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Créteil, France
siarry@u-pec.fr

Adel M. Alimi
REGIM-Lab.: REsearch Groups

in Intelligent Machines, University of Sfax,
National Engineering School of Sfax (ENIS),

BP 1173, Sfax, 3038, Tunisia
adel.alimi@ieee.org

Abstract—Deep learning (DL) has been expensively applied in
multiple fields like computer vision, speech recognition and natu-
ral language processing. The field of Epileptic seizure prediction
didn’t receive the deserved attention by DL community, even
though, deep neural networks can handle the challenging task of
onsets prediction whilst achieving the highest rates of sensitivity,
despite the complex nature of EEG signals. In the literature,
this issue was addressed differently most of the time using
handcrafted temporal and spectral features, machine learning
techniques and rarely deep learning with extracted features. In
this paper, we introduce an LSTM model designed to address
the chaotic nature of an EEG signal in order to predict pre-ictal
and inter-ictal states. Our model is evaluated on the publicly
available CHBMIT database. We achieved an average sensitivity
rate of 0.84 using a Raw EEG data segment as input to the
LSTM model.

Index Terms—feature learning, feature extraction, epileptic
seizures prediction, raw EEG data, long-short term memory

I. INTRODUCTION

Electroencephalogram (EEG) is the most reliable tool used
by clinicians during the diagnosis process of epileptic patients.
It helps to discern borders of pre-ictal, ictal, post-ictal and
inter-ictal periods. The differentiation between these periods
is very crucial to answer some clinicians’ questions like the
detection of seizures triggers.

The international league against epilepsy [1] defines epilep-
tic seizures as a transient occurrence of signs and/or symptoms
due to abnormal excessive or synchronous neuronal activity in
the brain. The common words employed in several definitions
of epileptic seizures ( [2], [3] and [4]) are: sudden, excessive,
abnormal, paroxysmal, neural discharge.

Intracranial electroencephalography (iEEG) uses electrodes
placed directly onto the exposed surface of the brain. This
type of recordings contribute to the outline of a larger area,

defined as irritative zone, that generates abnormal inter-ictal
events/potentials. It is employed to discern the epileptogenic
zone in order to proceed to surgery. While scalp EEG is
recorded by using electrodes placed onto the scalp, this type
is more susceptible to artifacts/noise than iEEG. The scalp
EEG is a practical complement to the diagnosis of seizure
disorders, but it is not clear that an EEG pattern should be
essential to seizures definition [5]. The advantage of scalp
EEG resides in its ease of use. Elaborating a comparison
between these two types of sensors, [6] shows that the overall
average of prediction sensitivity for iEEG is around 80.5-
98.8%, although, it sits around 74-99.1% for scalp EEG.
The evolution of both frequency and amplitude over time
should be analyzed to distinguish seizures from other abnormal
activity in an EEG signal.

The capability of seizures prediction refers to the existence
of a preseizure state [7]. For such approach, ictal segments
(when the seizure occurs) are excluded from the processing.
The objective is to differentiate between the pre-ictal and the
inter-ictal states in order to prevent an incoming seizure.

Mainly, we can define two different approaches. The first
one is based on thresholds of one or multiple calculated
features. When the threshold value is exceeded, an alarm will
be generated to indicate an incoming seizure. This approach
was used by some researches for the aim of seizures prediction
[8], [9] and [10]. In the other approach, the use of machine
learning techniques shows a good efficiency to detect an
incoming seizure [11] [12] [13]. Various features can be
extracted from the EEG signal that is labeled based on the
type of segment and passed as a feature vector to classifiers
to perform the learning task [14] [15] [16].
During the past decades, machine learning techniques were
the only option for seizure prediction, since it can handle the
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high complexity of an EEG signal. In our case, we study the
differentiation between these two states in order to prevent
seizures attacks. Recently, researches in this field are giving
more importance to deep learning approaches. Seeing that
the latter showed high performances for images/identity and
speech recognition. The only disadvantage is the need of a
larger amount of data in order to perform the learning phase
of DL techniques.

Convolutional Neural Networks are the most used DL
technique for epilepsy prediction for its capability to process
images and signals exceedingly well. Due to the availability
of big data for epileptic patients, some researchers tested
Long Short-Term Memory (LSTM) to predict seizures. Perfor-
mances are close to those achieved by CNNs. Furthermore, the
time of execution and the required resources are considerably
less compared to CNNs requirements.

In this work, we present for the first time, an LSTM learned
with Raw EEG signals (no pre-processing for noise and no
feature extraction/selection) for the prediction of epileptic
seizures. We evaluate our model on the CHB-MIT dataset.
It is a publicly available dataset that contains continuous long
term scalp EEG data for pediatric subjects from the Boston
Children’s Hospital. Since this work is about a challenging
sequence labeling with LSTM, it requires special handling.
Despite the fact that the proposed model achieved great results,
it consumed a lot of resources and time. We tried to handle
this problem by controlling the time steps limit fed into the
LSTM model.
The rest of this paper is divided into 3 main sections. Related
papers to the field of epileptic seizures detection/prediction are
presented in the section II. In section III, we describe the used
dataset and the proposed methodology for seizure prediction.
Results are discussed in section IV. And finally, the work is
concluded by presenting perspectives for future contributions.

II. RELATED WORKS

In order to get a complete overview of the state, we selected
more recent papers elaborated for seizures classification. This
part resumes popular researches in this field and does not
exclude any methodology.

Bhattacharyya et al. [17] proposed a multivariate approach
for patient specific EEG seizure detection. They employed a
multivariate extension of the Empirical Wavelet Transform.
The proposed architecture consists of selecting only 5 channels
out of the 23 from the CHB MIT database in order to reduce
the computation cost. The channel with the least standard
deviation was regarded as reference to calculate the mutual
information of other channels. The four channels with the
highest MI are selected with the reference channel. Then EMD
was applied to the selected 5 channels and instantaneous am-
plitudes and frequencies were calculated for each MODE. The
three features extracted are: Mean, Mean monotonic absolute
AM and Variance monotonic absolute AM. The Synthetic
Minority Over-sampling Technique (SMOTE) was used as a
technique to resolve the problem of imbalanced data. Authors
used three classifiers with a view to evaluate the proposed

system performances: RF, Linear Naive Bayes and K-NN. The
method proposed has achieved a max average sensitivity equal
to 97.91% and a max average specificity equal to 99.57% using
the RF classifier, with five adaptively selected EEG channels.
Lasitha et al. in their work used both Bonn and CHB MIT
databases to evaluate their work aiming to detect seizure onsets
based on both Fractal Dimension and Harmonic Wavelet
Packet Transform. Energy features from HWPT and FD are
extracted for all channels and epochs to construct the feature
vector passed to a Relevance Vector Machine (RVM) to
achieve classification.
Antoniades et al. in their work [18] proposed a system to detect
inter-ictal discharges from intracranial EEG signal. 18 subjects
assessed for temporal lobe epilepsy at King’s College Hospital
were included in this study. EEG data was recorded using 13
electrodes during alertness and sleep periods. Scores for each
trial of 325ms can be attributed from 0 to 4. This task was
performed by an expert epileptologist. By adding a 1-D filter
to every electrode signal as well as adding a bias term in order
to generate the feature map. A logistic regression is applied to
the output of this CNN’s hidden layer to classify intracranial
EEG features into non-IED, IED1, IED2 and IED3 classes. To
resolve the problem of unbalanced data, authors employed the
undersampling method for the non-IED class. Best accuracy
obtained in this study is 89% achieved by the multi-class CNN
approach.
A time-frequency analytic algorithm, denoted by LMD for
Local Mean Decomposition, was applied to the EEG signal
in order to detect seizure activity in [19]. LMD decomposes
the EEG signal into several Product Functions (PFs). Maximal
amplitude, minimal amplitude, average absolute value are
three time-domain features. Maximum, skewness and kurtosis
of PF’s power spectral density are three frequency-domain fea-
tures. Fractal Dimension, Renyi Entropy and Hurst Component
are also extracted for the first five PFs. Features are passed
to different types of classifiers: K-Nearest Neighbor, Back
Propagation Neural Network, Linear Discriminant Analysis,
un-optimized Support Vector Machine and Genetic Algorithm
optimized SVM. Authors performed five classification cases of
the Bonn epilepsy dataset and presented the obtained accuracy
of all classifiers. The average accuracy for all cases of the
proposed approach is about 98.10%.
When talking about Deep learning, Convolutional Neural
Networks have attracted the most interest in seizure prediction.
Yuan et al. proposed in [20] a new approach to the detection
of epileptic seizures based on the attentive representation of
the different channels of an EEG signal. The authors assume
that, in the field of epileptic seizure detection from multiple-
channel signals, several channels are unimportant and do not
give any information about the activities, but they add a lot
of noise to the signal which degrades the performance of a
detection system. Based on these facts, they proposed a multi-
view deep learning model that can accurately detect the onset
of epileptic seizures from multiple-path EEG signals. A deep
Convolutional Neural Network is proposed by the authors in
this paper. Comprising of 13 layers (5-convolutional layer, 5-



max-pooling and 3-fully connected).
A CNN of 3 blocks implementing normalization, convolution
and max pooling layers was used in [21]. The spectrum
obtained from the spectral information of the raw EEG signal
was fed to the CNN. Evaluated with only 13 cases of the CHB-
MIT database (a total of 64 seizures), it achieved an average
sensitivity of 81.2% with FPR at 0.16/h.
Khan et al. proposed a CNN architecture that contains six
convolutional layers. Extracted features were used to label
EEG segments (pre-ictal, inter-ictal and ictal classes) [22].
Wavelet transform was applied to each channel and for all EEG
bands. The output was then passed to the CNN. 15 cases from
the same database were used for the evaluation. 3 seizures out
of 18 were not predicted, which resulted in an average FPR
of 0.142/h.

One one side, Fourati et al. [23] showed the effectiveness
of recurrent neural networks in their initial work for SVM
learning. To add, the authors in [24] and [25] used Echo
State Network for EEG feature representation to discriminate
between calm and stress states.

On the other side, some studies evaluated LSTM for the
aim of seizures detection. In order to classify two states:
seizure and non-seizure, the LSTM model with a maxpooling
and softmax layers was proposed in [26]. The system was
evaluated with two types of EEG signals (clean and noisy),
and showed good results for both cases. Bonn dataset was used
for the performances evaluation. But since it does not contain
a long-term EEG data, it is not considered as a reliable dataset
to compare our results with for this study.
Yao et al. [27] proposed a model which combine an attention
mechanism and a Bidirectional Long Short-Term Memory
(BiLSTM) in order to exploit both spatial and temporal fea-
tures. This model aims to overcome seizure variabilities, thus
capturing essential seizure patterns. The system was validated
on the noisy data of CHB-MIT. Mean values of sensitivity and
specificity are 87.00% and 88.60% respectively, noted as the
highest rates of the current modern methods.
iEEG was employed by [28] to check for seizures related-
events (Spikes, RonS, Ripples and Baselines). Since they are
the clearest, it gives prominent results when processed with
an LSTM model.
The first authors who introduced LSTM deep learning models
for epileptic seizure prediction were Tsiouris et al. in their
work [29]. Various time and frequency domain features were
investigated in this study. In addition, correlation between
channels and graph theory measures were also calculated and
combined with the aforementioned features to construct the
feature vector which presents the input for 3 different LSTM
architectures. Tsiouris also studied the impact of the pre-ictal
window and the LSTM input size on the performance of the
proposed system. Unlike other studies using the CHB-MIT
databse, the evaluation was performed on the entire amount
of its data, achieving a very high level of sensitivity (0.990)
and low FPR (0.02/h) with a pre-ictal window of 120 min.
Hussein et al. deployed an LSTM network in order to extract
the most discriminative features related to series of onsets [26].

The proposed architecture consists of a 3 layers LSTM model
with a softmax classification layer on top of them. A perfect
accuracy was achieved for the binary classification of normal
and seizure EEG segments.
This work [30] proposes the implementation of deep learning
for the detection of normal, predictive and epileptic EEG
signals (normal, inter-ictal, ictal), without characteristics ex-
traction nor selection. The system automatically learns and
discovers the characteristics necessary for classification from
input data processing through multiple layers. System perfor-
mance is validated by the Bonn database, achieving 88.67%
accuracy, 95.00% sensitivity and 90.00% specificity.
Recalling information for long periods of time is basically the
default behavior of LSTMs, rendering them the best option
for long-term EEG signals processing.

III. MATERIALS AND METHODS

A. EEG data

We evaluated performances of our proposed method using
data from the CHB-MIT scalp long-term EEG dataset [31].
Data was recorded from 23 pediatric patients with intractable
seizures at Boston Children’s Hospital. Table I presents details
of the 24 cases (2 cases recorded for the same patient). In
this dataset, we found about 983 hours of EEG recordings
annotated by experts to identify the beginning and the end of
onsets in epochs with ictal activities. As shown in the Table
I, seizures are minor in duration compared with total EEG
duration of each case, leading to a very imbalanced data distri-
bution making the classification exceedingly challenging. 256
Hz was the sampling frequency of all recorded signals, with
16-bit resolution. For electrode positioning, the international
10–20 system was chosen.
Analysing files of all cases summary, we note that the montage
of channels changes within the case, so we opt for a manual
channel selection process to discern the common montage over
all epochs. Finally, we discern the 18 channels to be used in
this work: FP1, T7, P7, O1, F3, C3, P3, FP2, F4, C4, P4, O2,
F8, T8, P8, FZ, CZ and PZ. We used the complete amount of
data from CHB-MIT dataset (except three segments from the
case 12: chb12-27/28/29 since we can’t found the common
montage of selected channels in these epochs [29]).

Fig. 1. Different states representation of an epileptic patient’s EEG segment

B. Methodology

For the aim of seizure prediction, our deep network is
deployed to accomplish the high-level characteristics learning
of pre-ictal and inter-ictal states. Tsiouris tested four windows
to extract pre-ictal states: 15-30-60-120 minutes and compared
the obtained results. Since there are not a lot of differences



Fig. 2. Architecture of the proposed system

TABLE I
DETAILS OF ALL 24 CASES INCLUDED IN THE CHB-MIT DATABASE

Case #seizures Seizures duration EEG duration
(mm:ss) (hh:mm)

1 7 07:20 40:30
2 3 02:52 35:00
3 7 06:42 38:00
4 4 06:18 156:00
5 5 09:18 39:00
6 10 02:33 66:30
7 3 05:25 67:00
8 5 15:19 20:00
9 4 04:35 68:00
10 7 07:27 50:00
11 3 13:26 35:00
12 27 17:36 21:00
13 12 08:55 33:00
14 8 02:49 26:00
15 20 26:55 40:00
16 10 01:24 19:00
17 3 04:53 21:00
18 6 05:17 35:30
19 3 03:56 30:00
20 8 03:49 27:30
21 4 03:19 33:00
22 3 03:24 26:30
23 7 05:30 26:30
24 16 08:31 21:00

between the average rate of sensitivity of all tested windows,
we decided to choose one window for the rest of the analysis.
Leafing through all annotation files, we discover that some
seizures occur in the beginning of the epochs, thus, there is
not a sufficient duration to extract pre-ictal segments with a 60-
120 windows. Furthermore, some seizures occur consecutively
with an interval of less then 60-120 minutes. For these reasons,
we opt to test our method using a pre-ictal window of 15
minutes.
For the purpose of this study, ictal segments (when the seizure
occurs, annotated on SEIZURES-INFO file) are not included.
For each case, we extract pre-ictal and inter-ictal epochs, then
we apply a segmentation script in order to obtain epochs of 5
seconds duration. This segmentation window was proved by
[29] [32] to be the best for epileptic seizures analysis. All
obtained epochs were labeled based on the annotation files
accompanied with the database.
The Figure 1 shows how to differentiate between pre-ictal,

ictal and inter-ictal periods. The borders are generally iden-
tified by epileptologists. In the case where two onsets occur
consecutively, the set of segments between the first and second
onsets can be miss-labeled as inter-ictal and pre-ictal states.
To resolve this problem, all consecutive seizures should be
processed separately to ensure a correct labeling of the over-
lapped segments.
To overcome the imbalanced aspect of data, we carried out an
over-sampling augmentation technique to expand the amount
of samples in the pre-ictal class. The ratio of pre-ictal:inter-
ictal class differs between cases. Thus, for each case, we
tried to reach the ratio 1:1 or 1:2 to guarantee a significant
classification rate. Duplicated trials were selected randomly,
then the resulted set was shuffled.

We contribute by proving that the seizures prediction can be
carried out with a raw EEG signal. Thus, reducing extra-time
of feature extraction and making it suitable for a real time
application.
We conceptualize an LSTM model adapted to the nature of
the EEG signals with two LSTM Layers. Since the input
signal is a complex time series of 18x1280 time points, we
fixed the number of memory units at 500 for both LSTM
layers. We included a dropout layer with a probability of
training equal to 0.2. Two layers follow the LSTM layers:
a fully connected layer activated with ReLu function, and a
dense layer to discriminate between the pre-ictal and inter-
ictal states. which are The “softmax” activation was used
as function in the dense layer. We personalized the model
parameters using the popular Adaptative Moment Estimation
(Adam) optimizer. The LSTM network was built on Matlab
environment using the deep learning toolbox.

The training and testing phases are performed separately for
every subject, therefore making a subject-dependent approach.
This selection was predicated in line with our review of
recent studies on onsets prediction and the insufficient subject-
independent studies. Furthermore, carrying out a subject-
dependent experiments allows to handle the variability and
specificity of each subject and to compare the obtained results
with existing ones.

The evaluation of our model was elaborated through a 10-
folds cross-validation. For each case, trials were shuffled and
divided into 10 groups. One group was designed to hold-out
set and the remaining groups were used as training sets.



IV. RESULTS AND DISCUSSION

Deep Learning methods offer an automatic learning of
temporal dependency. In this work, we implemented a deep
architecture of an LSTM model for features learning appli-
cable for epileptic seizures prediction. The model was tested
on the CHB-MIT database and with only Raw data. As it is
known, neural networks are invulnerable to the noise in the
input data and in the mapping function, and can carry out
the tasks of learning and prediction even if some values are
missing. Neural networks have a high capacity to readily learn
linear and nonlinear relationships. For these reasons, we have
chosen to feed our LSTM with raw EEG segments with no pre-
processing against noise and artifact. Keeping the noise has
the advantage of guaranteeing that all ictal segments will be
retained because pre-processing may affect them since shapes
of the latter and artifacts can be similar.

In the other hand, we are facing the problem of imbalanced
data since the number of pre-ictal segments for each case
are minimum compared to the amount of pre-ictal segments
(For example: For the chb024, the ratio of interictal-class
to preictal-class instances is 5:1; for some other cases it is
even more imbalanced). This problem can affect notably the
classification rate, in the case where the accuracy measures
indicate excellent rates (such as 90%). However, the accuracy
is really only reflecting the underlying class distribution.
To resolve this problem, we chose to deal with it by an
over-sampling technique which consists of adding copies of
instances from the under-represented preictal-class.
The new datasets are fed to the LSTM model with a sequence
of 18 channels x 1280 time points.
To introduce the metrics used to evaluate performances of our
system, we define these items as:

• The number of segments properly detected as pre-ictal
state is noted True Positive rate (TP).

• The number of segments properly detected as inter-ictal
is noted True Negatives (TN).

• The number of segments incorrectly designated as pre-
ictal is noted False Positives (FP).

• The number of segments improperly classified as inter-
ictal is noted False Negatives (FN).

The well known expressions of these metrics are:
• Sensitivity (SENS) = TP/(TP + FN)
• Specificity(SPEC) = TN/(TN + FP)
• Accuracy = TP/ (TP+TN)*100%
• False Prediction Rate per hour (FPR (h−1))= FP/ Total

of hours
All obtained rates are presented in the Table II.
For the 24 cases in CHB-MIT, the average SENS, SPEC
and ACC are 84.60%, 90.16% and 88.89%, respectively. The
model provides a low FPR of 0.27 false alarms per hour.
The minimum FPR is obtained for the cases Chb04, Ch07
and Chb11. The standard deviations of sensitivity, specificity
and accuracy are 0.11, 0.08, and 0.09, respectively. As it can
be seen in Table II, using raw EEG samples of every 5-s
segments, we can achieve high performances varying across

cases. The best sensitivity attained for cases chb07 and chb11
is 0.98. On the other hand, we have obtained as worst result a
0.67 sensitivity rate for the case chb24. We deduce that when
seizures number exceeds 10, LSTM network underperforms in
prediction seizures, which can be justified by a high number of
non-spaced seizures causing a miss-classification of adjacent
states as explained in the Subsection III-B .

Cross-patient sensitivity, specificity and accuracy results
over all cases were illustrated on the Bar Chart 3. We can
notice a degradation of rates that affects some specific cases,
mainly Ch012 and Chb24. Many reasons can justify the
under-performances such as: signals with high signal to noise
ratio, number of consecutive seizures and the patients medical
history (we can’t confirm this fact since patients’ personal
information are private and cannot be accessed by the database
users).

In order to defend their methodology choice, Tsiouris et
al. [29] applied the proposed architecture on raw EEG data
for only 3 cases (Chb01,Chb02 and Chb14) and showed that
the results accuracy are better with feature extraction against
feature learning. They obtained an average accuracy of 74.00%
since their architecture failed to deal with the character of a
Raw EEG signal because it doesn’t include a sufficient number
of hidden memory units.
Along with their hypothesis, we decided to investigate more in
this direction and conceptualize a model adequate to receive
a raw EEG signal as input.
Since we didn’t find an other research that deploys LSTM
with a raw EEG segments for the aim of seizures prediction,
we compared our method with three different approaches
proposed recently by [27] in order to detect seizures and
no-seizures segments. The comparison focuses on this study
which was evaluated with the complete volume of CHB-MIT
database, being the premier public database consisting of long-
term EEG signals. Recently, the TUH EEG Corpus database
[33] became openly accessible letting easier validation. As
shown in Table III, our system outperforms the three afore-
mentioned models. in terms of specificity and accuracy. Thus,
the projected LSTM model is ready to produce higher seizure
prediction performance as compared with the work of Yao et
al..

Assuming once again that the proposed deep LSTM model
is conceptualized to handle the complex nature of the EEG
signal, using two LSTM layers and more hidden memory
units allowing for better feature learning. Our model is more
appropriate for real time applications than other based on
feature extraction techniques requiring high level of expertise
and familiarity with epileptic seizures characteristics.
Typical feature representation is learned by our model leading
to very satisfying results for seizures prediction. Furthermore,
we can apply the same architecture for seizures detection by
including ictal segments to the overall process.

V. CONCLUSION

Thinking of the safety and an improved quality of life for
epileptic patients, the need of predictive system is being very



TABLE II
EEG-BASED SEIZURE PREDICTION RESULTS

Case #seizures
Pre-ictal window: 15min

RAW EEG
SENS SPEC ACC FPR (h−1)

case01 7 0.92 0.94 93.42 0.12
case02 3 0.95 0.97 96.91 0.14
case03 7 0.93 0.93 93.53 0.11
case04 4 0.95 0.97 96.78 0.02
case05 5 0.88 0.90 89.48 0.25
case06 10 0.70 0.79 76.51 0.4
case07 3 0.98 0.98 98.74 0.02
case08 5 0.90 0.94 92.47 0.12
case09 4 0.92 0.97 95.53 0.03
case10 7 0.83 0.82 82.62 0.36
case11 3 0.96 0.99 98.24 0.02
case12 27 0.53 0.74 65.84 1.21
case13 12 0.82 0.87 84.96 0.37
case14 8 0.71 0.82 76.54 0.69
case15 20 0.73 0.81 78.09 0.47
case16 10 0.78 0.89 84.16 0.53
case17 3 0.96 0.99 97.99 0.03
case18 6 0.92 0.95 95.49 0.11
case19 3 0.95 0.96 96.04 0.12
case20 8 0.88 0.91 90.49 0.3
case21 4 0.95 0.95 95.49 0.13
case22 3 0.95 0.96 96.10 0.1
case23 7 0.88 0.88 88.21 0.45
case24 16 0.67 0.71 69.92 0.46

MEAN – 0.84 0.90 88.89 0.27
STD – 0.11 0.08 9.50 0.27

Fig. 3. Results of all cases grouped by SENS, SPEC and ACC

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED WORK WITH A RAW

EEG-BASED APPROACH

Ref #Cases #Channels Method
Results

SENS SPEC ACC

[27] 24 17
BILSTM 0.86 0.82 84.00

Attention mechanism 0.83 0.88 86 .00
+ LSTM

Attention mechanism 0.87 0.88 87.80
+ BILSTM

[29]
24 18 LSTM – – 74.00

Our
work

24 18 Deep LSTM 0.84 0.9 88.89

crucial. As Electroencephalogram is mainly used to diagnose
and detect seizures, researches in the field of onsets prediction
are generally based on it. Since this latter is well-known by
its complexity, it is important to adopt an adaptive model to
handle its chaotic nature.
Deep learning networks showed great performance for clinical
applications. For epileptic seizures prediction, LSTM has
been used for classification after a feature extraction step
that aims to reduce the high data dimensionality. LSTM as
a deep network can handle the high temporal dimension-
ality of EEG signal and learn more relevant features than
handcrafted extraction. In this paper, we showed how LSTM
can perform feature learning achieving unusual sensitivity
rates when using no pre-processed EEG signals. A Patient-
specific approach was described and tested with a predefined
LSTM architecture and some fixed parameters. As perspectives
for future contributions, we intend to implement a subject-
independent approach for epileptic seizure prediction which
generalizes the learning process by the mean of a high level
feature representation. Furthermore, we propose to investigate
the impact of the pre-ictal window, the input size and the
architecture complexity on the prediction performances. In
order to handle the exceedingly long sequences of EEG signals
with the proposed LSTM, we will focus on the possibility
of implementing LSTM with an encoder-decoder architecture.
This can reduce resources consumption and improve overall
results at the same time.
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