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Abstract—In online advertising systems, having a good knowl-
edge of user behavior is crucial for click-through rate (CTR)
prediction. In recent years, many researchers turn to seek a
better way of user representation by modeling the behavior
sequences with recurrent neural network (RNN). However, re-
current layers implicitly adopt the assumption that elements
with different orders are fundamentally different, which is
inefficient in many practical scenarios with much uncertainty
and complicated hidden states. In this paper, we follow the
paradigm of Relation Network (RN), and propose a new model
called Similitude Attentive Relation Network (SARN). The user
behavior is modeled as a graph, where nodes correspond to the
visited items and edges correspond to the relations. To capture
the latent user interest better, the model concentrates on the
relations between items, rather than the translation on the time
series. More specifically, the model tries to learn the similarity
between items in a semantic space through a learnable dot-
product operation and blend both of the item representations and
relational information together as the final relations. We define
our user representation on an attentive pooling of the relations
directly. To verify the effectiveness of our method, extensive
experiments on two public datasets and one real-world online
advertising dataset are conducted. Experimental results show that
our methods achieve usually better performance than others.
Besides, we explore the properties of our model by controlled
experiments and show the learned relational knowledge by
visualizing the inner states of SARN.

Index Terms—recommender systems, online advertising, click-
through rate prediction, relation network

I. INTRODUCTION

Click-through rate (CTR) prediction is one of the most
important tasks in online advertising. Click-through rate is
the ratio of clicks on the displayed advertisements to the
total number of impressions. Many online advertising systems
take cost-per-click model as the payment model, which means
publishers make money only when an advertisement is clicked.
The revenue can be approximately estimated as the sum of
CTR multiplied by the benefit of each click across all the
advertisement impressions. Therefore, CTR prediction plays a
crucial role in online advertising.

In most online advertising systems, the advertisements are
tailored to the users [1]-[3]. Thus CTR prediction is a task that
learns the patterns of the user-item interactions. According to
practical lessons and recent research, one of the most impor-
tant features in CTR prediction is the historical information
over the timeline, which contains important clues about the
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Fig. 1: An example to illustrate the complexity and uncertainty
behind a user behavior sequence. This user is interested in
three kinds of items. However, these items are not grouped by
their categories exactly.

user’s preference and behavioral patterns [4]-[7]. To some
degree, a user can be represented as a sequence of items
that he/she has interacted with. Therefore, many researchers
apply RNN to CTR prediction in recent years [5], [8], [9].
Recurrent layers are born with a strong relational inductive
bias of time translation invariance, which means a different
order of the same input data makes a different result [10].
However, in many real-world cases, the user behaviors can be
generated from very complicated hidden states and uncertainty.
In other words, the user behavior sequence can be considered
as a mixture of several sub-sequences, the behavioral patterns
may be not so significant in the whole sequence. This may
result in inefficient generalization for recurrent layers. In fig.
1, we take user A26KXNNG6HIILOI in Amazon Electronics
dataset as an example. Since the sequence is mixed of camera
related items, laptop related items and MP3 related items, we
believe this user is interested in all these categories in the
same period, and to a large extent, this sequence is generated
by chance. Many different permutations of these items that
keep consistent order within each category should also express
approximately the same user representation. A way to deal
with this kind of challenge is to introduce relational structures.
Essentially, relational structures consider data as a graph, so
this kind of module is naturally insensitive to the original order
of data, and it may show better generalization ability in our
example. However, many current deep learning models still
lack explicit modules that reason the relations on the items.
Recently, relation network (RN) has drawn attention from
researchers. It is designed to capture the relational features
between entities (e.g., items), and has been proven to be
effective in variable fields, such as computer vision [11]-[14]



and deep reinforcement learning [15]. Better yet, this kind
of approaches does not rely on any prior knowledge of the
structured data.

Now that making use of relational structures has brought
significant success in many fields, we believe reasoning the
relations inside user behavior sequences is a considerable way
for improving CTR prediction. In this paper, we utilize a fully
connected graph to model the user behaviors. For simplicity,
only click behaviors are taken into consideration, so that user
behavior can be roughly defined as a list of visited items
by a user with the past time. First, the model obtains item
representations by employing an embedding layer like many
others do. These item representations correspond to the nodes
in the graph. Then our model executes representation learning
and relational reasoning on all the item pairs, which corre-
spond to the edges. To be specific, we design a more effective
and flexible relational module for reasoning the similarities
between items in semantic space. The output of the relational
module contains pairwise relational information between any
two items visited by the user. Our model structure is invariant
to the order, and we turn to introduce relative positional
information of each item to help our model converge. Thanks
to the structure of our model, we can softly encode these
information into the model by utilizing additional tasks and
adding their loss terms as regularization.

In one word, our model executes representation learning
and relational reasoning on a user behavior graph in an
explicit manner, which helps improving the performance and
interpretability of our model. The main contributions of our
work are as follows:

« We point out the importance of handling the complexity
and uncertainty behind the user behavior sequence and
further investigate the way to perform relational reasoning
to achieve better and more explainable CTR predictions.

o« We propose SARN, which models the relations inside
each user behavior sequence and distills similitude rela-
tions and in an explicit manner.

o We conduct comprehensive experiments on three datasets,
and our method shows better performance and inter-
pretability over many existing methods for CTR predic-
tion.

II. RELATED WORK
A. Feature Interaction Based Methods

In general, feature engineering has been crucial for many
prediction tasks. As for CTR prediction, feature interaction
based methods usually take user, target item and context
features as input and try to predict the possibility that the user
will click the target item. They usually map sparse features into
low dimensional dense vectors and perform feature interaction
operations, such as inner products, to extract sophisticated
low- and high-order mixed features [16]-[18]. These methods
indeed made a great progress in CTR prediction. However,
recent research shows that it’s hard for them to extract user’s
various interests or attribute-based collaborative signals, be-

cause their inductive biases essentially assume user-item pairs
to be independent samples [19].

B. Behavior Sequence Based Methods

Intuitively, there is a huge semantic distance between users
and items, which causes difficulty for deep learning models
in learning proper representations for both of them. Behavior
sequence based methods, rather than concentrating on the fea-
tures, turn to model the user’s historical behaviors. In this case,
user representations contain not only user profiles, but also a
list of items. By introducing items into user representations,
this kind of methods narrow the semantic gap between users
and items and achieved considerable results in recent years. [5]
introduces RNN to model the sequential behaviors in the task
of sponsored search. [20] proposes a modified RNN to learn
the dynamic representations of users and global sequential
behaviors, which facilitates next basket recommendation. [6]
highlights the importance of modeling user’s diverse interest
and propose Deep Interest Network (DIN), which utilize an
attention mechanism to extract user’s interest with regard to
the target item. [9] further investigates digging user’s latent
interest and capturing the evolution of the latent interest. [7],
[21], [22] employ self-attention to model the user behavior
sequence and achieve good results in recommender system, e-
commerce recommendation and session based CTR prediction,
respectively.

C. Relation Networks

Relation network (RN) provides a typical approach to
machine relational reasoning in neural networks, and makes
a significant breakthrough and achieves super-human perfor-
mance in many tasks [11]. The main idea of the original RN
is to fuse features from each entity-pair into one vector and
can be described as the following function:

RN(O) = fs | Y g0(01,05) (1)
,J

where the input is a set of objects O, while f, and gg are
multi-layer perceptrons (MLPs). Intuitively, the gy plays the
role of figuring out the relations between the object pairs.

Soon afterwards, [12] applies RN to multi-scale temporal re-
lational reasoning in activity recognition. [13] improves object
detection by simultaneously utilizing a relational module on a
set of objects. [14] employs relation network for his meta-
learning task and further investigate the learned non-linear
distance metric for comparing items in few-shot learning and
zero-shot learning.

ITII. SIMILITUDE ATTENTIVE RELATION NETWORK

The goal of Similitude Attentive Relation Network (SARN)
is to predict the CTR given user’s visited items, target item
(the advertisement to be estimated) and context information,
which can be expressed by the following function:

9 = fsarn(B,t,c) 2
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Fig. 2: Overall architecture of SARN.

where B € N™ is a list of item ids that the user visited, n
is the number of items in the list, ¢ € N is the id of target
item and ¢ € N is the id of context information, such as the
operation system on the user’s device.

Next, we describe the whole architecture of SARN and our
relational module.

A. The Overall Architecture of SARN

Like many other approaches of CTR prediction, our model
creates embedding vectors from its input field, including the
visited item list, target item and context information. As shown
in fig. 2, SARN is comprised of several parts: embedding layer,
relational module, attentive max-pooling layer, output module
and extra relation encoding module. Next, we will introduce
how we organize them together in detail.

1) Embedding Layer: The input of SARN is built upon
prevalent approaches that use embedding mechanism to en-
code the sparse features into low dimensional vectors. More
specifically, the embedding layer takes the user’s visited item
list, target item and context features as input and then trans-
forms them into embedded item list X € R™*% embedded
target item vector ¢ € RY and embedded context vector ¢ € RY
respectively, where n is the number of visited items and d is
the dimensionality of embedding vectors.

2) Relational Module: The relational module is the key
module in SARN. It is a neural network cell g moving on
each pairs of the items (x;, ;). In other words it considers
items X as a set of nodes and links each nodes by executing
relational reasoning on each item pairs. This module outputs
the relational representations R = G(X) = 3 g(x;, z;), with

i,j
the shape of n x n x d. We will give more details about it in
the next subsection.
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Fig. 3: Three important components in our model. (a) Diagram
of the relational module. It takes a list of item vectors as
input, and makes a pair representation for every two items. (b)
Diagram of Attentive Max-Pooling layer. Each attention score
is utilized to scalar multiply the corresponding relation vectors
before max-pooling. (c) Diagram of the relative positional
encoding module.

3) Attentive Max-Pooling Layer: To extract user represen-
tation from the relational representations R, attentive max-
pooling layer utilizes an attention mechanism similar to [6]
and then summarizes the tensor into a vector w of 1 x d by
max-pooling over the first two axes.

4) Output Module: The output module takes target item
vector ¢, attentive user representation w and context vector c
as input. Besides, we add max-pooling and average-pooling
of X as additional features. It concatenates all the vectors
together and feeds them into a MLP similar to [9]. The output
is utilized to calculate negative log-likelihood loss function,
which is defined as:

N

Liog = —% ; (yi log gi + (1 — y;) log(1 — 5i)) 3)
where 3; is the " label in the training set and 9; is the
corresponding output of our model.

5) Relative Positional Encoding Module: Since the struc-
ture of the relational module ensures that it is invariant to
the order of input sequence, we turn to encode the relative
positional information into SARN. It employs a trainable MLP
regressor, which takes a relation vector g(x;, ;) as input



and tries to predict the relative distance between them. The
loss of predictions is added to the global loss function as
a regularization term. Here mean square error is utilized to
define the loss function of the MLP regressor:

Lreg = 53 2 D0 (MLP(g(ai, ) — d(i,3) ()

i=1 j=1

where the relative position of «; and x;, d(,7), is the ground
truth distance for this additional task.

Besides, we utilize the negative sampling trick in DIEN,
which carries out an auxiliary loss L., [9]. The global loss
function is:

L= »Clog + aﬁ'r‘eg + ﬁ»caux (5)

where a and is § are hyperparameters controlling the influence
of relative positional information.

B. Relational Module

Formally, a relation R on a set X can be described as
a subset of X x X. If (a,b) € R, we write aRb, which
means a is connected to b with a relation R in a graph
(X, R). Similarly, our relational module bridges two items in
a user behavior sequence. We call the first item “source node”
and the other “target node”. Unlike RNN passing information
step by step along the time series, we design our module
to pass information directly from source node to target node
without the limit of spatial distance. Moreover, we hope that
more information is passed when the source node has a
close relationship to the target node in the semantic space.
Therefore, our model needs the ability of relational reasoning
to find out the relationship between item.

Inspired by the expression a Rb mentioned above, we define
our new relational module as follows:

g(xi, zj) = 2, R(x;, ;) + x; (6)

where x;, x; are learnable embedding of items, R plays the
role of mining the relational knowledge between x; and x;.

Here our relational module mainly concentrates on finding
the similarity between items, so we call our model similitude
attentive relation network. By separating representation learn-
ing and relational reasoning into different parts, our relational
module provides more flexibility when designing the pairwise
interactions than MLP based module does. Besides, we apply
vector-wise interaction in one of the custom operators, which
avoids an element-wise fusion in our relational representation
and may benefit the learning process [18]. Moreover, the
new relational module provides more inspiration on creating
new relational reasoning functions, that is firstly finding the
relations between items and combine the item representations
and relational information in an unsymmetrical manner.

The idea of relational module is to compare any two of
the normalized item representations x; and x; using dot
product, which reflects the cosine similarity between two
learned representations. Fig. 3a shows the structure of our
relational module. We define relational mapping functions

TABLE I: Statistics of datasets

Dataset Users Items Cates. Interactions
Electronics. 192,403 63,001 801 1,689,188

Books. 630,668 367,982 1,600 8,898,041

Taobao. 979,533 4,068,211 9,406 89,716,264
Online Ad. 224,308 4,237 23 2,718,078

¢(x;) and p(x;) equipped with an additional scaling function
that scales vectors into unit vectors:
ReLU (Wyx;
[ReLU (Wyz) |2

)

_ ReLU (W,a;)
[ReLU (W) [|2

Finally, we define similitude relational operation like this:
R (@i, %) = ¢(@:)" p(;) ©)

As shown in eq.(9), the similitude relation between x; and
x; are computed by a dot product between ¢(x;) and ¢(x;).

In conclusion, this module learns the relations by transform-
ing item representation pairs into two vectors and calculating
the cosine similarities, then fuse item representations using
learned relations in a vector-wise level.

o(x;) (8)

C. More Discussion on RN and SARN

Many practices of RN model the universal relation on X
using g(x;, x;), where ;, ¢; € X and g is an MLP. That is to
say, RN essentially describes a fully connected graph, where
X represents the nodes and the edges correspond to the output
of g, which is usually an MLP shared by item pairs. In these
cases, the relational modules can be described by the following
function:

go(xi, ;) = MLPg (concat(x;, x;)) (10)

Parameter sharing scheme among edges indeed helps MLP
achieve good performance in the frame of RN in various tasks.
However, in our CTR prediction task, it still remains an open
question that whether MLP is the most effective way to repre-
sent the edges in RN framework. According to recent research
in relational reasoning, we need to explicitly model the entities
and relations, and find a way for computing their interactions
[10]. Now think about eq.(1) again, the RN finally takes the
sum of gy as the input of the next-stage computation, that
means only the summary of the edges are taken into account,
while the nodes don’t take part in it directly. In this case,
the MLP not only plays the role of relational reasoning, but
also bears the responsibility of passing necessary information
of item representations. Therefore, the interactions between
item representations and relational representations are deeply
fused in the MLP. Nevertheless, MLP seems to be not so good
at modeling high-order feature interactions in CTR prediction
[18], [23]. Besides, MLP is an indivisible module, making it
hard to introduce inductive biases to various tasks.



TABLE II: Overall Performance Comparison.

Model Electronics. Books. Taobao. Online Ad.
AUC LogLoss AUC LogLoss AUC LogLoss AUC
Wide&Deep  0.8444 0.2448 0.7599 0.2849 0.8111 0.2742 0.6351
PNN 0.8498 0.2402 0.7603 0.3585 0.8217 0.2525 0.6421
GRU 0.8511 0.2535 0.7960 0.2870 0.8411 0.2541 0.6300
ATRank 0.8548 - 0.7533 - 0.8806 - 0.6494
DIN 0.8523 0.2731 0.7708 0.6352 0.8850 0.2140 0.6315
DIEN 0.8682 1.7522 0.8554 1.1258 0.8732 0.4387 0.6175
RN 0.8702 0.2320 0.8423 0.2457 0.8682 0.2347 0.6359
SARN 0.8715 0.2283 0.8750 0.2261 0.9032 0.1947 0.6608

IV. EXPERIMENTS

To verify the effectiveness of SARN, we conduct extensive
experiments on two public datasets and an online advertising
dataset. We first introduce necessary information about the
datasets. Next, the setup in our experiments is provided,
including evaluation metric, competitors and hyperparameter
settings. Then we compare the proposed methods with com-
petitors on three datasets with different settings. Furthermore,
we show the visualization of the learned relations.

A. Datasets

We utilize three datasets: Amazon Dataset®, Taobao
Dataset’ and our online advertising dataset, which vary in
terms of time span, category/item ratio, user number and
interaction sparsity.

1) Amazon Dataset.: Amazon Dataset is a widely used
benchmark dataset in this field [24]. It stores a huge number
of product reviews and metadata in several subsets, spanning
from May 1996 to July 2014. We choose two subsets named
Electronics and Books to evaluate and analyze our proposed
method. To make sure that each user has enough interactions,
we adopt the 5-core setting for the dataset, which means each
user and item have at least 5 interactions in the dataset.

2) Taobao Dataset.: This is a public dataset collected from
Taobao user behavior data [25]. It records 987,994 users’
behaviors during November 25 to December 03, 2017. In this
paper, we also adopt the 5-core setting and only consider click
behaviors, which account for the majority of all the behaviors.
Similarly, each user-item interaction consists of user ID, item
ID, category ID and timestamp.

3) Online Advertising Dataset.: The online advertising
dataset is newly collected from the logs of a demand-side
platform (DSP) company in Japan*. Unlike the world’s largest
e-commence marketplace such as Amazon or Taobao running
a unified online advertising platform, DSP receives advertise-
ments from a variety of advertisers and displays them to users
in different publishers (websites). Therefore, users and adver-
tisements in this online advertising dataset are essentially from
different sources, which introduces more uncertainty and is
hard to construct a knowledge graph for it. The scheme of the

“http://jmcauley.ucsd.edu/data/amazon/
Thttps://tianchi.aliyun.com/dataset/dataDetail ?datald=649
*https://www.mvrck.co.jp/

online advertising dataset is quite similar to Amazon Dataset’s.
The only difference is that it records context information for
each impression.

The statistics of datasets is shown in Table I. Since user-
item interactions in the original datasets cannot be fed into the
model directly, we need to reconstruct the datasets and split
them into training sets and test sets. We form the datasets by
collecting each user’s visited items and sort them with regard
to the timestamp when the interaction happens. Each sample
contains features such as visited item list, target item and
context information (for online advertisement dataset). The
visited item list represents the user, and the target item is the
candidate to be displayed. Since the public datasets do not
contain negative samples, we conduct negative sampling by
replacing the target item with a random item. As for splitting
the training set and test set, we try two settings:

¢ Split by user: each user’s samples (including positive
and negative samples) are ether located in training set
or test set. This method evaluates model’s generalization
performance on different users.

« Split by time: interactions before a certain timestamp are
utilized to construct the training set, while others are
for the test set. This method shows the generalization
performance on the future data.

For public datasets, experiments are conducted on the split-
by-user setting similar to [9]. We put approximately 80% of the
samples into the training set, while the rest is in test set. Note
that this kind of setting may be different from original papers,
so the result is different. The reason we choose this setting
is that we want to better measure the model’s generalization
ability on unseen users. For online advertising dataset, since
there are real negative samples in the logs, we choose split-
by-time setting to evaluate our model, which is closer to the
actual scenario. Over 99% of negative samples in the training
set are randomly dropped to keep the balance of classes. When
generating the test set for online advertising dataset, we pour
all the impressions after the certain timestamp into it.

B. Setup

1) Evaluation Metrics: We employ Area Under the ROC
Curve (AUC) as one of the evaluation metric, which is believed
to be suitable for CTR predictions because it is scale-invariant,
threshold-invariant and insensitive to imbalanced data. Since
we cannot obtain smooth ROC Curve using limited number



TABLE III: Performance over different maximum sequence lengths.

Model Taobao. Books.
length=10  length=20  length=30 length=40 length=50 | length=10 length=20 length=30
ATRank 0.8664 0.8757 0.8661 0.8786 0.8806 0.7553 0.7520 0.7533
DIN 0.7837 0.8331 0.8647 0.8652 0.8850 0.7579 0.7701 0.7708
DIEN 0.7238 0.7814 0.8372 0.8560 0.8806 0.8499 0.8545 0.8554
RN 0.8665 0.8737 0.8797 0.8828 0.8682 0.8173 0.8305 0.8423
SARN 0.8684 0.8786 0.8899 0.8975 0.9032 0.8622 0.8664 0.8750

of samples in our practical tasks, we approximately calculate
AUC using the coordinates of critical points on the ROC curve:

m

1
AUC = 3 Z (Tit1 = 23)(Yir1 + ¥i)

i=1

(1)

where m is the number of critical points and (z;,y;) is the
coordinate of the 7., critical point.

Another evaluation metric is Logloss, which is depicted in
eq.(3). It measures the distance between the logits and the true
label, so the uncertainty of logits is taken into consideration.

2) Competitors: We compare our method with both typical
CTR methods and recently proposed methods.

o Wide&Deep [16]: Wide&Deep Model is a benchmark
for deep learning based CTR predictions. It combines a
linear module and MLP layers together. We employ an
additional average pooling operation on visited items as
additional historical information.

e PNN [17]: This method uses an embedding layer fol-
lowed by a product layer to extract high-order features
of the categorical data.

« GRU: Following the idea of [5], we utilize embedding
mechanism and a GRU layer to model the user’s visited
item list.

o ATRank [7]: ATRank applies a modified self-attention
mechanism to model user behaviors. It also encode rela-
tive timestep information into the item representations.

« DIN [6]: DIN is a representative behavior sequence based
model, which is designed to concentrate on historical
behaviors that are related to the target item with an
attention mechanism.

o DIEN [9]: DIEN models user’s dynamic interests using
two-layer GRU with an attention mechanism. It encodes
the neighborhood information using an auxiliary task.

o RN: We transplant RN to this task by replacing the rela-
tional module with an original RN. The only difference
is that its relational module directly outputs R (x;, x;),
instead of ;R (z;, z;) + x; as depicted in eq.(6).

3) Hyperparameter Settings: For almost all the models,
the embedding size of user, item, category and context is
18, which is the same with DIEN’s. To keep consistent with
the original setting, ATRank’s embedding size is 64. Each
item embedding vector and category embedding vector are
concatenated together as the basic item representation. The
number of hidden units in our relational module is 36, which
is the same with the basic item representation’s. We utilize
Adam optimizer to train all the models, with decaying learning
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Fig. 4: LoglLoss during training. The red lines represent the
Logloss of our model without relative positional encoding
module, and the blue lines represent the LogLoss of our model
with it. The solid lines represent the Logl.oss on the test set,
while the dotted lines represent it on the training set.

rate starting from 0.01 and batch size equal to 128, except
for ATRank, which is trained by stochastic gradient descent
(SGD) optimizer with decaying learning rate starting from 1.0
and the batch size equal to 32, because we find it performs
better for ATRank with original settings. As for the MLP that
outputs the final logits, we choose fully connected layers with
the shape of (50, 10, 2) for our model, while others are based
on the code released by the authors.

C. Performance Comparison

We first verify the effect of SARN on both public datasets
and online advertising dataset. Since the test data in online
advertising dataset is highly imbalanced, we don’t utilize
Logloss to evaluate the models because it is sensitive to
imbalanced data. Each result in Table II is the average value
of ten experiments.

We find that behavior sequence based methods perform
significantly better than others. That may be because there
is no comprehensive side information on both users and
items in our dataset, which increases the difficulty of finding
the collaborative signals. Recent models employ attention
mechanism to extract more helpful information, and they
improve the performance in many cases. We then compare our
modules with RN. It seems that RN based methods generally
achieve better results. Benefiting from new relational modules,
our SARN shows better performance than RN, especially on
Taobao dataset.

D. Study of SARN

To have a better knowledge of SARN, we conduct two series
of controlled experiments. First, we study the influence of the
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maximum length of behavior sequences to the CTR predic-
tion models. Then the effect of encoding relative position is
verified.

1) Different Maximum Length.: In general, different maxi-
mum length not only changes the amount of historical infor-
mation provided to the models, but also affects the interaction
sparsity of the dataset, because the previous interactions are
discarded if the user visited too many items. The model needs
to learn proper representations for inactive users with few
interactions [19]. We conduct experiments on Taobao dataset
and Amazon Books dataset, which record more items for
each user, so that we can control the maximum length in a
larger range. As we can see in Table III, SARN outperforms
other models especially when the maximum length is relatively
short. When the length is 50 on Taobao dataset, all the
models achieve relatively higher results. It seems that with
relational module, our model can learn better representations
for users with less visited items. One interesting thing is that,
with the growth of the length, the AUCs of DIN and DIEN
increase progressively, while ATRank and SARN’s AUCs do
not increase so fast. The reason why ATRank show similar
property with SARN may be because the dimensions of inner
states in ATRank and SARN are proportional to the square of
the length, while the dimensions of inner states in DIN and
DIEN are proportional to the length itself.

2) Effect of Relative Positional Encoding Module: During
our experiment, we find that encoding extra relations helps
a lot in terms of improving model performance. Controlled
experiments are then further conducted on SARNs with and
without extra relation encoding module on Amazon datasets.
The training curves in fig. 4 record the LoglLoss during two
epochs. We can find that after the first epoch, the training
loss of both models decreases dramatically, which means they
are likely to overfit the training set. Without the help of extra
relation encoding module, it performs badly on the test set,
especially on the Amazon Books dataset. To some degree,
the extra relation encoding module regularizes the learning
process, making SARN more stable and more likely to avoid
overfitting.
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Fig. 6: Attention scores of a user.

E. Visualization

To give a deep insight of SARN, we try to visualize the
relations in both global level and individual level.

Since relation is the inner product between two item rep-
resentations, we can construct a big heatmap indicating the
relations between any two items by summing all the relations
calculated from the dataset, obtaining the average value of
each relation and integrating them into the big heatmap. Since
there are too many items in Amazon Electronics dataset to
display in our paper, we select popular items in the categories
of tablets, laptops, keyboards, and headphones.

Fig.5a shows the evolution of relations during training. Both
axes represent the list of items grouped by categories, and
the pixels indicate the relations between the corresponding
items on x-axis and y-axis. At the beginning, there are clear
boundaries between category blocks and the values of all the
relations are small. That is because the two transformations in
eq.(9) are randomly initialized with small values and do not
make much difference on item representations, so the relations
between items are largely affected by the categories. With
the process of training, the boundaries disappear a little, and
the highlight area increases, especially along the diagonal. At
last, the area near the diagonal become significantly lower and



only a small number of relations have relatively high value.
Moreover, the highly related items do not always share the
same category, while items in the same category may also have
different highly related items. This phenomenon may indicates
that during training, our model firstly increases the values of
relations in a wide range, and then deactivate those relations
that are not so important, such as the relations between items
themselves.

Next, we visualize user AIZU55TM45Y2R8 in Amazon
Electronics dataset. Fig. 5b depicts relations of a subset of
the items him/her visited. Note that the relations of some item
itself is not necessarily to be high, this is because the similarity
is calculated in a semantic space. And it is interesting that TVs
probably share higher relations with home theater systems and
digital cameras. This phenomenon may indicate that TV plays
a core role in the family.

As for the attention scores on relations, in fig. 6, we
can find that for positive candidate (Camera Charger), the
highest attention locates on a relation from TV to Camera
lenses, which is quite relevant to the Camera Charger, while
the highest attention for the negative candidate (Keyboards)
locates on irrelevant items. Therefore, after attentive max-
pooling layer, the final user representation is quite close to the
positive candidate and not so close to the negative candidate.

V. CONCLUSIONS

In this paper, we investigate the possibility of introducing
relational modules into CTR prediction. The User interests
behind their behavior sequences are highly complicated and
need more specific methods to represent the underlying struc-
tures. Based on this observation, SARN is proposed, which
models a user from pairwise relations and extract relational
features explicitly. Experiments show that SARN has the
potential to improve the performance and interpretability of
CTR prediction models.
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