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Università degli Studi di Salerno
Salerno, Italy

fbardozzo@unisa.it

Sebastian Cano Uribe
Neuronelab, DISA-MIS
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Abstract—Pattern recognition methods for classification are
leveraged in the field of computational anatomy and neuroimag-
ing showing high reliability and applicability. Body-brain human
functions related to the motor-strength features can be discovered
by data integration and analysis of 3D brain images, phenotype
and behavioural information. This work is focused on the study
of feature-based interplay of 3D brain structures with motor-
strength information. In particular, this research introduces an
ensemble of supervised machine learning approaches for a binary
motor-strength classification (strong vs weak) based on 3D brain
anatomical features. The proposed approach has been evaluated
on 1113 case studies by obtaining well-defined features and
reaching the average accuracy of 72% on the test set.

Index Terms—Pattern recognition, motor-strength, machine
learning, classification, feature extraction.

I. INTRODUCTION

In the last decades, integrative and statistical data analysis of
body-brain related human functions have been based on high-
dimensional data sets of magnetic resonance images (MRI) in
combination with phenotypic and behavioural information [1].
Nowadays, machine learning and deep learning methodologies
are able to underline unknown aspects of the structure and
functioning of the living brain and their relations with human
body [2]. A central role in these type of studies is the reduc-
tion of dimensionality which derives from big-data analysis.
Particularly, machine learning feature extraction methods can
be applied to select the most important features of the set,

leading to a substantial reduction in data dimensionality [3]. In
addition, classical methodologies based on pattern recognition
for classification are being applied successfully in the field of
computational anatomy showing high reliability and usability.
Thus, this work is focused on the study of feature-based multi-
variate interplay of 3D brain structures with phenotypic motor-
strength information. In particular, an ensemble of supervised
machine learning approaches for motor-strength classification
based on brain anatomical features are introduced [4]–[8].

The latest and most advanced methodologies for feature
extraction in neuroimaging can provide high levels of recog-
nition accuracy with acceptable performance over time [10].
According to many scientists in the literature, it is possible to
distinguish different subject conditions or between patients and
controls with machine learning and deep learning approaches
based on the features extracted from the neural substrates.
For example, Lavagnino et al. introduce a methodology based
on Lasso for the identification of anorexia nervosa signs
[11]; moreover, Akhila et al. show neural networks based
methodologies for dementia detection [12]; finally, Shen et al.
provide random-forest based strategies for the representation
of the different fatigue stages [13].

This work is focused on the study of feature-based inter-
play of 3D brain structures with motor-strength information.
In particular, an ensemble of supervised machine learning
approaches for a binary motor-strength classification (strong
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Fig. 1. In Fig. 1 an overview of this work is provided. The boxes in the figure are numbered with letters so that they correspond to the letters of the
paragraphs and sub-paragraphs in the text. In box A, the process of data elicitation is described. In particular, neurological information and behavioural labels
are extracted and integrated with the Destrieux Atlas [9]. In box B the preprocessing step is described. In particular, missing values are removed, then the
dataset is normalized and split into train, test and validation. Some parametric tests are applied to analyze data distributions (box C ). In box D-1, the models
of ML employed in this work are shown ( (1) Random Forest, (2) Support Vector Machine with 3 Kernels (SVM Linear, SVM RBF, SVM Polynomial) and
(3) Logistic Regression). ML results are validated with 10.000 permutation tests (box D-2). Relevant results are summarized and displayed in Table II and III
and in Fig. 2 (see also box E).

vs weak) based on 3D brain anatomical features has been
introduced. A complete overview of the paper is shown in Fig.
1. Briefly, this work is organized as follows: Sec. II regards
materials and methods, particularly, the dataset features, the
pre-processing procedure and the applied machine learning
(ML) approaches: random forest (RF), support vector machine
(SVM) and logistic regression (LR). To support our analysis, in
Sec. III, qualitative and quantitative comparisons and results,
between the different adopted ML approaches are provided.
The proposed approach has been evaluated on several MRI
datasets by obtaining well-defined features that ultimately
provide an average accuracy of 72% in the test set. As it is
described in Sec. IV, motor-strength functions are effectively
related to interesting and specific subsets of 3D brain regions.
Thus, this work provides a novel and tested ensemble of
machine learning methodologies to investigate and explain
well-known and unknown relations between brain areas and
motor-strength experiments.

II. MATERIALS AND METHODS

In this work neurological and behavioral (motor-strength)
experimental results are analyzed over thousands of subjects
and for each of them, the experiments are carried out under
the same conditions. The entire methodology is described in
detail in the pipeline of Fig. 1. The results of these experiments
consist of the collection of strong-weak labels associated to
MRI data (see Fig. 1 box A and Sec. II-A). The cleaning of
the process, the dataset normalization and splitting for testing,
training, and validation are applied (see Sec. II-B and Fig.
1 box B). In Sec. II-D the three supervised ML approaches
adopted for the feature selection are described (RF, SVM
and LR). In Fig. 1 - box D-1 shows four different types
of brain anatomical measurements (Cortical Thickness, Mean
curvature, Volume, and Area) (see Sec. II-A). In order to define
the best applicable ML strategy, the analysis of the different
types of brain anatomical features was carried out; the results
can been seen in Sec. III and 1 - box D-1. Therefore, as it
is shown in 1 - box D(2) all the ML results are validated by
performing a permutation test (see Sec. II-D). In Sec. III, final



Fig. 2. 1-2-3 show the most significant areas obtained in each one of the
ML approaches, LR, SVM, RF, respectively. 4 shows the area shared by the
models.

results of the survey are commented and explained.
All the procedures are implemented with Python 3.7, using

Scikit-learn [14], and Pandas packages [15]; the visualisation
of the extracted ROIs in an inflated brain is performed using
FreeSurfer 6.0 [16].

A. Dataset and experiment description

1) Neuroimaging collection and feature description: The
dataset used in the experiments comes from the Human
Connectome Project (S1200) (HCP), published on March 1,
2017; it includes behavioural information and (MRI) of 1206
healthy participants between age 22 - 35. moreover, 1113 of

Fig. 3. General description of internal methodology applied in Fig. 1 Box
D-1 D-2 and textually explained in Sec. II-D. The red box shows the ML
approaches used; all of them are inputs to the blue box. Blue box lists, for
each ML approach step by step, how were the 4 models initialized, trained
and validated, feature extraction applied to select the most significant ROIs,
tested and finally approved by performing permutation test. The output of this
box is the input for the orange box where the ultimate results are presented
and visualised.

them present at least one three-dimensional (3D) T1-weighted
(T1w) MRI scan [17], [18]. FreeSurfer reconstructs the brain
surfaces starting from the 3D T1w MRI anatomical images and
then extracts several measurements. For example, the cortical
thickness that represents the distance between the gray/white
matter boundary and the pial surface [19] and the cortical
surface area that is the area covered by the cytoarchitectonic
brain region over the external layer of cerebral cortex.

2) Motor-strength testing and label description: The
strength analysis are performed with the NIH toolbox [20]:
a comprehensive set of neuro-behavioral measurements that
quickly assess cognitive, emotional, sensory, and motor func-
tions [21]. For our study, we focused on the score of the
Grip Strength test that indicates the strength in pounds that
the participant can generate with a dynamometer. This testing
procedure is validated by the American Society of Hand Ther-
apists [22] and it requires approximately 3 minutes. During
this procedure, the participants squeeze the Jamar Plus Digital
dynamometer [23] three times with their dominant hand as
hard as they can. The dynamometer provides a digital score
of strength in pounds after it is adjusted to the age of the
participants. Then, given this measurement for all the subjects
involved in the dataset, a median value of the strength score



is computed. Furthermore, comparing the strength score for
each subject with the median score value, each subject is either
labeled as strong (label +1) or weak (label -1).

3) Final dataset: In Fig.1, box A-B the shape of the data-
set is shown. In particular, for each patient a motor-strength
binary label is associated to two different files generated with
Freesurfer [24]. the 4 brain anatomical measurements of left
and right hemisphere are collected in two files. In detail, these
measurements are the area, volume, cortical thickness and
mean curve of 74 brain regions per hemisphere. Summarizing,
each record represents one of two hemispheres of the brain,
1113 subject, and 74 ROI based on the Destrieux Atlas [9].

B. Data preprocessing: cleaning of the sources, normaliza-
tion and data-set splitting

One of the crucial steps for a correct data analysis relies
in data preprocessing and normalization. In particular, in Fig.
1, Box B these steps are shown in a pipeline. The first step
consists of removing missing data from the whole dataset
resulting in a total of 1108 subjects. In the second step, the
two files (which represent the two hemispheres) were merged
in one file with 1108 rows (subjects) and 148 columns. In the
third step, data were normalized according to the Z-score, in
1.

Z =
x− µ

σ
(1)

Finally, the dataset of all participants is split into training-
set ( 50%) validation-set (30%) and test-set (20%). Each split
has an approximate equally distributed number of samples for
each label (50% of weak labels and 50% of strong labels).

C. Preliminary results and comparisons of brain anatomical
measurements and their distributions

Before implementing any parametric test (e.g. correlation,
analysis of variance or t-tests), it is necessary to check if data
follows a normal distribution [25]. An Anderson-Darlings test
[26] is applied to separate the ROIs with normal distribution
and the ROIs with non-normal distribution; this step is essen-
tial to define if a parametric or not parametric test can be used
for the separation of the features. For the ROIs with normal
distribution, the t-test was applied to compare strong and weak
subjects, in the other cases a Mann-Whitney U test [27] was
performed. It is outlined that the separability of the classes are
not significant from a statistical point of view, leading to the
need of more advanced machine learning methods.

D. Application of ML approaches for classification and per-
mutation tests

In this work, as it is shown in Fig. 1, box C, three different
ML approaches were adopted. Particularly, our analysis were
performed with Random Forest, Logistic Regression and Sup-
port Vector Machine. For all the models, a standard pipeline
(see Fig. 3) of 6 steps is applied as follows: (i) for each ML
approach, one model for each brain anatomical measurement
is created, (ii) then, the models were trained with all the ROIs,
(iii) and the accuracy was checked using the validation-set, (vi)

next, feature-extraction was applied, (v) later, hyper-parameter
tuning with cross-validation was performed to reduce the bias
error and the variance, (vi) and, finally, each model was tested
and validated with 10.000 permutation test on the predicted
features. Thus, for each model, the reliability of the binary
classifier is shown with an associated p-value.

1) Random Forest: RF models are applied both to extract
essential ROIs and reduce the feature-set dimensionality (see
also Fig. 1, box C-1). In particular, the output significance
related to each ROI is computed as follows: sort the number
of the ROIs in a descendent way with respect to their scores to
find the feature combination which provides the best accuracy.
Bias and the variance were reduced using the following hyper-
parameters found after a search process:

• Number of trees in the forest (430).
• Maximum depth of the tree (50).
• Minimum number of samples required to be at a leaf

node (9).
• The minimum number of samples required to split an

internal node (6).

2) Support Vector Machine: SVM creates hyper-planes
through a multidimensional space based on a window function
also known as kernel function. The kernel function objective
consists of obtaining a separation of the groups. In this work
we used SVM with different kinds of kernels with linear, radial
(Radial Basis Functions, RBF) and polynomial (see also Fig. 1
box C-2). For the feature extraction process recursive feature
extraction was analysed. For each kernel function, a set of
independent models is analysed. In Sec. II-D, the complete
pipeline is described. The hyper-parameter configuration for
the best models and listed below are shown in Table I in the
case of the area features.

• The strength of the regularization (SR).
• Gamma coefficient for RBF and polynomial (G).
• Degree of the polynomial kernel function (D).

TABLE I
BEST SVM KERNELS HYPER-PARAMETERS CONFIGURATION FOR AREA

BRAIN MEASUREMENT

SVM SR G D
Linear 0.01 - -
RBF 10 0.01 -
Poly 0.001 0.001 7

3) Logistic Regression: LR models [28] are probabilistic
and supervised models. The weights are optimized using L1
regularization (also known as Lasso (see also Fig. 1 - box
C-3). In particular, with the L1 regularization, the number of
features is minimised, generating sparse models. In such a
way, the results interpretability is facilitated and the parameter
explosion is prevented. At the end of the process, hyper-
parameter regularization strength is set equal to 0.035 in
the case of the area brain measurement. Which is the best
performing feature.



TABLE II
PREDICTION PERFORMANCE WITH ALL ROIS AND AFTER FEATURE SELECTION AND HYPER-PARAMETER TUNING.

SVM kernels
Linear All ROIs Train Validation Test Mean P-Value N. Total ROIs
Area 0.67 0.73 0.71 0.77 0.70 ± 0.03 9.99× 10−5 11

Mean curve 0.63 0.86 0.64 0.64 0.62 ± 0.13 9.99× 10−5 89
Thickness 0.69 0.77 0.75 0.65 0.59 ± 0.06 1.0× 10−4 113
Volume 0.69 0.75 0.71 0.68 0.69 ± 0.04 9.99× 10−5 14

RBF
Area 0.69 0.76 0.70 0.77 0.73 ± 0.04 9.99× 10−5 11

Mean curve 0.58 0.83 0.67 0.68 0.72 ± 0.09 9.99× 10−5 89
Thickness 0.59 0.96 0.64 0.64 0.70 ± 0.18 9.99× 10−5 113
Volume 0.70 0.76 0.70 0.67 0.79 ± 0.05 9.99× 10−5 14

Polynomial
Area 0.66 0.70 0.68 0.72 0.70 ± 0.02 9.99× 10−5 11

Mean curve 0.67 0.86 0.63 0.64 0.61 ± 0.13 9.99× 10−5 89
Thickness 0.64 0.65 0.50 0.50 0.58 ± 0.09 1.0× 10−4 113
Volume 0.67 0.76 0.72 0.69 0.75 ± 0.04 9.99× 10−5 14

Random forest
All ROIs Train Validation Test Mean P-Value N. Total ROIs

Area 0.72 0.71 0.74 0.76 0.74 ± 0.03 9.0× 10−5 20
Mean curve 0.68 0.68 0.67 0.70 0.68 ± 0.02 9.0× 10−5 45
Thickness 0.70 0.67 0.72 0.68 0.69 ± 0.03 9.0× 10−5 60
Volume 0.73 0.74 0.75 0.71 0.73 ± 0.02 9.0× 10−5 20

Logistic Regression (Lasso)
All ROIs Train Validation Test Mean P-Value N. Total ROIs

Area 0.68 0.71 0.72 0.73 0.72 ± 0.01 9.0× 10−4 20
Mean curve 0.65 0.78 0.69 0.68 0.72 ± 0.06 9.0× 10−4 72
Thickness 0.68 0.76 0.74 0.65 0.72 ± 0.06 9.0× 10−4 56
Volume 0.69 0.78 0.73 0.74 0.75 ± 0.03 9.0× 10−4 55

III. DISCUSSION AND RESULTS

In this work, supervised ML approaches have been applied
to predict and recognize brain anatomical measurements that
correlate under a certain accuracy, in some ROIs of the human
brain, with motor strength. For each ML approach the obtained
results were validated by using permutations tests. As it is
described in Sec. II-C, preliminary studies on feature distribu-
tions and traditional statistical analysis were performed. The
preliminary studies show that the feature are not separable by
using statistical tests. In detail, following the pipeline of Sec.
II-A and shown in Fig. 3, the classification accuracy on the
validation-set is obtained considering all the ROIs for each
brain anatomical measurement. Then, feature extraction and
hyper-parameter tuning were applied on the validation-set and
tested in test-set. The results obtained from RF, SVM, and
LR with their corresponding p-values (from the permutation
tests) are summarized in Table II. In general, the anatomical
brain measurements that have achieved a statistical relevant
accuracy are area and volume. Area and volume present also
a low variance reflecting their low accuracy fluctuation along
the predictions. Furthermore, SVM approaches turn out to be
a relevant example of how the hyperparameter tuning may

improve the predictions and reduce the overfitting. In general,
classification scores achieve a significant level of reliability
for the ML approaches with p-values less or equal to 0.0009
(p-value ≤ 9×10−4). The total number of selected ROIs after
the hyperparameters tuning is shown in Table II. In particular,
area and volume have the lowest number of ROIs with a high
classification accuracy. The most significant ROIs shared by
volume and area have been selected and displayed in Fig. 2,
as projected into a 3-D brain model.

For each ML approach, significance ranked lists are shown
in Table III. The ranking schema outlines the positions of vol-
ume and area summarizing the most important ROIs used for
classification. For SVM, we reported the ROIs with respect to
their relative frequencies in a decreasing order. An additional
table is provided in which the results of the most significant
ROIs among the different ML approaches are collected ( Table
III). The most significant ROIs in common between volume
and area are projected into a 3-dimensional brain model,
Fig. 2. Morphometric measurements like area and volumes
of brain areas showed to be the most helpful features for
all the classification approaches were presented. Therefore, it
seems that size of the brain regions is a good discriminant for



TABLE III
MOST SIGNIFICANT BRAIN ROIS FOR AREA AND VOLUME.

Logistic Regression (Lasso)
ROI Area Significance ROI Volume Significance

1. lh S orbital med-olfact area 0.14 lh S orbital med-olfact volume 0.08
2. lh G and S frontomargin area 0.09 lh G temp sup-Plan polar volume 0.06
3. lh G cuneus area 0.09 lh Pole occipital volume 0.04
4. rh Pole occipital area 0.08 lh G temp sup-G T transv volume 0.04
5. lh Pole occipital area 0.08 rh S temporal inf volume 0.04
6. rh G pariet inf-Angular area 0.08 lh G and S frontomargin volume 0.04
7. lh S temporal sup area 0.08 rh G subcallosal volume 0.03
8. rh S oc-temp lat area 0.07 rh S collat transv post volume 0.03
9. lh G oc-temp med-Parahip area 0.05 rh Pole temporal volume 0.03
10. rh G occipital sup area 0.05 rh Pole occipital volume 0.03
11. rh G oc-temp med-Parahip area 0.03 rh S suborbital volume 0.03
12. lh G pariet inf-Angular area 0.03 rh S oc-temp lat volume 0.03
13. rh S pericallosal area 0.03 rh S orbital med-olfact volume 0.03
14. lh S parieto occipital area 0.03 lh G cuneus volume 0.03
15. lh S circular insula sup area 0.02 lh G orbital volume 0.02

Other ROIs were omitted with
a total significance of:

0.06
Other ROIs were omitted with
a total significance of:

0.41

Support Vector Machine
ROI Area Significance ROI Volume Significance

1. lh G and S frontomargin area 0.14 lh S orbital med-olfact volume 0.11
2. lh Pole occipital area 0.11 lh G temp sup-Plan polar volume 0.11
3. rh S oc-temp lat area 0.10 lh Pole occipital volume 0.09
4. lh S orbital med-olfact area 0.10 lh G orbital volume 0.08
5. rh G occipital sup area 0.10 rh G front sup volume 0.08
6. rh G pariet inf-Angular area 0.09 lh G and S frontomargin volume 0.08
7. lh S circular insula sup area 0.08 rh G and S cingul-Ant volume 0.07
8. rh S pericallosal area 0.08 rh S oc-temp lat volume 0.07
9. rh S front sup area 0.08 rh G subcallosal volume 0.06
10. lh G pariet inf-Angular area 0.07 lh G insular short volume 0.06
11. rh S orbital-H Shaped area 0.06 lh G temp sup-G T transv volume 0.05
12. rh Pole occipital volume 0.05
13. rh S collat transv post volume 0.04
14. rh S temporal inf volume 0.04

Random Forest
ROI Area Significance ROI Volume Significance

1. rh G and S cingul-Ant area 0.08 lh S orbital med-olfact volume 0.1
2. rh G temporal middle area 0.06 rh G temporal middle volume 0.07
3. rh S temporal sup area 0.06 lh G temp sup-Plan polar volume 0.06
4. lh G cuneus area 0.06 lh G front sup volume 0.06
5. lh G oc-temp med-Parahip area 0.06 lh Pole occipital volume 0.05
6. lh S temporal sup area 0.06 rh S temporal inf volume 0.05
7. lh G front sup area 0.05 rh S oc-temp lat volume 0.05
8. rh G occipital sup area 0.05 lh G rectus volume 0.05
9. lh S orbital med-olfact area 0.05 lh G temporal middle volume 0.05
10. lh Pole occipital area 0.05 lh G cuneus volume 0.05
11. rh S front middle area 0.05 rh G and S cingul-Ant volume 0.05
12. lh G rectus area 0.05 rh Pole occipital volume 0.05
13. rh Pole occipital area 0.05 lh G insular short volume 0.04
14. rh G pariet inf-Angular area 0.04 lh S temporal sup volume 0.04
15. lh G temporal middle area 0.04 rh S orbital med-olfact volume 0.04

Other ROIs were omitted with
a total significance of:

0.19
Other ROIs were omitted with
a total significance of:

0.19



the motor-strength classification. However, none of the regions
that showed to be statistically significant are in the motor cor-
tex or are strictly related to the hand movement. Nonetheless,
the Grip Strength test score has been recently proved to be
a possible low-cost marker for the cognitive performance and
overall brain health [29], [29]–[31]. Indeed, the brain regions
that showed to be significant for the classification approaches
are located mostly in frontal, temporal lobes that host many
important high-order cognitive functions and in the occipital
lobe that subserves the human vision. For instance, in the
frontal lobes there are areas known to be involved in working
memory and error detection; auditory and, more in general,
language comprehension are functions related to the temporal
lobe areas. Finally, in the occipital pole that has been shown
to be common to all the models the visual system is located.

IV. CONCLUSION

A novel pipeline has been introduced to use supervised ML
approaches for binary classification problems on anatomical
brain data. The extraction and classification of the features
were performed by using RF, LR with Lasso, SVM with three
different kernels: Linear, RBF and Polynomial and traditional
statistical methods. The results show that supervised ML
approaches are a promising alternative to traditional statistical
tests for the feature extraction and classification. In fact,
they achieve high precision and low variance by reducing
the dimensionality of data. Moreover, the benefits of the
adoption of ML approaches in this domain are evident, not
only in quantifiable increases in the performances, but also
in qualitative aspects, such as higher reduction of overfitting.
Regarding the brain areas observed for all the classification
approaches, we cannot exclude that, as the Grip Strength
score has been associated with brain health the classifica-
tion approaches are detecting early anatomical differences or
changes related to future impairments in cognitive functions.
However, future behavioural, structural and functional MRI
studies (longitudinal and non-longitudinal) are warranted to
explore deeper this speculation and strongly corroborate the
integration of machine learning techniques in neuroimaging
studies.
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