution of a given triplet is
decided by the distance between its constituent members. With
that in mind, the most appropriate triplet for a given anchor
is likely to exist within the same locality. In this section,
we detail how we adapt Locality-Sensitive Hashing (LSH) to
develop locality-sensitive batches for network training.

A. Locality-Sensitive Hashing (LSH)

LSH defines a family of algorithms which use locality-
sensitive hashing functions to cluster information These hash-
ing functions are described as locality-sensitive because there



is high probability that similar instances share the same
function, but low probability that dissimilar instances share
that function:

P
(
h(xi) == h(xj)

){High, if DW (xi, xj) is Low
Low, if DW (xi, xj) is High

(2)

In Equation 2, P () is a probability function, h() is a hashing
function and xi and xj are arbitrary examples from within a
dataset X . By hashing the space in this manner the complexity
of identifying an example’s locality becomes sub-linear.

To achieve this in its simplest form, LSH uses random
projections to hash the feature space. This method divides
the feature space into separate ’buckets’ by partitioning the
space using a configurable number of random divisions called
’projections’. Every example in the dataset is indexed into
a bucket and empty buckets are discarded. To formalise this
process, let us consider a random projection, v, with the same
dimensionality as x. Since there is more than one projection
into the space, v belongs to an ordered set V . To index each
example in a dataset, x ∈ X , we identify the relevant bucket
by calculating a hash key, H , formed from a series of binary
values, hi, which are indicative of that example’s relationship
to each projection. Effectively, this process identifies ’which
side of the projection’ the example inhabits within the space
and are calculated by placing a threshold on a dot product
comparison:

hi =

{
0, if x · vi < 0

1, if x · vi >= 0
∀vi ∈ V (3)

H is then the ordered concatenation of each hi it contains,
allowing it to act as an identifier for a specific bucket. As
the indexing system is based upon a similarity comparison,
the buckets preserve locality information from the original
distribution of the space and there is a high probability that
similar examples are allocated to the same bucket (supporting
the declaration in Equation 2). These buckets are therefore
well-placed to quickly identify the locality of an instance,
something we will exploit in the following subsection.

B. Locality-Sensitive Batching (LSB)

In the literature, LSH is often used to reduce complexity
for similarity comparisons [16]. However, each bucket can
also effectively be considered as a cluster. We have found
that the these clusters offer a good alternative form of batch
selection to random minibatching with only trivial adaptation
(see Lines 1-11 of Algorithm 3). Furthermore, we ensure that
the information from clustering is up to date by basing our
locality informed clusters on the latest network output, θ.
The intuition is that this will allow the network to maintain
focus on complex areas which are most relevant to its current
parameters. Hence, on the first epoch of the network the input
data is split into batches by using LSH on the original data
representation (i.e. LSH(X )), while in all subsequent epochs
input data is batched by using LSH on the network output

(i.e. LSH(θ(X ))). We make this distinction as the network
is initialised with random weights and so performing LSH on
its output before any training has occurred would not produce
meaningful batches.

In Algorithm 3, LSH is a function to extract a set of
locality-sensitive buckets from X and b is an individual bucket
from within B, such that b ∈ B. Finally, pure() is a function
which returns True if the selected bucket contains only a single
class (or False otherwise) and R is an empty set which is
eventually populated with anchor cases which exist in pure
clusters or as the sole member of a cluster. Naturally, as the
network converges we expect the number of impure buckets
to decrease (see Figure 3).

Algorithm 3: Develop random triplets from a bucket.

1 Locality-Sensitive Batching: XLSB(n)
2 if epoch = 1 then
3 B = LSH(X )
4 else
5 B = LSH(θ(X ))
6 R = ∅
7 for bi . . .B do
8 if not pure(bi ) then
9 for xa in bi do

10 Pos, N eg = is matching(xa, bi)
11 x+ := rnd selection(Pos)
12 x− := rnd selection(N eg)
13 Ti := T (xa, x+, x−)
14 T = T ∪ Ti
15 end
16 else
17 R := R ∪ bi
18 end
19 for xa . . . R do
20 Pos, N eg = is matching(xa, R)
21 x+ := rnd selection(Pos)
22 x− := rnd selection(N eg)
23 Ti := T (xa, x+, x−)
24 T = T ∪ Ti
25 end
26 shuffle(T )
27 return T

As buckets are created using locality knowledge, feeding
triplets into the network can enforce sequential learning. This
in turn can be problematic, because the implicit curriculum
could be non-optimal. With that in mind, we need to randomise
the order of the triplets to allow an understanding of the overall
distribution of the space. We do this in two ways. Firstly, if
we fail to identify a cluster for a given example (or if the
cluster identified is ’pure’), we randomly combine it with other
examples where a cluster could not be identified to create a
triplet. Secondly, we input the triplets we have gained from
our buckets to the network in a random order (see Lines 16-24
of Algorithm 3).



Fig. 3: Distribution of examples in buckets throughout training. As training progresses the number of impure buckets decreases.

V. EVALUATION

In this section, we offer details of our evaluation of the
proposed method. The goal of our evaluation is to demonstrate
that different batching strategies can have a profound effect
on the quality of representations gained from DMLs. We do
not compare against triplet mining methods, as these are a
subsequent step to a batching strategy. We create a comparison
using our proposed method, locality-sensitive batching, and the
most popular strategy from literature, minibatched random:

1) Minibatched Random (MR): Triplets are randomly
generated from within a minibatch of the training set.
Minibatches are distinct and contain non-overlapping
examples. This algorithm will act as our baseline for
comparison.

2) LSB Random (LSB): Triplets are randomly generated
from within a local neighbourhood of each anchor case
in the training set. These neighbourhoods are distinct and
contain non-overlapping examples. Anchors which have
a ’pure’ neighbourhood are randomly combined to create
triplets.

In both instances, we ensure that every example in the training
set is utilised as an anchor only once per training epoch. This
means that there are as many triplets per training epoch as
there are examples in the training set.

We assess the quality of learned representations using a
similarity-based return task. To achieve this, we perform an
empirical comparison of the representations gained from each
training scheme using k-NN accuracy as a proxy for repre-
sentation goodness. Classification is performed using k-NN,
where k = 3 and similarity is measured using cosine similarity.
We perform a one-tail t-test to establish statistical significance
at a confidence level of 95% on classification accuracy from
network output. We also examine each algorithms’ capacity to
learn over time by comparing averaged accuracy on each test
set for increasing number of training epochs. This is important
because improvements that LSB offers are likely to be in the
form of training efficiency.

A. Network Architecture

All architectures used ReLU activations and the Adam
optimizer [23] and produced an output representation of the
size 128. For all other variables, including number of batches
for networks using MR and number of projections for net-
works using LSB, we implemented an empirical evaluation to

identify the best performing hyperparameters for each dataset
(see Table I). Note that since projections in LSH are random,
the number of buckets can vary between runs. This is because
there is potential to create empty buckets which are discarded.
Therefore, it is more suitable to maintain the number of
projections as constant. Batch sizes were set such that they
were a multiple of the number of labels contained in each
dataset (i.e in MNIST there are 10 classes, so the batch size
was a multiple of 10).

B. Datasets

Below are some of the details for each of the datasets used
to evaluate the methods presented in this paper. We have tested
this algorithm on three image (MNIST, CIFAR10 and STL-
10) and two text (IMDB, REUTERS) classification tasks. We
selected numerous datasets across different classification tasks
to display the overall versatility and utility of the proposed
batching method. In all situations, 5-fold cross-validation was
used to create distinct train and test sets. This was because
we were not aiming for state-of-the-art, but to empirically
demonstrate that different batching methods can impact net-
work performance to a statistically significant degree.

1) Image Classification Datasets: We have selected 3 pop-
ular image classification datasets from the literature. These
datasets were selected because of the triplet network’s utility
in image-based search and to demonstrate our algorithm as
applicable in this domain. We did not use data augmentation in
any case, as our goal was merely to compare the two batching
methods.

MNIST is a handwriting recognition dataset comprised of
70,000 greyscale images of handwritten single-digit numbers.
Images are 28 × 28 pixels and have one of ten classes (the
numbers zero to nine).

CIFAR10 [24] is an object recognition dataset comprised
of 60,000 colour images split evenly between 10 classes.
Each image is 32 × 32 pixels in size and features one of ten
distinct objects that are used to identify its class label (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship or truck).

STL-10 [25] is an object recognition dataset comprised of
13,000 labelled and 100,000 unlabelled images extracted from
ImageNet. We only utilise the labelled images in our experi-
ments, which are divided evenly between 10 classes (airplane,
bird, car, cat, deer, dog, horse, monkey, ship, truck). The
images are 96× 96 pixels in size which is substantially larger
than examples from CIFAR10 and making it a challenging



Dataset No. of Features Sub-Network (Layers) Kernel Epochs Minibatches Batch Size Projections

MNIST 784 MLP (3 Dense) - 10 1000 50 18
CIFAR10 32x32 CNN (4 Conv., 2 Dense) (3, 3) 100 1000 40 18
STL-10 96x96 CNN (4 Conv., 2 Dense) (3, 3) 100 250 40 6

IMDB 5000 MLP (3 Dense) - 20 1000 40 12
REUTERS 1000 MLP (2 Dense) - 10 90 138 5

TABLE I: Summary of relevant network hyperparameters

Classification Dataset Method
Accuracy throughout Training (%)
25% 50% 75% 100%

Image

MNIST
MR 95.98 96.66 96.95 96.99
LSB 95.81 96.93 97.19 97.40*

CIFAR10
MR 57.81 64.41 66.55 66.68
LSB 62.65* 66.68* 68.44* 69.02*

STL-10
MR 50.26 57.79 60.76 61.67
LSB 50.97 61.16* 61.51* 61.63

Text
IMDB

MR 85.86 87.39 87.90 88.04
LSB 87.75* 87.80 88.30* 88.33

REUTERS
MR 74.42 75.01 76.02 76.47
LSB 77.13* 78.03* 78.32* 78.68*

TABLE II: Summary of algorithm performance throughout training

benchmark to test the scalability of our proposed method, as
well as much closer to the size of commercial images (such
as the image of a product on its Amazon web page).

2) Text Classification Datasets: All text classification
datasets were preprocessed by removing stop-words and
stemming words to their root form. Term-frequency/inverse-
document-frequency (tf-idf) was used to generate a numerical
representation for input to our network, using the 5,000 most
common words in the case of IMDB and the 1,000 most
common words in the case of Reuters.

The Large Movie Review Dataset [26] is comprised of
50,000 labeled film reviews scraped from the Internet Movie
Database (IMDB). Polarized reviews have been extracted and
labeled as either ’positive’ (where a review score is greater
than 6) or ’negative’ (where a review score is lower than 4)
to create a binary sentiment analysis task. Though the dataset
also contains a large number of unlabeled reviews, we did
not use these. We selected the IMDB dataset as its boundary
is naturally complex due to the presence of both concept
complexity and subjective judgment.

The Reuters dataset is a document classification dataset
comprised of structured news wire articles. We used the
ModApte subset of the Reuters-21578 benchmark, which con-
tains 11,228 documents each given one of 46 labels. Reuters

was selected as it is particularly challenging for minibatch
approaches, given its inherent data imbalance. In this dataset
it is impossible for minibatches to be non-overlapping due to
the very few examples that are associated with some labels.
This issue does not apply to locality-sensitive approaches, as
no constraints are placed on their contents.

VI. RESULTS

The results for each dataset appear in Table II with bold font
used to indicate the highest achieved accuracy for a dataset
and asterisks indicating performance which is better than
the baseline with statistical significance at 95% confidence.
As can be observed, LSB outperforms the baseline on all
tested datasets with significance for at least some portion of
training. On 3 of the 5 tested datasets (MNIST, CIFAR10 and
Reuters), LSB achieves a statistically significant improvement
on accuracy at the end of training. On every tested dataset
LSB converges to optima faster, approximating the baseline
performance with only 50% of the required training or less.

On MNIST, though differences are less pronounced during
early training, our approach does converge to a statistically
significant higher accuracy. The advantages of LSB can be
seen on CIFAR10, where it outperforms MR from very early
in training, achieving performance improvements that are
statistically significant from 10% of training onwards.



Though it would seem from Table II that the baseline for
STL-10 converges to the same accuracy as LSB, we actually
converge to optima much earlier in training. By 50 epochs,
the accuracy achieved by LSB is already at 61.16%, which is
a 4% improvement over MR at the same number of epochs.

On the IMDB dataset, we observe that LSB has great bene-
fits very early in training, with less improvements as time goes
on. This is because LSB can focus on the complex boundary
cases that are difficult to classify. The similar performance
achieved is indicative of the difficulty to wholly separate the
positive and negative viewpoints in this task.

It is interesting to note the superior performance of LSB
on the Reuters dataset. MR struggles when faced with many
classes or imbalanced data. This is not a problem for LSB, as
the method is only concerned with a small neighbourhood of
the space. Thus we suggest these results seem indicative that
LSB is more suitable in problems with class imbalance.

VII. CONCLUSIONS

In conclusion, we have demonstrated a locality-sensitive
minibatching method, LSB, which utilises locality informa-
tion to inform selection of minibatches for training a triplet
network. The networks trained using LSB obtained better
accuracy than random minibatching methods on our evaluation
task, suggesting that locality-sensitive minibatches are a better
starting point for further active learning approaches. This is
indicative that the method by which to obtain a minibatch
for triplet mining is an important concern for the training of
triplet networks. The value that is added by LSB emphasises
the need for this as a design consideration when training a
triplet network.

In future work, we aim to further explore how clustering
methods can improve training of deep metric learners. In
particular, we will expand our investigation to explore the
correlation between cluster sizes and training speed. This
will offer a more thorough understanding of the impact that
locality information can have on training strategies for DMLs.
Furthermore, a drawback of the suggested approach is the
reliance on identifying an appropriate number of projections
to split the space. We hope to automate this in future.
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