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Abstract—Sequential pattern mining can discover many inter-
esting phenomena such as bank transactions, web page request-
ing sequences, customer behavior, etc. There have been many
frequent itemset mining algorithms proposed so far, yet it is still
a challenging task. In this paper, we propose a deep learning
architecture for discovering closed sequences. The U-Net network
is trained with random, synthetic sequences and, afterward, is
able to discover unknown (not seen during training) sequences.
The proposed solution is faster than traditional sequential data
mining methods for longer sequences.

Index Terms—convolutional neural networks, sequential pat-
tern mining, closed sequences

I. INTRODUCTION

Detecting recurring events is a very interesting and impor-
tant issue. Based on the collected knowledge, it is possible to
determine if, after the occurrence of events, other previously
observed events may be repeated. This knowledge can be used
to analyze sales data to define associations between products
better, to observe natural phenomena, including determining
the probabilities of cataclysms or analyzing stock market
trends, bank transactions, software events, web page requesting
sequences, customer behavior, manufacturing processes [1]–
[4] or network traffic [5]–[7].

One of the first works formalizing issues related to se-
quences was frequent itemset mining (FIM) by Agrawal and
Srikant in [8]. It is a different problem as it concerns basket-
item data and associations. They introduced three algorithms
from the Apriori family to solve the problem. In the research,
the most important emphasis was put on the performance of
algorithms using their sequence generator (now unavailable).
They compared the impact of the minimal sequence support
in the database on the calculation time. The Apriori methods
require that the searched sequence is closely related in each
example (there is no ABC sequence in the ABDC sequence).

The paper was followed by [9], where the Generalized
Sequential Patterns algorithm (GSP) was presented. GSP was
improved in three ways. There were possible gaps between
consecutive elements of the sequence. It was possible to define
time constraints. The concept of taxonomy was introduced.
Another development was the SPADE algorithm [10]. SPADE
searched the database in a vertical way, which means that it
looked for associations between individual elements and then
created a larger sequence of them, which translated into better
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performance. A more detailed comparison of SPADE and GSP
can be found in [11]. The next was the BIDE algorithm [12]
[13], which was designed for closed sequences for improving
efficiency.

The detection of anomalies in computer systems is currently
a very developed field. In our work, we rely on event sequences
represented as numbers (from a dictionary), but this is not the
only approach. The work [14] presents a sequential analysis
of system logs using natural language processing. No ID
number is assigned to a specific event, as in our case, and
the information contained in the event description is analyzed.
As shown by the concept of [15], the most important in the
analysis are the log entries recorded just before the error, both
during the attack on the system and during errors caused by
the error that occurred during the operation of the system.
Using this approach allows limiting the amount of data to be
analyzed by the system.

In the paper, we train a neural network to recognize un-
known closed sequences. Training is performed with the input
data containing sequences mixed with random numbers. The
desired output is the clean sequence without the embedded
noise. Testing is performed on sequences unseen during train-
ing. Moreover, even numbers creating new sequences were
from a different interval, not used during training. Thus, the
approach presented in the paper is not classification or pattern
matching what a typical application of neural networks is. It
is also not a regular expression matching (such as the GREP
utility). Our initial experiments with LSTM networks [16]
were unsuccessful.

The advantages of the proposed approach are speed in the
case of long sequences and a possibility to discover transposed
sequences. We use the U-Net architecture, described in Section
II with one-hot number-level encoding. In the experiments,
sequential data for the analysis are generated by the au-
thors. Datasets for supervised neural network training must
be prepared to include output target sequences. To train the
network, we had to generate a data set where the input data
are sequences mixed with random numbers, and the output
data are clean sequences to be found (Section III and Fig.
4). We provided the experiments comparing the speed with
the traditional algorithms and showing the ability to detect
transposed sequences in Section IV.

Through this research, we highlight the following features
and contributions of the proposed model.

• We present the first neural network-based detection of
unknown closed sequences.
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• Our work provides new insights, showing that neural
networks can detect unseen before closed sequences with
nearly 100 % accuracy.

• In the case of long sequences, our approach works faster
as the neural network analyses a long window at once.

The remainder of the paper is organised as follows. In Section
II, we described the neural network architecture. Section III
described data preparation. Section IV describes experiments
comparing the method with some standard sequential mining
algorithms. Finally, conclusions and discussions of the paper
are presented in Section V.

II. U-NET CONVOLUTIONAL NEURAL NETWORK

The U-Net network [17] is a special architecture of con-
volutional networks pioneered in [18]. It was designed for
semantic segmentation of medical images to detect tumors or
changes in X-ray images for relatively small sets of training
data. This ability was the main rationale behind this choice.
It is not possible to generate all possible sequences for
training due to a combinatorial explosion. Moreover, for the
nature of the problem, there is no point in performing data
augmentation. Earlier, we performed experiments with various
standard convolutional networks without success.

The U-Net network has an encoder-decoder structure; the
encoder that processes the image in the first part of the network
is designed to extract the most important elements. A max-
pooling operation with size 2×2 is used to reduce the feature
map by selecting the elements with the highest value. The
reverse process is up-pooling (up-conv) [19]. This operation
can be performed in many ways. By creating an additional
filter, where the layer is calculated or by diluting the image,
describing each value from the input map feature with zeros.
In our case, each value is duplicated (reproduced) from the
size 1 × 1 to the size 2 × 2. The maps from the encoder
are additionally copied to the decoding part, creating a single
three-dimensional matrix where later convolution is carried out
simultaneously on them and the layers after up-pooling.
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Fig. 1. Architecture of the U-Net network used in the paper.

The use of two-dimensional convolution when analyzing
one-dimensional data during sequence discovery is reflected in
the operation of convolution networks. When processing NLP
data by convolution networks, networks using one-dimensional
convolution [20] obtain usually the best effects. In our re-
search, we want to bring out the repetitive shape created in
the encoded bitmap. Unlike image analysis, the importance of
the encoded information in each pixel is the same [21], and the
size of the set of adjacent pixels cannot affect the result, i.e.,
repetition of multiple values cannot be assigned to a sequence.
In our experiments, we accomplish this by creating a set with
elements next to each other, where the value of these elements
is to be omitted. Another aspect is why the CNN network for
image segmentation without a skip-connection (for example U-
Net) like [22], or [23] could not solve the task. Although both
structures (with and without skip-connections) are suitable
for detecting changes in the image, the CNN network was
unable to detect sequence elements during the training. We
base our assumptions why this was not possible on the fact
that the signal during learning was not well propagated back.
The U-Net structure has additional skip connections, thanks
to which the error signal in such a complicated bitmap can
be better propagated to the input layer. Another problem is
the analysis of the filters obtained after training the network.
It is necessary to analyze whether the set of filters in a given
layer is not identical for each feature maps, which would entail
unnecessary network load and poor optimization of the entire
structure of the convolution network.

Fig. 2. Visualization of first 12 filters in six convolutional layers of our
network trained on sequences.

The size of the input and output two-dimensional matrices
must be specified when designing the U-Net architecture. In
our architecture, the input and output have the same size n×m,
where n is the number of encoded characters (the dictionary
size), m is the maximal number of elements in the analyzed
data (the window that searches for sequences). As with black-
and-white images, we only use one input channel. Our goal
is to obtain only numbers that form a repetitive sequence at
the U-Net output. A zero-padding operation was used in the
network so that the size of the network was not modified after



the convolution [24]. In the experiments we use the following
U-Net structure:

1) Conv. padding(3x3), in(1x128x256), out(32x128x256),
ReLu activ.

2) Conv. padding(3x3), in(1x128x256), out(32x128x256),
ReLu activ.

3) MaxPooling (2x2)
4) Conv. padding(3x3), in(32x64x128), out(64x64x128),

ReLu activ.
5) Conv. padding(3x3), in(64x64x128), out(64x64x128),

ReLu activ.
6) MaxPooling (2x2)
7) Conv. padding(3x3), in(64x64x128), out(128x32x64),

ReLu activ.
8) Conv. padding(3x3), in(128x32x64), out(128x32x64),

ReLu activ.
9) MaxPooling (2x2)

10) Conv. padding(3x3), in(128x16x32), out(256x16x32),
ReLu activ.

11) Conv. padding(3x3), in(256x16x32), out(256x16x32),
ReLu activ.

12) MaxPooling (2x2)
13) Conv. padding(3x3), in(256x8x16), out(512x8x16),

ReLu activ.
14) Conv. padding(3x3), in(512x8x16), out(512x8x16),

ReLu activ.
15) UpSampling (2x2)
16) Conv. padding(3x3), in(512x16x32[15]+256x16x32[11]),

out(256x16x32), ReLu activ.
17) Conv. padding(3x3), in(256x16x32), out(256x16x32),

ReLu activ.
18) UpSamplign (2x2)
19) Conv. padding(3x3), in(256x32x64[18]+128x32x64[8]),

out(128x32x64), ReLu activ.
20) Conv. padding(3x3), in(128x32x64), out(128x32x64),

ReLu activ.
21) UpSamplign (2x2)
22) Conv. padding(3x3), in(128x64x128[20] +

64x64x128[5]),
out(64x64x128), ReLu activ.

23) Conv. padding(3x3), in(64x64x128), out(64x64x128),
ReLu activ.

24) UpSampling (2x2)
25) Conv. padding(3x3), in(128x128x256[20] +

32x128x256[2]),
out(64x128x256), ReLu activ.

26) Conv. padding(3x3), in(64x128x256), out(64x128x256),
ReLu activ.

27) Conv. padding(1x1), in(64x128x256), out(1x128x256),
ReLu activ.

III. FREQUENT SEQUENCES DATA

The data set for supervised neural networks must consist
of training and testing data. In the case of sequential data
mining, the datasets focus primarily on checking the efficiency
of the algorithm, and it is difficult to find a set that could be

used for neural network purposes. Our aim was that the neural
network is to recognize sequences that have not participated
in the training process. In other words, it must grasp a general
idea of repetitive sequences instead of memorizing sequences
existing in the data set. Furthermore, every type of sequential
data can be transformed into numbers from a dictionary. Thus,
training with extensive synthetic data seems to be a perfect
solution.

We developed a generator for sequence datasets. Each item
was a number from 1 to n, where n is the maximum value
we can encode in a given U-Net network. In other words, n
is the aforementioned dictionary size. One training example
consists of smaller transactions in which a repetitive sequence
of characters (green color in Fig. 3) is hidden between them;
other numbers were drawn randomly from numbers not used
to create the sequence. After each transaction, there is a break
created from an additional number of random characters that
also did not participate in the creation of the sequence. An
example of the sequence is presented in Figure 3.

...8 9 3 8 9 3 8 9 3

Fig. 3. Data sequence example generated by the generator.

The parameters for creating samples are:
• The size of the convolutional network input n (dictionary

size),
• The maximal space between sequence elements (blue

parts in Fig. 3),
• The maximal and minimal length of the sequence itself

(numbers in green in Fig. 3),
• The maximal interval between sequences (yellow fields).

Using this type of generator has several key advantages in
the case of neural networks. In the paper, we use a one-
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Fig. 4. Data sequence example after one-hot encoding, prepared for the
supervised training for the dictionary size n = 6. We train the network with
sequences intertwined with random noise and the desired output is the clean
sequence. We do not use every possible sequence combination. Instead, we
train a specific behaviour that allows discovering unknown sequences after
training.

hot number-level signal encoding. The input signal to the
convolutional network (and the output) is a two-dimensional
matrix. In algorithms such as GSP or SPADE, we have no
limit to the number of elements that a sequence can consist
of. In the case of the proposed method, we have to assume it
earlier.



The proposed method discover only closed sequential pat-
terns in sequence databases. Standard algorithms, such as
BIDE+ has a user-specified threshold named minimum support
(a value in [0,1]). In the proposed method, we cannot set
this parameter, and the only possibility is to prepare suitable
training data.

IV. EXPERIMENTS

In this section, we present experiments showing the perfor-
mance of the method and the ability to recognize transposed
sequences. We had to prepare datasets with input data and
the desired output with the sequence separated from the
surrounding noise. Such sequences will be shown at the neural
network output when a sequence is identified in the data. An
example of such a training pair is presented in Fig. 4. The
neural network CNTK script and the data generator is available
at https://github.com/DiscoveringSequentialPatterns/.

A. Training

We trained U-Net with the backpropagation algorithm with
the Adam optimizer [25], which sets the learning rate in
an adaptive manner. That helps to leave training error local
minima. Generally, the Adam optimizer is a combination of
several earlier deep learning optimizers and allows achieving
excellent results in a broad area of tasks. The momentum term
was set to 0.9 [26]. The learning rate was set at 1×10−4 during
the first 2-4 epochs. Then, it remained constant at 1 × 10−5.
Establishing the loss function was an essential element in the
case of the U-Net network. We applied the Dice-Sørensen
coefficient (DSC) [27], [28] which compares pixel-wise a
desired and the actual output image of the sequence (1 means
perfect match, 0 vice-versa). It defines the similarity of two
samples

DSC =
2
∑n

i=1

∑m
j=1 XijYij

1 +
∑n

i=1

∑m
j=1 Xij +

∑n
i=1

∑m
j=1 Yij

, (1)

where X is a training pattern, Y is the output from the U-
Net network. Of course, unlike in the case of real-life images,
sound, etc., in the paper, during the training, we did not use any
data augmentation; the input data will always have the same
configuration. Obviously, we have to provide the sequence
examples as they are, without any modification. Moreover,
as the sequential mining data are very peculiar compared to
images, sound, etc., we checked the impact of the minibatch
value to the training. We found out that the best results were
obtained with minibatch = 1, see Figure 5.

B. Experiment 1

In this experiment, we used the U-Net network with 128×
256 character input size (n = 128 and m = 256). We
generated 196× 104 different random training sequences with
injected random numbers (not from a sequence itself) and a
dictionary of 128. The size of the search sequences was in the
range of [5,10] characters, and there were several sequences in
each training input-output matrices (black and white images).
For the analysis of the selected algorithms, we used the SPMF
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Fig. 5. Accuracy and training time (epochs) for various values of minibatch.

TABLE I
SPEED COMPARISON OF THE PROPOSED METHOD TO THE STANDARD

SEQUENCE MINING ALGORITHMS. SPADE WAS IMPLEMENTED IN THE
PARALLELIZED VERSION. IN THE CASE OF U-NET, MIN SUPPORT WAS

NOT TAKEN INTO ACCOUNT. THE MOST IMPORTANT IS THE COMPARISON
WITH BIDE+ AS BOTH METHODS FIND CLOSED SEQUENCES.

min GSP SPADE BIDE+ U-Net
support time[ms] time[ms] time[ms] time[ms]

0.6 9712 1118 7 364.8
0.3 9802 1119 8 364.8
0.2 10465 1169 8 364.8
0.1 9817 1169 9 364.8

0.05 9730 1272 23 364.8
0.01 10967 1299 204 364.8

0.005 13023 1431 238 364.8
0.003 17866 1159 365 364.8
0.002 2126 787 364.8

0.0005 3093 901 364.8

open-source data mining library [29]; it requires that each
transaction is separated by number -2. This element has been
added after each last element belonging to the sequence. In
the case of the U-Net network used in this experiment, we
could encode up to 256 characters in one input-output image
(as described earlier, the applied encoding scheme resulted in
data similar to two-dimensional images). The first step was
to check whether each of the sequences was correctly found
by the algorithms and the U-Net network. In the experiment,
all the algorithms returned the intended sequences. Then,
we could proceed to check the neural network performance
against the standard algorithms. We studied the impact of the
min support parameter on the performance of the algorithms
on the tested hardware. In the case of the neural network,
it is not possible to provide this parameter; therefore, the
processing time is constant for each case. We can observe
that the network detects the sequence in each case faster than
the GSP and SPADE algorithms. However, in the case of
the BIDE+ algorithm [12], after changing the min support
parameter to 0.003 (discovering longer sequences) it works
slower than the U-Net network, what means that it is faster
only for very short sequences. For longer sequences, the U-
Net sequence discovery is faster, and the speed gain increases
with the sequence length.



TABLE II
EXPERIMENT WITH FINDING TRANSPOSED SEQUENCES BY TWO U-NET

NETWORKS OF DIFFERENT SIZES

U-Net 1 U-Net 2
Number of elements (dictionary) 128 256

Max. number of elements in a seq. 256 512
Percent of elements found correctly 94.8% 95.5%

Percent of elements found 99.7% 99.8%
Time 3.8 ms 19.5 ms

TABLE III
EXAMPLE OF FINDING SEQUENCES TRANSPOSED FROM THE TRAINING

SEQUENCES

Network output for
the transposed seq.

35 60 83 30 16 60 16 30 35 83 16 30 35 60
35 60 16 30 16 35 60 30 30 16 60 35 83 30
60 35 16 30 35 16 60 60 16 35 30 60 35 16
30 60 30 83 16 35 83

Desired network
output or the
transposed seq.

35 60 83 30 16 60 16 30 35 83 16 30 35 60
83 35 60 16 30 83 83 16 35 60 30 83 30 16
60 35 83 30 60 35 16 83 30 35 16 60 60 16
83 35 30 60 35 16 30 83 60 30 83 16 35 35
16 60 83

The same sequence
but not transposed
on the network out-
put

35 16 60 83 30 35 16 60 83 30 35 16 60 83
30 35 16 60 83 30 35 16 60 83 30 35 16 60
83 30 35 16 60 83 30 35 16 60 30 35 16 60
30 35 16 60 30 35 16 83 30 35 16 60 83

Desired network
output for not
transposed seq.

35 16 60 83 30 35 16 60 83 30 35 16 60 83
30 35 16 60 83 30 35 16 60 83 30 35 16 60
83 30 35 16 60 83 30 35 16 60 83 30 35 16
60 83 30 35 16 60 83 30 35 16 60 83 30 35
16 60 83

C. Experiment 2

The next experiment was to check how the trained network
behaves when the sequence elements are recorded in the
analyzed transactions in a different order. In other words, we
test the trained network with transposed sequences. Example
testing string: 1 9 2 4 3, 2 7 1 6 3, 3 5 1 8 2, and the
searched items are: 1 2 3. The experiment was carried out
on two network architectures. Network 1 was used in the
previous experiment with the previously described architecture
— Network 2 with the same layout of layers with the increased
input size. Increasing the input size is reflected in the entire
architecture by increasing the size of all feature maps by two.
We generated data for each U-Net network according to its
architecture, with 5 × 105 test strings containing a hidden
sequence. The data for the Network 1 contained 128 characters
in the dictionary, and the sequence length was 256. Network
2 analyzed data from the 256-character dictionary, and the
data had length 512. In the case of the data we generated,
we knew what elements we were looking for; thus, we could
determine what percentage of the transposed elements was
found. In this respect, each network was able to find over 99 %
of the transposed items. Both Networks 1 and 2 can perfectly
assess which elements belong to the sequence. The significant
difference is the network processing speed. Network 2 needs
a lot more time to calculate one example, but it gains 1 % on
the accuracy in the transposed sequence detection.

V. CONCLUSION

We presented a method for discovering frequent closed
sequences in data. The method uses the U-Net architecture
trained with the desired sequences for given input data. We
checked various types of convolutional neural networks, and
only U-Net was able to detect sequences. We used one-
hot number-level encoding for the input data and the output
(found) sequences. We also tried to use one-dimensional en-
coding without success. The trained network detects sequences
unseen during training, and even consisting of a new set of
numbers. The method can efficiently analyze large datasets.
Moreover, the workload can be distributed into many GPU
devices. The method is less efficient than standard algorithms
(e.g., GSP, SPADE) only in the case of very short sequences,
usually impractical in real-life applications. Generally, the
proposed method is more efficient for real-life usage as it
analyses a long window at once. It should be mentioned that
the paper concerns finding any sequence, not matching patterns
from the training data sets. The disadvantage of the method is
the necessity of declaring the dictionary size and the size of
the window that analyses data. In the current version of the
system, we cannot determine the minimum support or time
constraints.
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