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Abstract—In this work we present a formal theoretical frame-
work for assessing and analyzing two classes of malevolent action
towards generic Artificial Intelligence (AI) systems. Our results
apply to general multi-class classifiers that map from an input
space into a decision space, including artificial neural networks
used in deep learning applications. Two classes of attacks are
considered. The first class involves adversarial examples and
concerns the introduction of small perturbations of the input
data that cause misclassification. The second class, introduced
here for the first time and named stealth attacks, involves small
perturbations to the AI system itself. Here the perturbed system
produces whatever output is desired by the attacker on a specific
small data set, perhaps even a single input, but performs as
normal on a validation set (which is unknown to the attacker).

We show that in both cases, i.e., in the case of an attack
based on adversarial examples and in the case of a stealth
attack, the dimensionality of the AI’s decision-making space
is a major contributor to the AI’s susceptibility. For attacks
based on adversarial examples, a second crucial parameter
is the absence of local concentrations in the data probability
distribution, a property known as Smeared Absolute Continuity.
According to our findings, robustness to adversarial examples
requires either (a) the data distributions in the AI’s feature space
to have concentrated probability density functions or (b) the
dimensionality of the AI’s decision variables to be sufficiently
small. We also show how to construct stealth attacks on high-
dimensional AI systems that are hard to spot unless the validation
set is made exponentially large.

Index Terms—Adversarial examples, adversarial attacks,
stochastic separation theorems, artificial intelligence, machine
learning

NOTATION

• R denotes the field of real numbers, R≥0 = {x ∈ R| x ≥
0}, and Rn stands for the n-dimensional linear real vector
space;

• N denotes the set of natural numbers;
• symbols x = (x1, . . . , xn) will denote elements of Rn;
• (x,y) =

∑
k xkyk is the inner product of x and y, and

‖x‖ =
√

(x,x) is the standard Euclidean norm in Rn;

• Bn denotes the unit ball in Rn centered at the origin:

Bn = {x ∈ Rn| ‖x‖ ≤ 1};

• Bn(r,y) stands for the ball in Rn of radius r > 0
centered at y:

Bn(r,y) = {x ∈ Rn| ‖x− y‖ ≤ r};

• Sn−1(r,y) stands for the n − 1 sphere in Rn that is
centered at y and has a radius r:

Sn−1(r,y) = {x ∈ Rn | ‖x− y‖ = r};

• Vn is the n-dimensional Lebesgue measure, and Vn(Bn)
is the volume of unit n-ball;

I. BACKGROUND AND MOTIVATION

The application of Artificial Intelligence (AI) and Machine
Learning methods has produced numerous success stories
in recent years [1], [2], [3]. Examples where it has been
reported that human levels of performance can be matched or
exceeded include identification of breast cancer [4], detection
of objects hidden from view [5], mastery of board games [6],
optimization of new imaging techniques [7], and development
of systems for autonomous self-driving cars [8].

Existing breakthroughs are clearly stimulating further re-
search and encouraging the broad deployment of such systems
in practice. However, in a field of research where, for example,
traffic “Stop” signs on the roadside can be misinterpreted as
speed limit signs when minimal graffiti is added [9], many
commentators are asking whether current solutions are suffi-
ciently robust, resilient, and trustworthy; and how such issues
should be quantified and addressed. Marcus [10] outlines ten
concerns about the current state of deep learning, one of which
is that “Deep learning thus far works well as an approximation,
but its answers often cannot be fully trusted.”
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Examples of undesirable, unintended, and unexpected be-
havior of otherwise sophisticated deep learning systems raising
further questions around the issues of resilience and trust-
worthiness of data-driven AI systems have been extensively
reported and discussed in the literature on adversarial images
[11], [12].

Adversarial images arise when specially chosen pertur-
bations, effectively imperceptible to the human eye, cause
misclassification in an AI system, or, indeed, simultaneously
across a range of AI systems. The existence of adversarial
images illustrates the risks associated with the deployment of
data-driven neural network-based decision-making and raises
important questions around responsible research and innova-
tion (RRI) [13], [14]. There are now many constructive ap-
proaches for the generation of adversarial attacks; for example,
[15], [16], [17], [18], [19], [20], [21]. On the other hand,
techniques that aim to identify or guard against such attacks
have also been developed; for example, [22], [23], [24], [25],
[26], [27], leading to a version of conflict escalation where
attack and defence strategies become increasingly ingenious.

Against this backdrop, the work in [28] looks at a higher-
level question: are there fundamental reasons that make ad-
versarial examples difficult to thwart? The authors developed
arguments based on various versions of the isoperimetric
inequality to determine a set of conditions under which ad-
versarial examples occur with probability close to one in a
very general setting (see [28] for further details).

In this work, we use a different set of tools to derive
alternative conditions under which the existence of adversarial
examples is essentially unavoidable for general classifiers.
In addition, we introduce a second type of risk, relating to
malicious, targeted behavior that we refer to as a stealth attack.
In this scenario, an attacker (who may, for example, be a
mischievous, disgruntled, malevolent or corrupt member of a
large software development team) has access to the actual code
implementing the AI system. Such an attacker is capable of
changing, adding or replacing a single or a small number of
nodes with the aim of altering the behavior of the system. To
evade detection, the perturbed system must show little if any
deviation from the nominal system’s expected performance on
some finite verification set V , making the attack transparent to
the AI’s owners and users. At the same time, on a data set or
even a single input x′ that is known only to the attacker, the
system must generate a response which the attacker desires but
which is different from the nominal system’s output. (So, for
example, there may be a particular image whose classification
the attacker wishes to override.)

If the verification set V is available to the attacker and the
attacker is allowed to change a significant portion of the nom-
inal AI system (e.g., parameters and connections of neurons in
the network) then it is technically plausible and operationally
simple to execute such an attack by re-training. Large systems
in which the total number of parameters of the altered part
exceeds the cardinality of V ∪ x′ are particularly vulnerable
to alterations of this type. Indeed, it is well-known that n+ 1
generic points in Rn are linearly separable. Experiments in

[29] showed that simple shallow yet sufficiently large neural
networks may achieve perfect finite sample expressivity as
soon as the number of parameters exceeds the number of data
points (cf. [30]).

We have in mind the more challenging case when i) the
set V and its cardinality is unknown to the attacker and ii)
the attacker may change only a single element (albeit with its
weights and parameters) in the system.

II. GENERAL FRAMEWORK

We will study both adversarial examples and stealth attacks
in a single, generic, setting. We suppose that the system is
modeled by a map

F : Bn → R. (1)

The map may represent a multi-class classifier, implemented
e.g., by a neural network, defined on a set Φ ⊂ Bn of the
feature vectors x ∈ Φ. The nature and the origin of the feature
vectors and the map itself are not important for our analysis.
The map can be viewed as a transformation modelled by one
or a few fully connected layers inside a deep neural network;
it may also describe the entire input-output behavior of the
system. What is important, however, is that the feature vectors
x are elements of a high-dimensional vector space Rn.

Using this model, we formally analyze the inevitability of
both adversarial examples and stealth attacks. With respect to
the problem of adversarial examples (Theorem 1), we formu-
late a relationship between a given classifier and statistical
properties of the data (Assumption 1) that leads inevitably
to the existence of adversarial examples. A key element of
these conditions is the Smeared Absolute Continuity (SmAC)
property of the probability distribution introduced in [31].
A similar condition is imposed in [28] in the form of the
assumption of an upper bound for the probability density
function. Here, however, we do not require that the latter
property holds for the entire distribution. If n is sufficiently
large then for the existence of an (ε+∆)-adversarial example
(ε may be chosen arbitrarily small) it is sufficient that

i) the SmAC condition holds in some ball of non-zero
measure, and

ii) for any point on the boundary of that ball there is an
element of a different class within distance ∆.

We also provide an explicit estimate of the dimension n at
which such examples become probable.

The new concept of a stealth attack, where an opponent
modifies a small part of the backbone system in a way that
impacts only specific inputs, is formalized (9). Our results
show that stealth attacks are surprisingly easy to construct for
large enough n. In particular, we find that if the cardinality
M of the verification set V is smaller than 2n then these
attacks can be produced by a modification of a single node in
the system and without any knowledge of the verification data
(Theorem 2).

The rest of the manuscript is organized as follows: in
Section III we quantify probabilities of adversarial examples
for a broad class of data distributions satisfying the SmAC



condition, Section IV presents conditions and possible scenar-
ios for stealth attacks, and Section V concludes the paper.

III. ADVERSARIAL EXAMPLES

Consider a standard multi-class classification problem in
which each element x ∈ Φ is associated with a label l ∈ L
from a finite set L of labels. We assume that the pairs
(x, l ) are drawn from some probability distribution with the
corresponding probability density function:

p : Bn × L → R≥0.

The distribution as well as the probability density functions
are supposed to be unknown but their existence is assumed.
The backbone/legacy AI system is hence a classifier which for
a given x ∈ Φ aims at predicting its label l .

Definition 1: For the given classification map F , an element
x ∈ Bn admits a δ-adversarial example y(x) if

F (x) 6= F (y(x)) and ‖x− y(x)‖ ≤ δ, y(x) ∈ Bn.

In what follows we will determine a set of conditions on the
classifier map F and the data distribution for which adversarial
examples exist and the probability of their occurrence is non-
zero and sometimes could be even exponentially “close” to 1
with respect to n.

Let A be an element of the label set L . We denote

pA(x) = p(x|l = A), P (A) =

∫
Bn

p(x, A)dx,

p(x|l = A) =
p(x, A)

P (A)
. (2)

Assumption 1: There exists a label A ∈ L and an associated
set CA ⊂ Bn, a number rA ∈ (0, 1), a vector xA ∈ Bn, a
positive constant C > 0, and a number ν ∈ (0, 1] such that

A1) The set CA is contained in Bn(rA,xA).
A2) F (x) = A for all x ∈ CA, and there is a ∆ > 0 such

that for any x ∈ Sn−1(rA,xA) there exists a y(x):

F (y(x)) 6= A, ‖y(x)− x‖ ≤ ∆.

A3) The probability density function pA satisfies

pA(x) ≤ C

Vn(Bn)

1

rnA
for all x ∈ Bn(rA,xA),

and
∫

CA

pA(x)dx ≥ ν > 0. (3)

Conditions A1 – A3 in Assumption 1 formalize a relation-
ship between the given classification map F and statistical
properties of the pair (x, l ) which, as we shall see later, lead
to the risk of emergence of adversarial examples. In particular,
Assumption 1 ensures that
• The probability that the event x ∈ CA, l = A occurs

is at least P (A)ν, and the corresponding conditional
probability density pA satisfies a form of the Smeared
Absolute Continuity condition in the domain CA [31]
(condition A3).

• Any x from the set CA is interpreted as an element of
class A by the map F , and a ∆-neighborhood of any
element x on the boundary of the set Bn(rA,xA) ⊃ CA

contains at least one element y(x) to which the map F
assigns a label that is different from A (condition A2).
The latter part of the condition will obviously hold if

F (x) 6= A for all
x ∈ Bn(rA + ∆,xA) ∩ Bn \ Bn(rA,xA).

• A non-empty set for which the above properties hold
exists (the set CA) and is in the interior of some n-ball
in Bn (condition A1).

Under these conditions the following statement holds.
Theorem 1: Consider a classification map F and a probabil-

ity distribution with probability density function p satisfying
Assumption 1. Let a sample (x, l ) be drawn from this
distribution and let ε be chosen arbitrarily in (0, rA). Then
the probability that x admits an (ε+ ∆)-adversarial example
is at least

P (A) max

{
ν − C

(
1− ε

rA

)n

, 0

}
. (4)

Proof of Theorem 1 Let us fix an 0 < ε < rA and let P ∗ be
the probability of the event

x ∈ Bn(xA, rA) \Bn(xA, rA − ε), l = A.

Then according to Assumption 1 (condition A2) and Definition
1, the probability that a ∆ + ε adversarial example exists for
the given classifier is P ∗. The probability P ∗ can be estimated
as

P ∗ = P (A)P (x ∈ Bn(xA, rA) \Bn(xA, rA − ε)|l = A).

Consider

P (x ∈ Bn(xA, rA − ε)|l = A)

=

∫
Bn(xA,rA−ε)

p(x|l = A)dx

=

∫
Bn(xA,rA−ε)

pA(x)dx.

According to (2) and (3),∫
Bn(xA,rA−ε)

pA(x)dx ≤
∫
Bn(xA,rA−ε)

C

Vn(Bn)rnA
dx

C
(rA − ε)n

rnA
= C

(
1− ε

rA

)n

.

Using conditions A1 and A3 from Assumption 1, we can
obtain the following estimate

P (x ∈ Bn(xA, rA) \Bn(xA, rA − ε)|l = A) =

P (x ∈ Bn(xA, rA)|l = A)−

P (Bn(xA, rA − ε)|l = A) ≥ ν − C
(

1− ε

rA

)n

.

The value of P ∗ can now be estimated from below as

P (A)

(
ν − C

(
1− ε

rA

)n)
,



and hence the statement follows �.
Using the well-known inequality

(1− x)1/x < e−1, x ∈ (0, 1),

the following exponential lower bound estimate for (4) holds:

P (A) max

{
ν − C exp

(
−nε
rA

)
, 0

}
.

Remark 1: According to Theorem 1, if the classifier and
the data probability distribution satisfy Assumption 1, then
(ε + ∆)-adversarial examples are expected to occur if the
dimensionality n of the feature space is sufficiently large:

n > (log ν − logC)

[
log

(
1− ε

rA

)]−1
. (5)

Moreover, if C is independent of n, then the probability
that the data sample admits a (ε + ∆)-adversarial example
approaches P (A)ν exponentially fast with dimension n.

Remark 2: For classifiers operating in dimensions satisfying
(5) one can now easily derive a bound on the probability of
occurrence of an (ε+∆)- adversarial example in a sample of N
i.i.d. random data points. In particular, under the assumptions
of Theorem 1, the probability that at least one (ε + ∆)-
adversarial example occurs this sample is not smaller than

1−
[
1− P (A)

(
ν − C

(
1− ε

rA

)n)]N
.

IV. STEALTH ATTACKS TO THE BACKBONE AI

The susceptibility of decision-making in AI systems oper-
ating in high-dimensional space to small adversarial pertur-
bations of the data is just one facet of the larger topic of
robust, resilient, and ultimately verifiable AI performance. In
this subsection we formally define and study the related but
distinct issue of stealth attacks.

To set-up our framework, consider the classification map
(1)

F : Bn → R

modelling the backbone AI system. In addition to this map,
consider

Fa : Bn ×Θ→ R
Fa(·,θ) = F (·) + A(·,θ),

(6)

where the term
A : Bn ×Θ→ R

models a stealth attack on the original backbone system F ,
and Θ ⊂ Rm is an associated set of parameters.

A case of significant practical interest arises when the term
A can be expressed using just a single Rectified Linear Unit
(ReLU function), [32] (see, for example, [33] or [34] for
information regarding basic nonlinear elements)

A(·, (w, b)) = DReLU((·,w)− b),
ReLU(s) = max{s, 0}

(7)

or a sigmoid

A(·, (w, b)) = Dσ((·,w)− b),

σ(s) =
1

1 + exp(−s)
,

(8)

with D > 0 being a positive constant. It is convenient to
denote

A(·, (w, b)) = Dg((·,w)− b),

where the function g is either ReLU or sigmoid, depending on
the case, and (w, b) = θ are its relevant parameters. We are
now ready to formally introduce the following stealth attack
problem

Problem 1 (Stealth Attack on F ): Consider a classification
map F defined by (1) and modelling a backbone AI. Suppose
that an owner of the AI system or a network has a finite
validation or verification set

V ⊂ Bn.

The validation set V is kept secret and is assumed to be
unknown to an attacker. The cardinality of V is bounded from
above by some constant M , and this bound is known to the
attacker.

The attacker seeks to modify the map F and replace it by
Fa constructed in accordance with (6), (7) or (6), (8) and such
that for some given ε > 0, ∆ > 0 and an element x′ ∈ Bn,
known to the attacker but unknown to the owner of the map
F , the following properties hold:

‖F (x)− Fa(x, (w, b))‖ ≤ ε ∀ x ∈ V
Fa(x′, (w, b)) = F (x′) + ∆.

(9)

In words, the stealth attack has an imperceptible effect on
the validation set, since ε > 0 can be made arbitrarily small,
but makes the desired modification of the backbone AI (with
arbitrarily large ∆ > 0) for the target input x′.

We say that A is a solution of this problem if it satisfies
(9). The next statement provides an efficient mechanism for
constructing such solutions.

Theorem 2: Consider Problem 1, and let x′ be a vector that
is randomly drawn from the equidistribution in Bn. Then the
probability that

A(·, (κx′, b)) = Dg((·, κx′)− b),

b = κ

(
1 + γ

2

)
‖x′‖2,

(10)

where κ and D are chosen so that

Dg

(
−κ1− γ

2
‖x′‖2

)
≤ ε and

Dg

(
κ

1− γ
2
‖x′‖2

)
≥ ∆, γ ∈ (0, 1),

(11)

is a solution of Problem 1 is at least

1−M
(

1

2γ

)n

.



Proof of Theorem 2. Let us pick γ ∈ (0, 1) and let x′ be
such that

γ(x′,x′) = γ‖x′‖2 > (x′,xi), for all xi ∈ V .

Set

w = κx′, κ > 0,

b = κ

(
1 + γ

2

)
‖x′‖2,

and observe that

A(·, (w, b)) = Dg

(
κ

(
(·,x′)−

(
1 + γ

2

)
‖x′‖2

))
,

where we recall that g is either ReLU or sigmoid. Consider

‖F (xi)− Fa(xi, (w, b))‖ = |A(·, (w, b))|.

Since the function g is monotone,

|A(xi, (w, b))| ≤ Dg
(
−κ
(

1− γ
2
‖x′‖2

))
∀ xi ∈ V .

Denote
z =

1− γ
2
‖x′‖2

and pick the values of D and κ so that

Dg(−κz) ≤ ε and Dg(κz) ≥ ∆.

Given that ReLU(s) = 0 for all s ≤ 0 and that the sigmoidal
function is strictly increasing with g(0) 6= 0, such choice is
always possible.

Finally, let x′ be drawn from the equidistribution in Bn.
Then the probability that

γ(x′,x′) > (x′,xi), for all xi ∈ V

is at least

1−M
(

1

2γ

)n

.

(see Proposition 1 of [31]). This completes the proof. �
Remark 3: If g = ReLU then the value of ε in Theorem 2

can be set to 0 which in turn implies that the stealth map Fa

is indistinguishable from F on the verification set V :

Fa(x) = F ∀ x ∈ V .

Remark 4: The statement of Theorem 2 can be adjusted to
include the class of functions g:

lim
s→−∞

g(s) = 0, lim
s→∞

g(s) = 0, g(0) = 1.

In this case the value of b in (10) should change to

b = κ‖x′‖2

and condition (11) will need to become

Dg
(
−κ(1− γ)‖x′‖2

)
≤ ε and D ≥ ∆, γ ∈ (0, 1).

This extends the results to bell-shaped functions g such as the
Gaussian and also opens possibilities to use general sigmoidal
functions σ to construct such g:

g(s) =
σ(s)− σ(s+ a)

σ(0)− σ(0 + a)
, σ(0)− σ(0 + a) 6= 0.

V. CONCLUSION

In this work we set up a formal framework for analyzing
two classes of malevolent action towards generic AI systems.
These systems include neural networks but generally could be
of a rather arbitrary type. The first class, adversarial examples,
concerns small perturbations of the input data that cause
misclassification. Such perturbations have been widely studied
in recent years, mostly from an empirical perspective. The
second class, introduced here for the first time and named
stealth attacks, involve small perturbations to the AI system
itself. Here the perturbed system produces whatever output is
desired by the attacker on a specific small data set, perhaps
even a single input, but performs as normal on a validation
set (which is unknown to the attacker).

In both cases, we identified the dimensionality of the AI’s
decision-making space as a major factor in its susceptibility.

With regard to adversarial examples, a second crucial aspect
influencing the risk of adversarial attacks is the absence or
presence of local concentrations in the data probability distri-
bution (Smeared Absolute Continuity condition). According to
our findings, a robust system should either have concentrated
probability density functions or its dimensionality must be
reduced to avoid the effects of the measure concentration.

Concerning stealth attacks on the backbone AI, we note
that systems with ReLU activation functions are particularly
prone to adversarial modifications which are hard to spot
without resorting to exponentially large in dimension, 2n,
verification sets. Single-node adversarial alterations involving
differentiable activation functions may need to have large
Lipschitz constants (i.e., the values of κ,D in Theorem 2).
Lipschitz constants calculated over a data sample have been
used extensively as an indicator of network quality [33] (the
smaller the better). Here we have shown that these are not only
mere quality indicators; large Lipschitz constants in networks
and systems with differentiable activation functions are also
consistent with susceptibility to stealth attack.

Many relevant questions, however, remain. In particular, we
did not consider here probabilities of noise-induced misclassi-
fications. We also did not try to produce the tightest possible
probability estimates. Addressing these, and related issues, will
be the focus of future work.
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