
LALR: Theoretical and Experimental validation of
Lipschitz Adaptive Learning Rate in Regression and

Neural Networks
1st Snehanshu Saha
CSIS and APPCAIR

BITS Pilani K K Birla Goa Campus
Goa, India

snehanshu.saha@ieee.org

2nd Tejas Prashanth
Department of Computer Science

PES University
Bangalore, India

tejuprash@gmail.com

3rd Suraj Aralihalli
Department of Computer Science

PES University
Bangalore, India

suraj.ara16@gmail.com

4th Sumedh Basarkod
Department of Computer Science

PES University
Bangalore, India

sumedhpb8@gmail.com

5th T.S.B. Sudarshan
Department of Computer Science

PES University
Bangalore, India

sudarshan@pes.edu

6th Soma S Dhavala
Founder

ML Square
Bangalore, India

soma@mlsquare.org

Abstract—We propose a theoretical framework for an adaptive
learning rate policy for the Mean Absolute Error loss function
and Quantile loss function and evaluate its effectiveness for
regression tasks. The framework is based on the theory of
Lipschitz continuity, specifically utilizing the relationship between
learning rate and Lipschitz constant of the loss function. Based
on experimentation, we have found that the adaptive learning
rate policy enables up to 20x faster convergence compared to a
constant learning rate policy.

Index Terms—Adaptive learning rate, Lipschitz constant,
Mean Absolute Error

I. INTRODUCTION

Gradient descent based optimization algorithms, such as
Stochastic gradient descent, Adam [1], have been widely used
in the field of deep learning. Gradient descent based learning
involves updation of weights of a neural network by back
propagation of gradients in order to lower the error [2]. In
addition, the training process is a challenging task due to the
large number of hyper parameters that require tuning. Among
the various hyper-parameters, learning rate is a key factor that
influences the speed of convergence of a neural network. Large
values of learning rate can hinder convergence and instead
may lead to the divergence of the optimization algorithm [3].
Conventionally, learning rate is manually chosen in order to
control the rate of convergence. In addition, methods have
been developed in order to decay the learning rate over time
or use a non-monotonic learning rate scheduler in order for
the optimization algorithm to converge faster [4]. However,
making the learning rate adaptive, is an ongoing research field.

Neural networks are widely used for a variety of
classification and regression based tasks. Regression is
implemented in neural networks as a supervised learning
problem and is capable of handling complex non-linear

dependencies [5]. A multitude of factors have contributed to
the phenomenal success of (deep) neural networks (DNNs).
They include, but are not limited to ease of access to big
data sets, affordable computing, plug-and-play deep learning
frameworks and auto differentiation frameworks. The Back
propagation algorithm and auto differentiation frameworks
have greatly simplified the process of fitting DNNs – it is
no longer necessary to write inference software from scratch.
Instead, a practitioner or an analyst can simply specify the
model, and call the supplied optimization technique, thus
abstracting the complexity of the process. While the success
of deep neural networks in Computer Vision and Natural
Language Processing is transformational, DNNs still suffer
from a variety of problems. Some of the criticisms against
DNNs are that they can make confident mistakes, due to
their opaque nature with respect to the explainability [6],
[7]. Making DNNs both reliable and explainable are the
new research frontiers. In this paper, we argue that Quantile
Regression (QR) can be used to provide prediction intervals,
which is one of the ways of quantifying uncertainty [8]. In the
context of DNNs, QR models can be fit by minimizing the
Check Loss function. Moreover, the number of independent
regression models that are fit is equivalent to the number of
quantiles desired. While one may look for a more efficient
architecture to fit all the quantiles simultaneously, fitting
multiple independent regression models is a simple alternative.
If one can speed-up convergence, then the process of fitting
all quantiles independently can be done in nearly the same
amount of time that a typical regression model takes to
provide point estimates. In this regard, we investigate Adaptive
Learning Rates for Check Loss, whose special case is the
Mean Absolute Error that estimates conditional medians.

The paper is organized in the following manner. Section

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II provides the related work in the field of convergence of
gradient descent. Section III describes the motivation and the
contributions of the paper. Section IV provides a theoretical
background on Lipschitz continuity and its applications in
neural networks. Section V provides details on the derivation
of Lipschitz constant for Mean Absolute Error and Quantile
loss. Section VI and VII provide the experimental results for
the theoretical framework. Section VIII provides a conclusion
and future areas of research for this work.

II. RELATED WORK

Various approaches have been attempted in order to obtain
faster convergence. Many of these approaches involve a
theoretical study of gradient descent based optimization
algorithms. For example, Hardt et. al. [9] worked on
the theoretical proof for stability of Stochastic Gradient
Descent(SGD). The relationship between generalisation error
and stability was identified and a stability measure was
defined. Similarly, Kuzborskij et. al. [10] studied the data
dependent stability of stochastic gradient descent. The data-
dependent notion of algorithmic stability was established
and used to employ generalisation bounds. In addition,
generalisation bounds were computed based on data-dependent
distribution and initialisation of SGD. Development of novel
optimization algorithms is another type of solution worthy
of mention. For example, Adam [1] optimization algorithm
enabled deep learning models to achieve faster convergence.
The core idea behind Adam was to combine the usage of
momentum-based gradient descent and RMSProp [11].

III. MOTIVATION & CONTRIBUTION

Statistical Software such as SAS,STATA, and many libraries
in R, provide uncertainty estimates, along with predictions, in
terms of standard errors and p-values. Bayesian counterparts
produce credible intervals. The classical Frequentist estimation
techniques either rely on second-order optimization techniques
to produce confidence intervals or rely on special modeling
assumptions. The Bayesian analogues require access to
efficient, cheap, posterior samples, based on which any
functional of the random variables can be computed. The
statistics community lays enormous importance on producing
such inference summaries. Unfortunately, Machine Learning
tools rarely provide such reports, as they are primarily
concerned with prediction tasks alone. In the context of DNNs,
the problem is more pronounced, as the current Deep Learning
landscape is still evolving with respect to providing such
uncertainty estimates. For instance, L-BFGS technique is still
experimental in pytorch. Developing generic, rich inference
techniques is one way to make Deep Learning credible.
Another avenue is to consider uncertainty quantification as
primary inference goal problem that can work with the almost
ubiquitous Back Propagation and Stochastic Gradient Descent.
One such method is Quantile Regression(QR). QR is well-
known in the field of econometrics, and has been introduced
to the ML community fairly recently [8]. The benefit of QR
applied in the context of DNNs is that no new inferential

algorithms are required to fit them – one only needs Check
Loss, also called as Quantile loss. It is desirable to look for
methods to accelerate the convergence by exploiting the Check
loss function structure, which can support the workhorse
inference techniques.

We propose an adaptive learning rate scheme for training
neural networks with Mean Absolute Error(MAE) and Check
loss as the loss functions. Noting that MAE is a special case
of Check loss, an adaptive learning rate scheme for Check
loss is also proposed. Unlike mean squared error(MSE), MAE
as a loss function is robust to outliers since it relies on the
absolute value of errors instead of the square of error [12].
In addition, since MAE is primarily applied for regression
tasks, the adaptive learning rate is derived for regression based
problems in neural networks. We contribute to the following
problems

1) Theoretical framework for computation of Lipschitz
adaptive learning rate (LALR) for MAE loss function
in single and multi label multivariate regression models,
including Quantile regression

2) Compute LALR for Check loss function using neural
networks

3) Evaluate the effectiveness of the framework against
regression based data sets

IV. THEORETICAL BACKGROUND

A. Notation

We use the following notation
1) m indicates the batch size and n indicates the number

of predicted output values in multivariate regression.
2) (xi, yi) refers to a single training example. (xij , y

i
j) refers

to a particular output value for a single training example.
3) A superscript of l, such as a[l], denotes the layer number

and a superscript of L denotes the last layer, unless
specified otherwise. For instance, y[L] denotes the actual
output of the last layer according to the training data.

4) a[l] is used to represent the activation at a particular
layer, with a subscript indicating the activation of
a particular neuron in that layer. For example, a[l]j
represents the activation value of the jth neuron in layer
l. The same notation is followed for y[l], which indicates
the correct output at a particular layer.

5) W
[l]
ij denotes the weights from neuron i in layer l − 1

and neuron j in layer l.

B. Lipschitz continuity

A function f(x) is said to be Lipschitz continuous in its
domain if there exists a constant k in its domain such that for
every pair of points, the absolute value of the slope between
those points is not greater than k. The minimum value of k is
known as the Lipschitz constant. Mathematically, the Lipschitz
constant for a function f ,that depends on x,is expressed as
‖f(x1)− f(x2)‖ ≤ k ‖x1 − x2‖ where k is the Lipschitz
constant. Since MAE is Lipschitz continuous in its domain,
there exists a Lipschitz constant k in its domain. Since the

mean value theorem holds good, the supremum of the gradient,
sup ‖∇f(x)‖, exists and the supremum of the gradient is one
such Lipschitz constant.

By computing the Lipschitz constant of the loss function,
max ‖∇wf‖, one can constrain the change in weights in the
weight update rule to 4w ≤ 1 by setting the learning rate to
be equal to the reciprocal of the Lipschitz constant.

w = w − η.∇wf

where η = 1
max‖∇wf‖ . This particular choice of LALR, under

the assumption that gradients cannot change arbitrarily fast,
ensures a convex quadratic upper bound, minimized by the
descent step. It is fairly straightforward to show (via Taylor
series expansion of f), f ∈ C2 that f(wk+1) ≤ f(wk) −
1
2L

∥∥∇f(wk)∥∥2. This implies that Gradient descent decreases
f if η = 1/L where L is the Lipschitz constant.

C. Lipschitz constant in neural network

In a neural network, the gradients are smaller in the earlier
layers than in the last layer. Consequently, the following
relation holds true [9],

maxij

∥∥∥∥ ∂E

∂w
[L]
ij

∥∥∥∥ ≥ ∥∥∥∥ ∂E

∂w
[l]
ij

∥∥∥∥ ∀l, i, j
Hence, the maximum value of the gradient in the neural

network can be found using the maximum value of gradient
in the last layer.

D. Quantile regression

The most common loss function used in regression is the
Mean Squared Error(MSE). It can be shown that, minimizing
MSE is equivalent is maximizing the log-likelihood under the
Gaussian noise assumption i.e. yi = f(xi)+εi; εi = N(0, σ2).
Consequently, we get E[y|x] = f(x), where E[.] is the
expectation operator. It means that, the minimization of MSE
leads to the conditional mean. However, it is known that
mean, as a measure of location, is not robust to outliers,
due to which median is preferred in such cases. It is also
known that, median is the minimization of MAE. In addition,
generalization of the MAE is the Check loss, which is
given by: Lτ (e) = (τ − I(e < 0))e. Similar to the
way in which MSE is shown to maximize the likelihood
under Gaussian noise assumption, Check loss can be shown
to maximize the log-likelihood under Asymmetric Laplace
noise(ALD) assumption: yi = f(xi) + ε; ε = ALD(0, 1, τ)

& ALD(y;µ, σ, τ) ≡ τ(1−τ)
σ exp(−ρτ (y−µσ)). Thereafter, it

can be shown that P (y ≤ µ) = τ so that the predicted value
can be interpreted as the corresponding conditional quantile.
By fitting multiple quantiles, a prediction interval of required
coverage can be constructed.

V. MATHEMATICAL DERIVATION

A. Multiple regression using neural networks

The following section provides the derivation for the
Lipschitz constant for the Mean Absolute Error as the loss

function. Assuming one output variable, MAE is given by

E(a[L], y) = 1
m

m∑
i=1

|a(i)[L] − y(i)| where m is the batch size.

Consider a subset of a batch of m training examples
(x(i), y(i)), say m1, which represents the training examples
for which a(i)[L] > y(i). Similarly, let m2 be the training
examples in the batch for which a(i)[L] < y(i).

E(a[L], y) = 1
m

m∑
i=1

(x(i),y(i))∈m1

(
a(i)[L] − y(i)

)
+

1
m

m∑
i=1

(x(i),y(i))∈m2

(
y(i) − a(i)[L]

)
Let a[L] and b[L] be two sets of predicted values for output

for two different sets of weight matrices of the neural network.

Then, E(aL, y)−E(bL, y) = 1
m

m∑
i=1

|a(i)[L]− y(i)| − |b(i)[L]−

y(i)| . The equation can be elaborated by considering four
different cases based on the values of aL − y and bL − y .
Representing the equation in the form of vectors of dimensions
m×1, each case represents a subset of values, with only those
components of the vectors activated that match each case. We
simplify the equation as follows1:
Case 1: (xi, yi) ∈ (m1, n1) that satisfy the conditions
(aL − y)m1,n1 > 0 and (bL − y)m1,n1 > 0

1

m
((aL − y)− (bL − y))m1,n1 =

1

m
(aL − bL)m1,n1 (1)

Similarly, the equation is simplified for the remaining cases
and an inequality expression is established, as done in Case
1. Since aL and bL are mutually exclusive among the four
cases, adding equations for each of the four cases yields the
original aL and bL. Hence,

E(aL) − E(bL) ≤ 1

m
(aL − bL) (2)

After applying L1-norm,

||E(aL) − E(bl)||
||(aL − bL)||

≤ 1

m
(3)

Considering the following backpropagation equation,

max
ij
| ∂E
∂w

[L]
ij

| ≤ max
ij
| ∂E
∂a

[L]
j

|.max
ij
|
∂a

[L]
j

∂z
[L]
j

|.max
ij
|
∂z

[L]
j

∂w
[L]
ij

|

max
ij
| ∂E
∂w

[L]
ij

| ≤ max
ij
| ∂E
∂a

[L]
j

|.max
ij
|
∂a

[L]
j

∂z
[L]
j

|.max
j
|a[L−1]j |

maxij |
∂a

[L]
j

∂z
[L]
j

| can be considered to be 1 if the final layer

activation function is ReLU for the regression model. Let

1Note: Although MAE is not twice differentiable, the functions obtained in
each of the four cases are twice differentiable, f ∈ C2, thus abiding by the
assumption behind the proof described in Section IVB

Kz=maxj |a[L−1]j |; then, maxij | ∂E
∂w

[L]
ij

| ≤ Kz
m . Hence, the

Lipschitz constant is equal to

Kz

m
(4)

B. Multi-label Multivariate regression using neural networks

The following section provides the derivation for the
Lipschitz constant for the Mean Absolute Error as the loss
function for multivariate regression. The MAE is: E(aL, y) =
1
mn

m∑
i=1

n∑
j=1

|a(i)[L]j − y(i)j |, where m is the batch size and n is

the number of labels.
Consider aL, the predicted output of the neural network

for multivariate regression, to be a flattened form of the
conventional matrix of size m × n. Let the output be of
size (m · n) × 1. Consider y to be a flattened vector of
size (m · n) × 1 . Consider a subset of a batch of m

training examples (x
(i)
j , y

(i)
j), say mn1, which represents the

corresponding output units for the training examples for which
a(i)[L] > y(i). Similarly, let mn2 be the corresponding output
units in the batch for which a(i)[L] < y(i).

E(a[L], y) =
1

mn

mn∑
i=1

(x
(i)
j ,y

(i)
j)∈mn1

(
a(i)[L] − y(i)

)
+

1

mn

mn∑
i=1

(x
(i)
j ,y

(i)
j)∈mn2

(
y(i) − a(i)[L]

)

Let a[L] and b[L] be two sets of predicted values for output
for two different sets of weight matrices of the neural network.

Then, E(aL, y)−E(bL, y) = 1
mn

mn∑
i=1

|a(i)[L]−y(i)|−|b(i)[L]−

y(i)|. The proof is carried out in the same manner, as described
in Section VA. The Lipschitz constant is obtained to be

Kz

mn
(5)

C. Check loss using neural networks

ρτ (x) =

{
xτ if x ≥ 0

−x(1− τ), otherwise

Without loss of generality, assume that x1 < x2
Case-1: 0 < x1 < x2

=⇒ |ρτ (x2)− ρτ (x1)|
|x2 − x1|

≤ τ

Case-2: x1 < 0 < x2

=⇒ |ρτ (x2)− ρτ (x1)|
|x2 − x1|

≤ τ

Case-3: x1 < x2 < 0

=⇒ |ρτ (x2)− ρτ (x1)|
|x2 − x1|

≤ (1− τ)

∴ Lρτ (.) = max(τ, 1− τ) ∵ τ ∈ [0, 1]

Hence, the Lipschitz constant is

Kz ∗max(τ, 1− τ)
m

(6)

VI. EXPERIMENTATION

In order to test the effectiveness of the adaptive learning rate
for mean absolute error and check loss, the scheme is tested
against the commonly used datasets that consist of regression
based modelling2.

1) California Housing Dataset- This dataset consists of 20
443 samples and 9 features that can be used to predict
the mean housing price in a particular locality. The
features include location of the house, number of rooms
within that particular locality, age of houses, among
many others.

2) Boston Housing Dataset- The dataset consists of 13
features, which are used to predict the median house
value in a particular locality. Some of the features
include average number of rooms per house and crime
rate.

3) Energy Efficiency Dataset- The dataset consists of 8
features, which are used to predict heating and cooling
load requirements of buildings. The dataset is used to
perform multivariate regression.

In order to quantitatively compare the effectiveness of the
constant learning rate and adaptive learning rate schemes, two
methods of comparison are used

1) Number of epochs- A threshold value TL is chosen
and the number of epochs required for the constant and
adaptive learning rate schemes to reach the threshold
is measured. This is to measure which method leads to
faster convergence

2) Performance- The model is trained and the loss value
after a fixed number of epochs is compared for the
constant and adaptive learning rate schemes. This is to
determine which method results in a model with higher
accuracy in its predictions.

It is important to note that during the comparison, the same
initial weights are used for both the schemes. Also, a constant
learning rate of 0.1 was used.

A. Implementation details

The entire framework is implemented in Keras, which uses
Tensorflow as its backend. Keras allows for easy and fast
prototyping. The flexibility provided by Keras to add dense
layers and dropout layers with minimum ease made it an
obvious choice to experiment with the regression datasets.
Depending on the dataset, the underlying architecture such
as the number of dense layers, number of neurons in each
layer and dropout layers is chosen accordingly. Learning
rate is calculated at the beginning of each epoch based on
the mathematical expression derived. Learning rate is easily

2All datasets used are open-source and obtained from scikit-
learn and University of California, Irvine Machine Learning
Repository(https://archive.ics.uci.edu/ml/index.php)

integrated in the pipeline using the callbacks functionality in
Keras.

B. Choosing the threshold

A regression model is constructed using Ordinary Least
Squares in order to obtain the threshold. The intuition behind
using regression models is to obtain estimates of convergence
points that can be obtained using a neural network.

VII. RESULTS

A. Mean Absolute Error

Table I summarizes the results obtained for the three
datasets

TABLE I: Mean Absolute Error: Number of epochs

Dataset Threshold Epochs
(constant)

Epochs
(adaptive)

California Housing 0.371 1409 114
Boston Housing 0.257 946 346
Energy Efficiency 0.229 1950 85

Note: For Boston Housing and Energy Efficiency datasets,
alternate methods of threshold calculations are used as stated
below

1) Find the minimum loss value from the constant learning
rate scheme

2) Set the threshold as the above mentioned loss value

Heuristic 1: Alternative method for threshold calculation
Tables II and III compare the loss values after a fixed

number of iterations of training between the constant and
adaptive learning rate schemes. It is important to note that
the adaptive learning rate automatically decreases over time
for all the data sets, as proved mathematically in section V.

TABLE II: Mean Absolute Error: Loss value

Dataset Epochs Loss(constant) Loss(adaptive)
California Housing 2500 0.3630 ± 0.0049 0.3474 ± 0.0031
Boston Housing 1000 0.2621 ± 0.0015 0.2480 ± 0.0021
Energy Efficiency 2000 0.2282 ± 0.0020 0.1631 ± 0.0042

TABLE III: Mean Absolute Error: Validation Loss value

Dataset Epochs Validation
Loss(constant)

Validation
Loss(adaptive)

California Housing 2500 0.3832 ± 0.0053 0.3686 ± 0.0038

Boston Housing 1000 0.3118 ± 0.0096 0.3134 ± 0.0132
Energy Efficiency 2000 0.2537 ± 0.0037 0.1785 ± 0.0032

1) California Housing Dataset: The architecture used for
the California Housing dataset is described Table IV. As noted
in Figure 2, the learning rate starts at a large value of 6.78
and decreases exponentially before saturating at a value of
0.55. As depicted in Figure 1, the adaptive learning rate policy
converges 10 times faster than the constant learning rate based
model.

TABLE IV: California Housing: Configuration of
hyperparameters

Hyperparameter Value

Feature Scaling technique Standardization
Batch size 256

Activation function ReLU activation in the hidden layers
SoftSign activation in the last layer

Optimization algorithm Mini-batch Gradient Descent
Number of hidden layers 2

Number of hidden neurons [20,15]
Number of output units 1

Fig. 1: California Housing: Training loss over time

2) Energy Efficiency dataset: Since the model predicts two
output variables,the Lipschitz constant derived for multivariate
regression in Section VB is used to compute the adaptive
learning rate. The architecture of the neural network consists
of a single hidden layer with 50 neurons. The model is trained
using Gradient Descent with a batch size of 64. The remaining
hyperparameters are the same as the ones described in Table
IV. Figure 3 shows that the loss due to the adaptive learning
rate decreases faster than that due to the constant learning rate.
Moreover, although the learning rate starts at a high value 5.87,
it decreases rapidly and eventually leads to faster convergence.

3) Boston Housing Dataset: The dataset is used to perform
regression in order to predict housing prices in Boston.
When implemented using a neural network, the architecture
is described in Table V. Although the adaptive learning rate
scheme converges twice as fast as the constant learning rate
policy, the performance improvement observed is relatively
smaller compared to the improvement in the other datasets.

In addition, the computational training time per epoch
is larger for the adaptive learning rate based models due
to the calculation of the adaptive learning rate. However,
due to its faster convergence, LALR based models exhibit
a smaller overall training time. For example, LALR based
models trained on the Boston Housing dataset take up to 1.7
times longer to train per epoch compared to constant learning

Fig. 2: California Housing: Learning rate over time

Fig. 3: Energy Efficiency: Training loss over time

rate based models, but depict a reduction in the overall training
time by upto 2 times. Similarly, LALR based models trained
on the Energy Efficiency dataset and the California Housing
dataset depict a reduction in training time by 6 times and 8
times respectively.

Although the network architectures considered are
simplistic, experiments with deeper architectures depict no
further improvement in the training and validation loss
obtained. For example, when tested on a 15 hidden layer
network, as shown in Figure 5, the adaptive learning rate

TABLE V: Boston Housing: Configuration of hyperparameters

Hyperparameter Value

Feature Scaling technique Standardization
Batch size 8

Activation function ReLU activation in the hidden layer
SoftSign activation in the last layer

Optimization algorithm Mini-batch Gradient Descent
Number of hidden layers 1

Number of hidden neurons [20]
Number of output units 1

Fig. 4: Boston Housing: Training loss over time

based model exhibits a 2.5x faster convergence than the
constant learning rate based model for the California Housing
Dataset. The 15-hidden layer network consists of 100 neurons
in the first hidden layer and 50 hidden neurons in each
subsequent hidden layer. The hidden activation unit used is
LeakyReLU with a small slope of 0.3 on the negative side. In
addition, a dropout of 10% is used in each hidden unit. The
remaining hyper-parameters are the same as shown in Table
IV.

B. Quantile regression

Firstly, quantile regression is implemented using neural
networks in Keras and it is trained using a constant learning
rate. The neural network consists of a single perceptron with
zero hidden layers and a linear activation unit in its output
layer. The network is trained using mini-batch gradient descent
with a batch size of 64. The performance of the model is then
compared against a baseline implementation in statsmodel
[13]. Table VI provides a summary of the results. The results
indicate that the performance of neural network based learning
is comparable to statistical based learning.

Secondly, the efficacy of neural network based quantile
regression is analyzed using a synthetically generated dataset.
The dataset consists of a single feature and a single output
and it is depicted in the following equation: y = f(x) + ε

Fig. 5: 15 hidden layer network

TABLE VI: Comparison of quantile regression with a baseline
implementation(AIC: Akaike Information Criteria)

Dataset
Quantiles

5th 50th 95th
AIC AIC

baseline
AIC AIC

baseline
AIC AIC

baseline
California
Housing

1278.98 1279.05 6180.87 6178.84 2298.53 2296.95

Boston
Housing

53.9094 51.8603 146.3936 145.3413 73.1767 73.2916

TABLE VII: Comparison of theoretical and predicted quantiles

Theoretical quantile Predicted quantile
0.05 0.07
0.30 0.296
0.50 0.457
0.70 0.732
0.95 0.959

where ε ∼ N(0,σ(x)2); σ(x) = 0.1 exp(1-x) [8]. Various
quantiles are chosen and individual neural networks are trained
with the Check loss function for each quantile. The neural
network consists of 2 hidden layers, with 10 and 5 neurons
respectively. The hidden activation units employ the softplus
activation function and a linear activation unit in the output
layer. The network is trained using mini-batch gradient descent
for 3000 iterations with a batch size of 64. The results are
summarized in Table VII. Hence, neural networks are effective
in modelling heteroscedastic data for quantile regression.

Due to the effectiveness of neural network based quantile
regression, an adaptive learning rate policy for quantile loss
is tested. To elaborate, the adaptive learning rate scheme is
tested against a constant learning rate of 0.1 for the datasets
mentioned in Section VI. Experiments are run independently
for each chosen value of quantile and the results are
summarized in Tables VIII IX, X. The threshold is calculated
according to Heuristic 1 for all the datasets. Furthermore, the
architecture and hyperparameters used for each of the datasets
are identical to the ones used with Mean Absolute Error, as
mentioned in Section VIIA, unless specified otherwise.

The adaptive learning rate for Check loss converges up to
13 times faster than the constant learning rate for the 5th

quantile and up to 10 times faster for the 95th quantile.
Figures 6a and 6b depict the training and validation loss
for the California Housing dataset for the 5th quantile. It
is important to note that the model is able to achieve faster
convergence without overfitting. Furthermore, the models for
Energy Efficiency dataset also depict a similar trend with
a speed up in convergence by 11 times. The architecture
proposed in Table V for the Boston Housing dataset resulted
in overfitting of the model. Consequently, the architecture is
slightly modified to a single hidden layer network with 15
neurons. Moreover, the model is trained with a batch size of
256 for 1000 epochs. The remaining hyperparameters remain
unchanged. Figures 6c and 6d depict a faster convergence
by nearly 20 times, a significant increase in the speed of
convergence compared to the other two datasets. In addition,
the adaptive learning rate for the Boston Housing dataset starts

TABLE VIII: Quantile loss: Comparison of iterations

Dataset Threshold Epochs(constant LR) Epochs(adaptive LR)
5th 95th 5th 95th 5th 95th

California
Housing

0.059 0.1659 995 1000 138 92

Boston Housing 0.0755 0.1605 1000 1000 47 42
Energy
Efficiency

0.0406 0.1110 1977 1996 144 184

TABLE IX: Quantile loss: Loss value for various quantiles

Dataset Epochs Loss(constant LR) Loss(adaptive LR)
5th 95th 5th 95th

California Housing 1000 0.0582
±
0.0006

0.1659
±
0.0004

0.0551
±
0.0008

0.1599
±
0.0004

Boston Housing 1000 0.0749
±
0.0008

0.1597
±
0.0007

0.0656
±
0.0008

0.1439
±
0.0015

Energy Efficiency 2000 0.0407
±
0.0002

0.1107
±
0.0002

0.0357
±
0.0004

0.1062
±
0.0002

TABLE X: Quantile validation loss: Validation Loss value for
various quantiles

Dataset Epochs Loss(constant LR) Loss(adaptive LR)
5th 95th 5th 95th

California
Housing

1000 0.0616
±
0.0007

0.1654
±
0.0004

0.0595
±
0.0009

0.1621
±
0.0005

Boston Housing 1000 0.0744
±
0.0009

0.1401
±
0.0019

0.0695
±
0.0030

0.1377
±
0.0015

Energy
Efficiencya

2000 0.0475
±
0.0005

0.1130
±
0.0006

0.0424
±
0.0009

0.1081
±
0.0003

a Multiple Regression is used to predict a single output variable

at a large value of 6.43 and saturates at a value of 2.58. In
contrast, the adaptive learning rate for the Energy Efficiency
dataset starts at a relatively lower value of 3.23 and saturates
at a value of 0.76.

Furthermore, as mentioned in Section VIIA, although
additional computation is performed during every epoch in
order to calculate the adaptive learning rate, the training time
for LALR based models is lower than constant learning rate
based models. For instance, LALR based models trained on
the Energy Efficiency dataset depict an increase in training
time per epoch by an average of 5 times, but exhibit an
overall decrease in training time by 8 times. Similarly, for
the Boston Housing dataset, LALR based models depict a
decrease in the overall training time by up to 5 times although
the computational time per epoch is 7 times higher.

VIII. CONCLUSION AND FUTURE WORK

In summary, the paper proposes an adaptive learning rate
scheme for regression based problems that utilize mean
absolute error and check loss as loss functions. A theoretical
framework for Lipschitz learning rate is derived for MAE and
Check loss and its effectiveness is evaluated against commonly
used regression based datasets.

It is found that the adaptive learning rate policy performs
better than the constant learning rate policy by a significant
amount. For mean absolute error, the adaptive learning rate
increases the speed of convergence by 5 to 20 times. Similarly,
the adaptive learning rate for Check loss also achieves faster

(a) 5th quantile for California Housing: Training loss (b) 5th quantile for California Housing: Validation loss

(c) 95th quantile for Boston Housing: Training loss (d) 95th quantile for Boston Housing: Validation loss

Fig. 6: Training and validation loss over time

convergence by nearly 20 times. It is important to note that
even though the adaptive learning rate begins at a large value,
faster convergence and better performance is achieved with
Stochastic Gradient Descent, along with a natural decay in the
learning rate. Hence, uncertainty in the prediction estimates of
deep neural networks can be obtained with a smaller training
time, thus increasing the reliability of the predictions.

An area of future work is to extend the theoretical
framework for various other optimization algorithms such as
momentum based gradient descent and Adam and evaluate
its effectiveness. Furthermore, we also wish to explore an
adaptive learning rate for Check loss that handles quantile
crossing. Another area of future work is to analyze the
relationship between Lipschitz Adaptive learning rate and
activation units used in neural networks, primarily in the
context of exploding gradients.

ACKNOWLEDGEMENT

The authors would like to thank the Science and
Engineering Research Board (SERB)-DST, Government of
of India for supporting this research (File SERB-EMR/
2016/005687).

REFERENCES

[1] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[2] R. Rojas, “The backpropagation algorithm,” in Neural networks.
Springer, 1996, pp. 149–182.

[3] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[4] S. Seong, Y. Lee, Y. Kee, D. Han, and J. Kim, “Towards flatter loss
surface via nonmonotonic learning rate scheduling.” in UAI, 2018, pp.
1020–1030.

[5] S. Lek, M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga,
and S. Aulagnier, “Application of neural networks to
modelling nonlinear relationships in ecology,” Ecological Modelling,
vol. 90, no. 1, pp. 39 – 52, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0304380095001425

[6] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images,” Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on, 2015.

[7] C. Rudin, “Stop Explaining Black Box Machine Learning Models for
High Stakes Decisions and Use Interpretable Models Instead,” arXiv
e-prints, 11 2018.

[8] I. Takeuchi, Q. V. Le, T. D. Sears, and A. J. Smola, “Nonparametric
quantile estimation,” Journal of machine learning research, vol. 7, no.
Jul, pp. 1231–1264, 2006.

[9] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:
Stability of stochastic gradient descent,” CoRR, vol. abs/1509.01240,
2015. [Online]. Available: http://arxiv.org/abs/1509.01240

[10] I. Kuzborskij and C. H. Lampert, “Data-dependent stability of stochastic
gradient descent,” arXiv preprint arXiv:1703.01678, 2017.

[11] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[12] N. G. Reich, J. Lessler, K. Sakrejda, S. A. Lauer, S. Iamsirithaworn,
and D. A. Cummings, “Case study in evaluating time series prediction
models using the relative mean absolute error,” The American
Statistician, vol. 70, no. 3, pp. 285–292, 2016.

[13] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in Proceedings of the 9th Python in Science
Conference, vol. 57. Scipy, 2010, p. 61.

