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Email: alceu@ppgia.pucpr.br

Abstract—Automatic facial expression recognition (FER) is
an important research area in the emotion recognition and
computer vision. Applications can be found in several domains
such as medical treatment, driver fatigue surveillance, sociable
robotics, and several other human-computer interaction systems.
Therefore, it is crucial that the machine should be able to
recognize the emotional state of the user with high accuracy.
In recent years, deep neural networks have been used with
great success in recognizing emotions. In this paper, we present
a new model for continuous emotion recognition based on
FER by using an unsupervised learning approach based on
transfer learning and autoencoders. The proposed approach
also includes preprocessing and post-processing techniques which
contribute favorably to improving the performance of predicting
the concordance correlation coefficient for arousal and valence
dimensions. Experimental results for predicting spontaneous and
natural emotions on the RECOLA 2016 dataset have shown that
the proposed approach based on visual information can achieve
concordance correlation coefficient of 0.516 and 0.264 for valence
and arousal, respectively.

Index Terms—Deep learning, Unsupervised learning, Repre-
sentation learning, Facial expression recognition

I. INTRODUCTION

The visual recognition of emotional states usually involves
analyzing a person’s facial expression, body language, or
speech signals. Facial expressions contain abundant and valu-
able information about the emotion and thought of human
beings. Facial expressions naturally transmit emotions even if
a subject wants to mask his/her emotions. Several researchers
suggest that there are emotional strokes produced by the
brain and shown involuntarily by our corps through the face
[1]. Emotions are an important process for human-to-human
communication and social contact. Thus, emotions need to be
considered to achieve better human-machine interaction.

In psychology research [1], [2], there are three emotion
theories to model the emotion state: discrete theory, appraisal
theory and dimensional theory. The discrete theory claims that
there exists a small number of discrete emotions (i.e., anger,
disgust, happiness, neutral, sadness, fear, and surprise) that
are inherent in our brain and recognized universally [3]. Such
a theory has been largely adopted in research on emotion

recognition. However, it has some drawbacks as it does not
take into consideration people who exhibit non-basic, subtle
and complex emotions like depression. It results that these
basic discrete classes may not reflect the complexity of the
emotional state expressed by humans. As a result, the appraisal
theory has been introduced. This is a theory where emotions
are generated through continuous, recursive subjective eval-
uation of both our own internal state and the state of the
outside world [3]. Nonetheless, the appraisal theory is still
an open research problem on how to use it for automatic
measurement of emotional state. Finally, for the dimensional
theory, the emotional state considers a point in a continuous
space. This third theory can model the subtle, complicated
and continuous emotional state. It models emotions using
two independent dimensions, i.e. arousal (relaxed vs. aroused)
and valence (pleasant vs. unpleasant) as shown in Fig. 1.
The valence dimension indicates how positive or negative
an emotion is, and it ranges from unpleasant to pleasant.
The arousal dimension indicates how excited or apathetic an
emotion is, ranging from sleepiness or boredom to frantic
excitement [4].

The typical computational approach for emotion recognition
is to take every single data as a single unit (e.g., a frame of
a video sequence) independently. It can be made as a stan-
dard regression problem for every frame using the so-called
static (frame-based) regressors. Many researches have been
scrutinized by predicting emotion in continuous dimensional
space from the recognition of discrete emotion categories.
However, emotion recognition is a challenging task because
human emotions lack temporal boundaries. Moreover, each
individual expresses and perceive emotions in different ways.
In addition, one utterance may contain more than one emotion.

Several deep learning architectures such as convolutional
neural networks (CNNs), autoencoder (AE), memory enhanced
neural network models such as long short-term memory mod-
els (LSTM), have recently been used successfully for emotion
recognition. Traditionally facial expression recognition (FER)
consists of feature extraction utilizing handcrafted represen-
tations such as local binary pattern (LBP) [5], [35]–[39],
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Fig. 1. Valence-Arousal 2D dimension plane [45].

histogram of oriented gradients (HOG) [7], [40], scale invari-
ant feature transform (SIFT) [6], Gabor wavelet coefficients
[28]–[33], [37], Haar features [31], [34], principal component
analysis [41], [42], 3D shape parameters [43] and then predict
the emotion from these extracted features. For instance, Shan
et al. [5] formulated a boosted-LBP feature and combined it
with a support vector machine (SVM) classifier. Berretti et
al. [6] computed the SIFT descriptor on 3D facial landmarks
of depth images and used SVM for the classification. Albiol et
al. [7] proposed a HOG descriptor-based elastic bunch graph
matching (EBGM) algorithm that is more robust to changes in
illumination, rotation, small displacements and that achieved a
higher accuracy compared to the classical Gabor–EBGM ones.

A number of studies in the literature have focused on
predicting emotion from facial expressions by using deep
neural networks (DNN). Zhao et al. [8] combined deep belief
networks (DBN) and multi-layer perceptron for FER. Mostafa
et al. [9] used recurrent neural networks to study emotion
recognition from facial features. A large majority of these sci-
entific studies had been carried out using handcrafted features.
Despite the fact that these approaches reported good accuracy
for the prediction, the handcrafted feature has its inherent
drawbacks; either unintended features that do not benefit
classification may be included or important features that have
a great influence on the classification may get omitted. This
is because these features are “crafted” by human experts, and
the experts may not be able to consider all possible cases and
include them in feature vectors.

With the recent success achieved in deep learning, a trend
in machine learning has emerged towards deriving a repre-
sentation directly from the raw input signal. Such a trend
is motivated by the fact that CNNs learn representation and
discriminant functions through iterative weight updated by
backpropagation and error optimization. Therefore, CNNs
could include critical and unforeseen features that humans
hardly come up with and hence contribute to improving the
performance. CNNs have been employed in many works but

oftentimes, they require a high number of convolutional layers
to learn a good representation due to the high complexity
of facial expression images. The disadvantage of increasing
network depth is the complexity of the network as the train-
ing time, which can grow significantly with each additional
layer. Furthermore, increasing network complexity requires
more training data and it makes it more difficult to find the
best network configuration as well as the best initialization
parameters.

In this paper, we introduce unsupervised feature learning
to predict the emotional state in an end-to-end approach. We
aim to learn good representations in order to build a compact
continuous emotion recognition model with a reduced number
of parameters that produce a good prediction. We propose a
convolutional autoencoder (CAE) architecture, which learns
good representations from facial images while keeping a low
dimensionality of the representation. The encoder is used to
compress the data and the decoder is used to reproduce the
original image. The representation learned by the CAE is
used to train a support vector regressor (SVR) to predict the
affective state of individuals. In the proposed architecture we
did not take into account the temporal correlation between
adjacent frames. The main contributions of this paper are: (i)
learning a compact but meaningful representation of continu-
ous affective states; (ii) the representation is learned directly
from the raw images; (iii) the representation is learned from
unlabeled raw data and it achieves concordance correlation
coefficients (CCCs) that are comparable to the state-of-the-art
in continuous emotion recognition.

The structure of this paper is as follows. Section II provides
the most recent studies on emotion recognition from facial
expressions. Section III introduces the proposed approach. In
Section IV, we describe the dataset used in this study. We
present our results in Section V. Conclusions and perspectives
of future work are presented in the last section.

II. RELATED WORK

Several studies have been proposed to model the FER
problem using raw face images with DNNs. Tang [10] used
L2-SVM objective function to train DNNs for classification.
Lower layer weights are learned by backpropagating the
gradients from the top layer linear SVM by differentiating the
L2-SVM objective function with respect to the activation of the
penultimate layer. Liu et al. [11] proposed a 3D-CNN and de-
formable action part constraints in order to locate facial action
parts and learn part-based features for emotion recognition. In
the same vein, Liu et al. [12] extracted image-level features
with pre-trained CNN models. Yu and Zhang [13] proved that
the random initialization of neural networks allowed to vary
network parameters and also renders the classification ability
of diverse networks. Because of that, the ensemble technique
usually shows concrete performance improvement. Kahou et
al. [14] proposed an approach that combines multiple DNNs
for different data modalities such as facial images, audio,
bag of mouth features with CNN, deep restricted Boltzmann
machine and the output of such modalities are averaged to



Fig. 2. An overview of the proposed architecture.

take a final decision. Liu et al. [27] presented a boosted DBN
to combine feature learning/strengthen, feature selection and
classifier construction in a unified framework. Features are
fine-tuned and jointly selected to form a strong classifier that
can learn highly complex features from facial images and
more importantly, the discriminative capabilities of selected
features are strengthened iteratively according to their relative
importance to the strong classifier. Mollahosseini et al. [44]
proposed a single component architecture made up of two
convolutional layers each, followed by max pooling and four
inception layers. The inception layers increase the depth and
width of the network while keeping the computational budget
constant.

So far, several approaches for FER have used CNNs with
different architectures and different image preprocessing tech-
niques. Mostly, they used supervised approaches that require
the labeling of a large number of face images, which is
expensive and time-consuming. This is a limitation because
nowadays a lot of unlabeled data are created continuously.
It is imperative that automatic FER deals with this case and
take advantage of it. The proposed approach differs from the
previous ones in a way that it has the ability to handle large
datasets with the unsupervised approach, to learn the inherent
relevant features without using explicitly provided labels and
then predict emotional state with high accuracy.

III. PROPOSED APPROACH

In this section, we describe the overall architecture of the
proposed approach, which is made up of three parts, as shown
in Fig. 2. A key component of the proposed approach is the
convolution operation and the autoencoder. Traditionally, most
studies on FER are based on handcrafted features. However,
after the recent success of CNNs in several classification
tasks, many works on FER are now based on supervised
approaches for representation learning using CNNs. In contrast
to previous works in FER, the proposed approach starts with
the supervised learning of a CNN on a source dataset for a
classification task. The learned weights of the convolutional
layers are reused in a CAE, which is trained on a target dataset
in an unsupervised fashion. The meaningful representation
learned by the CAE on the target dataset is used to train a
regression model to predict continuous emotions.

In the first stage, we begin with training a CNN on a source
dataset for a classification task. The idea is to use the transfer

Fig. 3. Pre-training a CNN in a source dataset for a classification task

TABLE I
PRE-TRAINING THE CNN ARCHITECTURE

Layers
Type

Filter
Dimension

Kernel
Size Activation

Conv2D 64 3×3 ReLU
BatchNormalization - - -
Conv2D 64 3×3 tanh
Max Pool - 2×2 -
BatchNormalization - - -
Conv2D 128 2×2 ReLU
Max Pool - 2×2
Flatten - - -
Fully Connected 100 - tanh
Dropout(0.5) - - -
Fully Connected 50 - ReLU
Fully Connected 10 - tanh
Fully Connected 7 - softmax

learning technique that allows us to import information from
such a trained model to jump start the development process of
the unsupervised approach on a new or similar task. The key
concept is to use FER 2013 dataset, which has been used in
ICMLW20131 [10] to recognize discrete emotions in pictures.
This dataset provides a large number of facial images with
emotional content to train a CNN. Once the CNN model is
trained on the FER 2013 dataset, we use the convolutional
layers (CLs) of such a pre-trained CNN to initialize the CLs
of the CAE, as shown in Fig. 3.

The architecture of the proposed CNN is described in
Table I. The architecture proposed by Sun et al. [15] which
achieved 67.8% of accuracy on the test set of the FER 2013
dataset. In order to enhance the learned representation and
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Fig. 4. Proposed Convolutional Autoencoder (CAE)

reduce the number of parameters of the network to achieved
a best trade-off between complexity and the amount of data
available for training, we reduced the number of CLs and fully
connect layers (FC). The CNN model has three CLs and four
FCs as shown in Table I. The first CL has 64 filters of size
3×3, ReLU activation followed by a batch normalization (BN)
layer. The second CL takes as input the response-normalized
feature maps of the first CL and filters it with 64 kernels of
size 3×3, tanh activation followed by maxpooling operation to
reduce the dimensionality and avoid overfitting. The third CL
has 128 kernels of size 2×2 and ReLU activation. The first,
second, third and fourth FCs have 100, 50, 10, and 7 neurons
respectively. The CNN is trained up to 500 epochs using a
categorical cross-entropy loss function with Adam optimizer.

In the next step, we have the unsupervised approach for
representation learning. A CAE takes an face image as input
and tries to reconstruct it back using a reduced number of
units from the latent space representation. A CAE is made up
of an encoder and a decoder part. The image is passed through
the encoder, which is a sequence of CLs that produces at the
encoded layer a low-dimensional representation of the face
image called latent space representation. The decoder takes
this latent space representation from the encoded layer and
try to reconstruct the original image. The decoder part is made
up of a sequence of transposed convolution (or deconvolution)
layers which increase the resolution of the units of the latent
space. The architecture of the proposed CAE is shown in
Fig. 4. The convolutional encoder has three CLs and one fully
connected layer which were ”transferred” from the pre-trained
CNN. The encoded layer is in fact a FC layer with a certain
number of neurons. The decoder part has three transposed
CLs. The first transposed CL filters the output of the encoded
layer with 128 kernels of size 2×2, ReLU activation and an
upsampling layer. The second CL takes as input the output of
the first transposed CL and filters it with 64 kernels of size
3×3, tanh activation followed by an upsampling layer. Finally,
the third CL has 64 kernels of size 3×3, ReLU activation
connected to the outputs of the second CL.

In the final step, we have the supervised approach for the

regression task that uses as input features the representation
learned at the encoded layer of the autoencoder. An SVR is
trained with the features generated by the CAE with the aim of
predicting continuous emotions. We follow the same strategy
that has been used in AVEC 20162 [21] to predict arousal
and the valence for each video frame. We use grid search to
find the best combination of the complexity parameter C and
epsilon ε of the SVR that maximizes a performance measure.

A. Post-Processing

As the proposed architecture does not take into consider-
ation the temporal correlation between adjacent frames, this
may affect the predictions. To circumvent this problem, we
post-process the predictions with a median filter, scaling,
centering, and delay compensation which together allow us
to improve the performance.

Median filtering smooths our predictions by reducing the
high-frequency components by filtering the 1D output array
with a window of size between 0.04 and 20 seconds. The
scaling factor βtr is the ratio of the gold standard (GStr) and
the prediction (Prtr) as shown in (1) over the training set. The
prediction on the development set is multiplied by the factor
βtr with the purpose of rescaling the predictions as shown
in (2).

βtr =
GStr

Prtr
(1)

Pr′dev = βtr · Prdev (2)

The centering technique entails just subtracting the predic-
tions (y) by the mean of gold standard predictions (ȳGS) as
shown in (3), where y′ is the corrected value.

y′ = y − ȳGS (3)

In the annotation process of facial expression, the annotator
needs to sense the stimulus, perceive the emotional message
and make a decision in real time. Then, we note a reaction lag

2Audio-Visual + Emotion Recognition Challenge



between the annotation and the underlying emotional content.
Therefore, the ratings make by this annotator considering each
dimension may not be reliable and match with the reality. [23]
argues that the delay varies between different raters and can
range anywhere between 2-10 seconds. To deal with it we use
the delay compensation of annotation. The delay compensation
is basically achieved by shifting the input features relative to
the ground truth labels during the training and testing.

IV. DATASETS

In this section we present the source dataset used for
training the CNN for the classification task and the target
dataset used for representation learning and the regression task.
Furthermore, we also present the preprocessing techniques that
have been used to detect and align face images within video
frames of the target dataset.

A. FER 2013 Dataset

The FER 2013 dataset has been created by Carrier &
Courville and it is publicly available3. We used the FER
2013 dataset to train a CNN for the task of classifying facial
expressions, as the starting point in the pre-training stage for
the proposed model shown in Fig. I. The FER 2013 dataset is
made up of grayscale images of 48×48 pixels that comprise
six acted emotions (disgust, anger, fear, joy, saddens, surprise)
and neutral and it is split into 28,709 images for training, 3,589
for validation and 3,589 for test.

B. RECOLA Dataset

To train and evaluate the proposed CAE architecture and
the SVR, we use the RE-mote COLlaborative and Affective
(RECOLA) dataset introduced by Ringeval et al. [18] to study
socio-affective behaviors from multimodal data in the context
of remote collaborative work for the development of computer-
mediated communication tools [19]. However in this study
we use the same subset of the RECOLA dataset that was
used in the Audio/Visual Emotion Challenge and Worksh
(AVEC) 2015 and 2016 challenges [17], [21] as we do not have
access to the full dataset. This subset contains four modalities
that are audio, video, electrocardiogram (ECG) and electro-
dermal activity (EDA). The dataset is split equally in three
partitions, training (9 subjects), validation (9 subjects) and test
(9 subjects) by stratifying (i.e., balancing) the gender and the
age of the subjects. The labels (valence and arousal) are re-
sampled at a constant frame rate of 40 ms. In addition, we do
not have the labels for the test set. We ensure that no validation
data is used for unsupervised feature learning. The CAE has
been trained with all unlabeled video data.

C. Face Detection and Alignment

On FER several obstacles appear in our path to achieve a
suitable prediction. One of them being the fact that humans
as unpredictable entities are in a constant movement even in a
face to face conversation and because of this, sometimes, the

3https://www.kaggle.com/c/challenges-in-representation-learning-facial-
expression-recognition-challenge/

subject does not look directly into the camera. Other issues
arise like a delay on the annotated labels that is imposed by
the annotator and the absence of bounding box coordinates
for several frames. Therefore, we evaluate different strategies
to avoid these problems and end up with good quality facial
images from developing our approach.

We started with the dropping frames issue. Over the
RECOLA dataset, a certain number of frames do not have the
bounding box coordinates to extract the face. Even with our
own-implemented face-detector we cannot extract the section
over the image that contains the subject’s face for all the
frames. Because of this, we tried to preserve all the dataset by
using the entire image without the bounding box. However,
the frame quality selection to filter detected face is far from
the frontal image and the delay compensation is then used
to realign labels and frames in order to compensate the late
reaction of annotators. By doing so, we reduced the dataset
size, which is actually not a good option for our approach,
because the unsupervised algorithms perform well with a large
amount of data. Thus, instead of dropping the blank frames
or frames where faces are not well detected, we decided to
replace them by other frames that were well detected. It is a
kind of data augmentation strategy whereby the frames without
the bounding box have been slightly changed to detect the face
of participants.

V. EXPERIMENTS AND RESULTS

This section presents the metrics used and the experiments
undertaken to evaluate the proposed approach. The experimen-
tal results are analyzed and compared to previous works.

A. Evaluation Metrics

Concordance correlation coefficient (CCC) [16] is calcu-
lated as the evaluation metric for the AVEC challenges [17],
[21]. It combines Pearson’s correlation coefficient (PCC) with
the square difference between the mean of the two compared
time-series as denoted in (4).

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(4)

where ρ is the PCC between two time-series (e. g., prediction
and gold standard), σ2

x and σ2
y are the variance of each time-

series and µx and µ are the mean value of each time-series.
As a result, predictions that are well correlated with the gold
standard but shifted in value are penalised in proportion to the
deviation.

CCC will help to evaluate emotion recognition in terms
of continuous time and continuous valued dimensional affect
into two dimensions: arousal and valence [17]. The problem
of dimensional emotion recognition can thus be posed as a
regression problem through these two dimensions.

B. Experimental Setup

For raw signal, we cropped faces of the subject’s video
to have the images with the size 48×48. The image size
48×48 is used to reduce the computation complexity and



because the pre-trained model used the FER 2013 dataset,
which consists of 48×48 pixel grayscale images of faces. To
train the proposed model, we initialized the network with the
pre-trained weights from the FER dataset. We used the Adam
optimization method and the mean square error (MSE) as loss
function with a fixed learning rate of 10−5 throughout all
experiments. We evaluated different batch sizes, learning rates
and epochs in order to determine the best setup for training
the CNN model.

The CAE uses the same CL of the pre-trained CNN model.
On the other hand, all FC layers are replaced by a encoded
layer, which is in fact represented as a FC layer. We evaluated
different dimensions for the encoded layer of the CAE, as
shown in Table III. For regularization of the network, we also
used dropout with p=0.25 for the encoded layer. This step is
important as our models have a large number of parameters
and not regularizing the network makes it prone to overfitting
on the training data.

We have carried out different experiments by freezing
the CLs and fine-tune (training) just the encoded layer as
shown in Table II. This means that the weights of the CNN
learned in the classification task do not change. Alternately,
we unfreeze progressively the CLs from the deeper to the first
CL and retrain the network with the RECOLA dataset in an
unsupervised fashion.

TABLE II
CCC SCORES FOR AROUSAL AND VALENCE DIMENSIONS BY FREEZING

DIFFERENT NUMBER OF CLS.

CCC
Dimension 0 CL frozen 2 CL frozen 1 CL frozen
Valence 0.397 0.399 0.516
Arousal 0.027 0.035 0.264

We noticed that unfreezing only the deepest CL gives the
best result. By the way, when all CLs are frozen, the model did
not train properly, meaning that the value of the loss function
did not decrease significantly. In the end, a chain of post-
processing methods is applied, namely, median filtering (size
of window was between 0.04s and 20s) [20], centering, scaling
and delay compensation as described in Section III-A. Any
of these post-processing techniques were kept when we have
observed an improvement in the CCC.

C. Experimental Results

Table III shows the CCC scores achieved by the proposed
approach when the SVR is trained on the representation
learned by the CAE, for different dimensions of the encoder
layer and delay compensation. We can see that when the
encoder layer has a low dimension, the CCC score is very
low as well. However, the CCC scores increase as the encoder
layer dimension increases, and the best CCCs are achieved for
a 900-dimensional encoded layer for both arousal and valence
dimensions. This is due to the fact that by increasing the
dimension of the encoder layer the CAE is able to learn more
relevant representations. Nonetheless, Table III also shows that
beyond 1,000 units, the CCC scores do not increase. This can

be explained by the fact that the CAE does not find novel
relevant features and this behavior is related to the size of the
training set. By increasing the number of training samples,
the CAE will probably continue to capture the more relevant
features.

TABLE III
CCC SCORES FOR AN SVR TRAINED ON FEATURES TAKEN FROM THE
ENCODED LAYER OF THE CAE. THE CCC SCORES FOR AROUSAL AND

VALENCE DIMENSIONS CONSIDER A DELAY COMPENSATION OF 40 OR 30
FRAMES.

Encoded Layer Delay
Dimension Dimension Compensation CCC

Valence 100 40 0.197
Valence 500 40 0.324
Valence 700 40 0.361
Valence 900 40 0.516
Valence 1000 40 0.365
Valence 100 30 0.195
Valence 500 30 0.384
Valence 700 30 0.392
Valence 900 30 0.498
Valence 1000 30 0.395
Arousal 100 40 0.018
Arousal 500 40 0.071
Arousal 700 40 0.151
Arousal 900 40 0.264
Arousal 1000 40 0.119
Arousal 100 30 0.031
Arousal 500 30 0.092
Arousal 700 30 0.162
Arousal 900 30 0.257
Arousal 1000 30 0.114

We compare the performance achieved by our approach
against the current state-of-the-art for the RECOLA dataset.
Table IV shows the results for the valence dimension that
predicts how positive or negative the emotion is and for the
arousal dimension that shows how the excitation is. Most of
these results have been submitted to the AVEC2016 challenge
which used a subset of RECOLA dataset encompassing only
27 participants. We observed that the results obtained by
Tzirakis et al. [24] are slightly higher than the proposed
approach because they employed the RECOLA dataset, which
has data from 46 participants and they have also modeled
the temporal correlation between adjacent frames using an
LSTM. The prediction of the valence dimension achieved
by our approach outperforms Han et al. [25] even though
the prediction of the arousal dimension remains the same. In
comparison with AVEC2016 Baseline [21], the prediction of
the valence dimension (unpleasant to pleasant) of the proposed
approach outperforms the appearance features and it is slightly
higher than the geometric features. On the other hand, the CCC
for the arousal dimension (the degree of excitement) achieved
by the proposed approach is slightly lower than those achieved
with appearance and geometric features.

VI. CONCLUSION

In this paper we have proposed a novel approach for contin-
uous emotion recognition based on convolutional autoencoder
(CAE) and support vector regressor (SVR). In the first step the



TABLE IV
PERFORMANCE COMPARISON BETWEEN THE PROPOSED APPROACH

(CAE+SVR) AND OTHER STATE-OF-THE-ART APPROACHES.

Approach Features Valence Arousal
Tzirakis et al. [24] Raw signal 0.620 0.435
AVEC 2016 Baseline [21] Appearance 0.486 0.343
AVEC 2016 Baseline [21] Geometric 0.507 0.272
Han et al. [25] Mixed 0.265 0.394
Ortega et al. [26] Deep 0.433 0.252
Proposed Approach Raw signal 0.516 0.264

a meaningful representation is learned from a close-related
source dataset but for a classification task. Such a learned
representation is used to initialize the CAE, which is trained
on a target dataset in an unsupervised fashion. Finally, the
representation learned by the CAE on the target dataset is
used to train a regression model based on SVR.

The proposed approach produces a compact but meaningful
representation that outperformed several state-of-the-art ap-
proaches on the AVEC 20016 dataset. As a future work we
plan to evolve the proposed approach by capturing the tempo-
ral correlation between adjacent frames as such an information
seems very useful in continuous emotion prediction.
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Memisevic, P. Vincent, A. Courville, Y. Bengio, R. C. Ferrari, et
al., “Combining modality specific deep neural networks for emotion
recognition in video,” in 15th ACM Intl Conf on multimodal interaction,
pp. 543–550. ACM, 2013.

[15] B. Sun, C. Siming, L. Liandong, J. He, L. Yu, “Exploring Multimodal
Visual Features for Continuous Affect Recognition,” in 6th Intl Worksh
on Audio/Visual Emotion Challenge, pp. 83-88, ACM, 2016.

[16] I. Lawrence K. Lin, “A Concordance Correlation Coefficient to Evaluate
Reproducibility,” Biometrics, vol. 45, pp. 255–268, JSTOR, 1989.

[17] F. Ringeval, B. Schuller, M. Valstar, S. Jaiswal, E. Marchi, D. Lalanne,
R. Cowie, M. Pantic, “AV+EC 2015: The First Affect Recognition
Challenge Bridging Across Audio, Video, and Physiological Data,”in 5th
Intl Works on Audio/Visual Emotion Challenge, pp. 3-8, ACM, 2015.

[18] F. Ringeval, A. Sonderegger, J. Sauer, D. Lalanne, “Introducing the
RECOLA multimodal corpus of remote collaborative and affective
interactions,”in 10th IEEE Intl Conf and Works on Automatic Face and
Gesture Recognition (FG), pp. 1-8, IEEE, 2013.

[19] F. Ringeval, A. Sonderegger, B. Noris, A. Billard, J. Sauer, D. Lalanne,
“Humaine Association Conf on Affective Computing and Intelligent
Interaction,”pp. 448-453, 2013.

[20] F. Ringeval, B. Schuller, M. Valstar, R. Cowie, M. Pantic, “in AVEC
2015: 5th Intl Audio/Visual Emotion Challenge and Works, pp. 1335-
1336, 2015

[21] M. Valstar, J, Gratch, B. Schuller, F. Ringeval, D. Lalanne, M. Torres
Torres, S. Scherer, G. Stratou, R. Cowie, M. Pantic, “AVEC 2016:
Depression, Mood, and Emotion Recognition Works and Challenge,”
in 6th Intl Works on Audio/Visual Emotion Challenge, pp. 3-10, ACM,
2016.
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