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Abstract—Predicting the future link between nodes is a sig-
nificant problem in social network analysis, known as Link
Prediction (LP). Recently, dynamic network link prediction
has attracted many researchers due to its valuable real-world
applications. However, most methods fail to perform satisfying
prediction accuracy in various types of networks because the
dynamic LP in evolving networks is struggling with spatial and
nonlinear transitional patterns. Besides this, existing methods
mostly involve the whole network and target link for the LP
process. It leads to high computational costs. This paper aims
to address these issues by proposing a novel framework named
DLP-LES using deep learning methods. DLP-LES uses common
neighbors based subgraph of a target link and learns the
transitional pattern of it for a given dynamic network. We extract
a set of heuristic features of the evolving subgraph to gather
additional information about the target link. In this way, we
avoid examining the entire network. Additionally, our model
introduces new mechanisms to reduce computational costs. DLP-
LES generates a lookup table to keep the required information
of links of the network and uses a hashing method to store and
fetch link information. We propose an algorithm to construct
feature matrices of the evolving subgraph to learn transitional
link patterns. Our model transforms the dynamic link prediction
to a video classification problem, and uses Convolutional Neural
Networks with Long Short-Term Memory neural networks. To
verify the effectiveness of DLP-LES, extensive experiments are
carried out on five real-world dynamic networks. We compare
those results against four network embedding methods and basic
heuristic methods.

Index Terms—Social Networks, Dynamic Networks, Link Pre-
dictions, Subgraphs

I. INTRODUCTION

Dynamic network analysis has become an important re-
search problem in recent years because it resembles the
evolving nature of real-world networks. It has taken a great
deal of attention from various fields, including social science
[1], economics [2], and biology [3]. Dynamic networks evolve
over time, and nodes and links may appear or disappear
as time goes by. One of the primary areas of research in
dynamic networks is temporal link prediction, which attempts
to predict the links in the future using the transformation of
a sequence of networks. LP has several applications including
friend recommendation [4], classify the behavior and motion
of people [5], and disease gene prediction [6].

Numerous studies have been performed in a static network
setting, which considers a single snapshot of a network at time

Figure 1. The representation of a dynamic network G with a series of
snapshots from time 1 to t as a input and a snapshot at time t + 1 as a
output

t and is used to determine new links in time t′(> t). Simple
heuristic methods, often based on topological properties of the
network, such as common neighbors [7], Adamic-Adar [4] and
Katz [8] or a combination of such heuristics are well-defined
for static networks. Link prediction in a dynamic network is
a challenging and complex process. It has a completely new
dimension of analysis because the history of network evolution
provides more information to detect potential or future links.
The dynamic network settings can be generally formulated
as the sequence of network snapshots, as shown in Figure
1, where the behavior of each snapshot can be described as
a static network at a time. To deal with dynamic network
link prediction, various methods have been proposed in the
literature [9]–[12]. These methods include network embedding
techniques such as DeepWalk [13], LINE [14] and Node2Vec
[12] and deep learning techniques [9]–[11]. The approach in
[15] and [16] have explored the usage of heuristic methods in
the dynamic network link prediction.

Most of the existing approaches in both static and dynamic
settings focused only on the target nodes, source and des-
tination of the link and entire network for the prediction.
However, the target nodes and their neighbor nodes play a
high impact on link prediction, and analyzing the portion of
the whole network reduce time complexity. Recent ground-
breaking methods in static networks, WLMN [17] and SEAL
[18] proposed neural network approaches to automate the
selection of best heuristic for a given network, and introduced
subgraph extraction methods, based on neighbor nodes, of the
target links for the prediction. However, PLACN [19] claimed
that subgraphs by common neighbor nodes of target link have
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additional information than the subgraph from just neighbor
nodes, and achieved outstanding results in various types of
static networks. Motivated from this, we extract subgraph from
common neighbors of target links and extend the benefits of
heuristics to the dynamic network settings. We believe that
considering subgraph based on common neighbors of a target
link bring a huge advantage to analyze the evolving pattern of
the target link in the dynamic network.

To the best of our knowledge, we are the first people using
the common neighbor based subgraph for the dynamic network
link prediction problems. Our proposed model, DLP-LES,
begins with extraction of common neighbor based subgraph
from the last snapshot of a given dynamic network, and
analyzes the transitional patterns of subgraph using heuristic
features throughout each time step. Due to complexity, most
of the research in dynamic settings ignored the link weight,
and only considered the existence and absence of the link. In
DLP-LES, we include link weight as an additional information
with heuristic features. Besides this, we construct a lookup
table with every information of links of a given dynamic
network. The primary purpose of the lookup table is to reduce
the time and space complexity when we frequently use the
information of the same links. We elaborate this further in
the section for constructing the lookup table. Thereafter, this
study introduces an efficient encoding method to label the
subgraph’s nodes. It is another significant task in our model
to maintain the consistency of the subgraph when we train
the neural networks. We believe that examining the evolving
heuristic features of the subgraph has a significant impact on
introducing a new link between any two nodes of a dynamic
network.

We summarize our main contributions as follows:
• We introduce a method to generate a lookup table to

keep the record of links’ information of a given dynamic
network, and use a hashing method to fetch essential
information when required.

• We introduce a novel encoding method for subgraph
labeling.

• We propose an algorithm to construct feature matrices for
the subgraph efficiently.

• We propose a new framework, DLP-LES, for the dynamic
network link prediction using Convolutional Neural Net-
works (CNN) to extract higher-level features of subgraph
efficiently and Long Short-Term Memory (LSTM) neural
networks to learn long-range dependencies of sequential
data and capture the evolving patterns of the subgraph in
the dynamic networks.

II. RELATED WORKS

Link Prediction in Dynamic Networks (DN) is one of the
hot topics in social network analysis. Modeling this problem
is a complex and highly challenging process. Diverse methods
have been proposed in the literature to improve the accuracy
of the predictions.

Heuristic methods such as common neighbors [7], Adamic-
Adar [4] and Katz [8] consider the topological structure to

predict the links in the future, which are very famous for
static networks. Yao et al. [20] proposed a modified common
neighbors formula and use of time-decay to handle DN. Some
others [15], [16] extended the application of these heuristics
to DN settings. Chiu et al. [16] proposed a weak estimator
to decide the link existence based on a random probability
function, while Kaya et al. [15] explored aggregate heuristic
metrics by weighting snapshots.

Besides heuristic based prediction methods, various ma-
chine learning techniques have been applied for LP in DN.
Gao et al. [21] performed a method by combining the latent
matrix factorization method and graph regularization technique
to learn the structural information of time evolving patterns
of links. Yu et al. [22] proposed a model (LINE) with
spatial and temporal consistency to tackle DN prediction. They
represented the network structure as a function of time. Ma et
al. [23] proposed a non-negative matrix factorization (NMF)
framework which incorporated the dynamic information of his-
torical snapshots by using the graph regularization technique.

In addition to the above two methods, deep learning ap-
proaches have become cutting-edge techniques in DN link pre-
dictions. Li et al. [9] proposed a framework using boltzmann
machine which predicts links based on individual transition
variance in addition to influence introduced by local neighbors.
The authors of [24] proposed a network embedding method
to handle DN settings. They incorporated both the internal
and dynamic transition structures in their design. Lei et al.
[25] proposed a model using GCN, LSTM, and GAN to solve
the challenges in temporal LP. They used graph convolutional
network (GCN) to study the local topological structure, LSTM
to analyze the evolving features of networks, and generative
adversarial networks (GAN) to handle weighted DN.

Some other methods are also used in temporal network
LP. CA Bliss et al. [26] employed evolutionary algorithms
to predict the links on DN by applying the Covariance Matrix
Adaptation Evolution Strategy.

III. PROBLEM DEFINITION

A dynamic network can be defined as a sequence of network
snapshots considered within a specific time interval where
as a static network does not change the topological structure
over time. In this paper, we consider an undirected, weighted
dynamic network.

Given a series of snapshots {G1,G2, . . . ,Gt} of an evolving
graph G, where Gp = 〈V, Ep〉 represents a snapshot of the
given dynamic network at time p. In this study, V specifies the
same vertices shared by all snapshots. Ep specifies the links
or edges of the snapshot at time p. A snapshot Gp can be
treated as a static network, and can be written as an adjacency
matrix Ap = [ap(i, j)]|V |×|V | to represents the corresponding
static topological structure, where ap(i, j) > 0 if the vertices
vi ∈ V and vj ∈ V are connected, otherwise, ap(i, j) = 0.
The sequence of graphs {G1,G2, . . . ,Gt} correspond to a list
of symmetric adjacency matrices {A1, A2, . . . , At}.



Definition 1. (Link Prediction in Dynamic Networks) Given
that a sequence of snapshots with length k have the cor-
responding adjacency matrices {At−k, At−k+1, . . . , At}, the
primary objective of link prediction in dynamic networks is to
model a framework to learn the following function to predict
the topological changes, mainly in links at time t+ 1.

A(t+1) = f(At−k, At−k+1, , . . . , At) (1)

where f(At−k, At−k+1, . . . , At) represents the model required
to predict the adjacency matrix A(t+1) at time t+ 1.

IV. MODELING DYNAMIC NETWORKS LINK PREDICTION

In this section, we discuss the backgrounds of required
theories and techniques to model a framework for predicting
links in the future.

A. Heuristic Methods

Several heuristics have been proposed extensively to solve
link prediction problems on static networks, such as Common
neighbors, Adamic-Adar and Katz. We can categorize them
as first, second, and high order heuristics based on their
complexity to perform. The first and second order heuristics
are efficiently computable, and measure diverse aspects of the
network topology such as closeness and similarity between
any two nodes in the social networks. The following section
lists down five such heuristics used in this paper, where Γ(v)
and Γ(u) specify the set of neighbors for nodes v and u
respectively.

1) Common Neighbors (CN): The idea of CN is that if the
nodes share links with other nodes, the chances of forming a
new link is high. It is the most simplest method and counts
the number of neighbors that any two vertices v and u directly
interact with.

CN = |Γ(v) ∩ Γ(u)| (2)

2) Jaccard Coefficient (JC): The CN measures the rela-
tive similarities between any two nodes because it does not
consider the proportion of links shared; it is not normalized.
JC produces the normalized form of CN based on the total
number of neighbors both v and u have.

J C =
|Γ(v) ∩ Γ(u)|
|Γ(v) ∪ Γ(u)|

(3)

3) Adamic-Adar (AA): The AA is the modified version of
JC. The primary purpose of AA is to give a higher priority
to the common neighbors with very few neighbors or lower
degree.

AA =
∑

k∈|Γ(v)∪Γ(u)|

1

log|Γ(k)|
(4)

4) Preferential Attachment (PA): The concept of PA is
if a node has a higher degree, the chances of making new
connections is high.

PA = |Γ(v).Γ(u)| (5)

5) Resource Allocation (RA): RA metric is much more
similar to AA. The difference is that RA gives higher priority
to low-degree common neighbors than AA.

RA =
∑

k∈|Γ(i)∪Γ(j)|

1

|Γ(k)|
(6)

B. CNN-LSTM

Here, we briefly introduce the components of a CNN-
LSTM, and it’s significance in our model. DLP-LES comprises
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) neural networks [27]. CNN has been proved
to be successful in image-related tasks including, image classi-
fication, object detection, and computer vision. Here, we take
the advantage of CNN model in extracting heuristic features
of the subgraph’s adjacency matrices, which can be treated as
an image in DLP-LES. In other words, we can transform the
input data into an image to use in CNN. The LSTM model
has been proved to be extremely effective in capturing long-
term temporal correlations with arbitrary length. It can be
used in several other applications, including text classification,
handwriting recognition and speech recognition. The LSTM
model preserves long-term dependencies effectively using
three different gates:input gate activation (it), output gate
activation (ot) and forget gate (ft). Its unit has a memory (ct)
cell, and its neuron input and output are xt and ht respectively
at time step t.

LSTM =



it : σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft : σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ot : σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

gt : tanh(Wxgxt +Whght−1 + bg)

ct : ft � ct−1 + it � gt
ht : ot � tanh(ct)

(7)
where σ specifies the sigmoid activation function, bs denotes
the bias, and W s specify weight.

V. ARCHITECTURE OF DLP-LES MODEL

In this section, we describe our DLP-LES framework for
link prediction. The proposed model has the following four
major steps:

1) Link features lookup table construction.
2) Subgraph extraction and labeling.
3) Features matrix construction for links in subgraphs.
4) Modeling with CNN and LSTM.
At the beginning, we have a dynamic network G with the

information of source and destination nodes that are observed
within a time stamp T . Before we use this network, it needs to
be arranged as a series of snapshots with equal time intervals
∆(t). In our case, {Gtk,Gt−k+1, . . . ,Gt−1} is treated as a
sample first k snapshots with equal intervals as the input and
the last (t)th snapshot as the output.

We name our proposed framework DLP-LES (Dynamic
network Link Prediction by Learning Effective Subgraphs),



to highlight our focus on efficient common neighbor based
subgraph to handle dynamic link prediction.

A. Link Features Lookup Table Construction

In this framework, features of links play a significant role to
predict links in the future. As described in the above section,
we have the sequence of snapshots of a given dynamic network
G. For the last snapshot Gt, we extract subgraphs of the
targeted links for prediction and analyze the heuristic features
of each link in the subgraph. Evaluating heuristic features of
links might be a repetitive process if we consider two targeted
links from the subgraphs which have common links.

Figure 2. The representation of two subgraphs with common links for
different targeted links. Subgraph S1 with blue line is for the target link
AB while Subgraph S2 with red line is for the target link AC.

For example, consider two subgraphs S1 and S2 for the
targeted links AB and AC as shown in figure 2. In our
case, we need to calculate heuristic features for S1 of
links {AB,AF, FB,AC,AG,CG,BC,BG} and S2 of links
{AB,AE,AD,AC,AG,ED,DC
,CG,BG,BC}. We need to repeat the calculation of feature
for the common links {AB,AC,AG,CG,BC,BG}.

To avoid this repeated process, we initially build a lookup
table 〈R〉 to store the following information for every links of
a given network G.

〈v, u〉 =



Minimum Number of Hops
Average Path Weight

Time Stamp:



[tk〈cn, jc, aa, pa, ra, w〉]
[tk−1〈cn, jc, aa, pa, ra, w〉]
.

.

[tt〈cn, jc, aa, pa, ra, w〉]
[tt+1〈cn, jc, aa, pa, ra, w〉]

where tk〈cn, jc, aa, pa, ra, w〉, specifies the heuristic feature
values of snapshots at tk, and 〈k, (k − 1), . . . , t, (t + 1)〉
specifies the series of time. The minimum number of hops
represents the number of minimum hops between v and u
from the last snapshot t + 1, and the average path weight is
the ratio between path weight of minimum hop and number
of minimum hops from the last snapshot t + 1. The average
path weight of a link can be calculated as below,

wavg〈v, u〉 =
1

2

(
1

h

h∑
p=0

wp

)
(8)

where wp specifies the shortest path distance between v and
p, add up to node u and h represents the number of hops
between v and u.

Our primary objective is to construct a repository 〈R〉 that
can be used to retrieve information of links without calculating
it repeatedly. Rather than accessing the repository as a table,
using a hashing function to access the information has more
benefits. For this purpose, we formulate the following hashing
function.

f(〈v, u〉|〈u, v〉) = 〈R〉 (9)

where v and u are any vertices and the hashing function can
provide the feature information for any order of vertex pair.
We first convert the node pair 〈v, u〉 to a unique key, which
is the same key for the nodes v and u in any order (ie 〈v, u〉,
〈u, v〉). To collect any information that we store in a lookup
table, we can use the above function 9. So, the complexity is
O(1) to gather information of a given link.

B. Subgraph Extraction and Node Labeling

Another primary process of our model is subgraph extrac-
tion. Although few subgraph extraction methods are proposed
in the existing literature [17], [18], the extracted subgraphs
using existing methods for LP do not have sufficient informa-
tion. We use common neighbors of any targeted nodes v and u
to create subgraphs. The common neighbors can be collected
from different hops of both nodes, v and u. Rather than
collecting just neighbor nodes, collecting common neighbors
of both nodes v and u will have more information to decide
the existence of link between them in the future. We set a
threshold value Θ to keep the number of nodes limit in the
subgraph.

Definition 2. (Subgraph based on Common neighbors) For a
dynamic network of last snapshot Gt = 〈V, Et〉, G′ = 〈V ′, E ′t〉
is a subset of sets of common neighbor nodes of two nodes
vi ∈ V ′ and vj ∈ V ′, and are denoted as Γ(vi) and Γ(vj)
if and only if V ′ ⊆ V and E ′t ⊆ Et, V ′ is a set of common
neighbors for the targeted links, and |V ′| = Θ.

The algorithm 1 shows the step by step procedure to
extract subgraph G′ for a given link between v and u from a
dynamic network of last snapshot Gt. Since dynamic networks
evolve over time, most recent snapshot has more reliable
information for the link predictions in the future [28]. At the
beginning, the first order common neighbors Γ1(i) ∩ Γ1(j)
of v and u are collected and stored to a node list NΘ.
Then, gradually increase the order of common neighbors
(Γ2(i) ∩ Γ2(j)), (Γ3(i) ∩ Γ3(j)), ..., until |NΘ| ≥ Θ, where
Γp(q) is the pth order neighbor nodes of node q.

The above procedure may return the number of node list of
the subgraph more than the defined threshold limit, |NΘ| >
Θ. At this point, each extracted subgraphs of last snapshot
of a given dynamic network may have different number of
node list. This inconsistency situation creates problem when
we train convolutional neural network. We solve this issue by



Algorithm 1 Common Neighbor Based Subgraph Extraction
Input: Target link Evu, a snapshot graph Gp = 〈(V, Ep) at
time p.
Output: Subgraph 〈G′〉 for the link Evu.

1: NΘ = {v, u}
2: Ntemp = {}
3: h = 1← number of order
4: while |NΘ| ≤ Θ do
5: Ntemp = Γh(v) ∩ Γh(u)
6: NΘ = NΘ ∪Ntemp

7: h← h+ 1
8: end while
9: 〈G′〉 ← subgraph G(NΘ)

10: return 〈G′〉

removing some nodes when we process labeling to keep the
number of nodes limits equivalent to Θ.

Node labeling is another significant process in this study. It
helps to maintain the consistency of the subgraphs. After we
extract the subgraph, the nodes containing the target link get
the labels 1 and 2. We use the node list NΘ, which returns from
subgraph extraction. We then remove the nodes belonging to
the targeted link from NΘ. To order the remaining nodes RΘ =
NΘ−{1, 2}, we use the information of average minimum hops
and average path weight. We can use the hashing function
equation 9 to get the required information. However, we need
an average number of hops (HAvg) and average path weight
(WAvg). So, we use the following formulas to evaluate HAvg

and WAvg .

Havg〈v, u〉 =
1

2
(hv,i + hi,u) (10)

Wavg〈v, u〉 =
1

2
(wavg〈v, i〉+ wavg〈i, u〉) (11)

where hv,i (resp. hi,u) is the minimum number of hops
between v and i (resp. hi,u), and wavg〈v, i〉 (resp. wavg〈i, u〉)
is the average path weight of the link 〈vi〉 (resp. 〈iu〉).

Our aim is to order the nodes in RΘ in a consistent way. We
can sort them first with average hop in ascending order and
then with average path weight in descending order which helps
to break tie from first ordering. Therefore, we come up with
an idea to encode both Havg and Wavg into single form which
reduces the complexity. For example, to generate a encoder to
the node with Havg = 1.5 and Wavg = 1.75, we encode as
shown in figure 3, where the first portion indicates the value
of Havg = 1.5 and last portion indicates the reciprocal value
of Wavg = 1.75, which remains always within the range 0 <
1/Wavg ≤ 1 in our case.

Figure 3. Encoding Format Example: first portion of the encoder specifies the
average hop (Havg) and the last portion specifies the reciprocal of average
path weight (WAvg).

Algorithm 2 Subgraph Node Labeling
Input: Nodes List NΘ, Target link Evu, Subgraph 〈G′〉
Output: Ordered nodes list OΘ

1: OΘ = {v, u}
2: RΘ = NΘ − {v, u}
3: M ← Map for node information
4: for all i ∈ RΘ do
5: hv,i, wavg〈v, i〉 = f〈v, i〉
6: hu,i, wavg〈u, i〉 = f〈u, i〉
7: wi

avg = 1
2 (wavg〈v, i〉+ wavg〈u, i〉)

8: hiavg = 1
2 (hv,i + hu,i)

9: M ← (encode(i, 1/wi
avg, h

i
avg))

10: end for
11: sort M
12: for i in M do
13: OΘ ← OΘ ∪ i
14: if |OΘ| = Θ then
15: break
16: end if
17: end for
18: return 〈OΘ〉

Figure 4. The representation of subgraph labeling based on encoding method.
The left most figure represents the extracted subgraph with edge weight. Nodes
with different colors indicates the various average hop distance (equal Havg

has same color), followed by average weight. The middle figure shows the
encoded values and the right most figure represents the final labeling.

We now order remaining nodes list based on encoded value
and store them until the total nodes equal to threshold value
Θ. Algorithm 2 shows the step by step labeling process
for labeling. For example, Figure 4 represents the process
of subgraph node labeling. The leftmost figure illustrates a
subgraph from the last snapshot of a given dynamic network
for the target link 〈12〉. The nodes display the information of
average hop (HAvg) and average weight (WAvg). We encoded
these values to generate a unique code as shown in second
rightmost Figure 2. Finally, every node gets a unique label
after ordering encoding values.

C. Feature Matrix Construction

We have a series of snapshots of a given dynamic net-
work. The subgraph extraction and node labeling have been
processed at the last snapshot t. The same subgraph should
have evolved throughout the time series tk, tk−1, . . . , tt. We
therefore construct feature metrics for a subgraph of each
snapshot. As we already discussed in the previous section, we
build feature matrices of CN, JC, AA, PA, RA and Weight.



Figure 5. Example: (top) the representation of how a subgraph evolving
through each snapshot, and (bottom) the way how adjacency matrices are
created and the enlarged form of adjacency matrix for weight graph.

In figure 5, top figures illustrates the way how a subgraph
evolves through time. We keep the same vertices of the
subgraph in every snapshot and examine the evolution of links.
We need to construct 6 feature matrices for the subgraph in
each snapshot. Totally we construct 6 × k number of feature
matrices for a subgraph, where k is the time steps considered
in our case.

Algorithm 3 describes the process of feature matrices con-
struction. We create empty adjacency matrix lists to store the
features of CN, JC, AA, PA, RA, W in each snapshot as below;

{Ak
l×l〈cn〉, Ak

l×l〈jc〉, Ak
l×l〈aa〉, Ak

l×l〈pa〉, Ak
l×l〈ra〉, Ak

l×l〈w〉}
{Ak−1

l×l 〈cn〉, A
k−1
l×l 〈jc〉, A

k−1
l×l 〈aa〉, A

k−1
l×l 〈pa〉, . . . , A

k−1
l×l 〈w〉}

. . .

{At
l×l〈cn〉, At

l×l〈jc〉, At
l×l〈aa〉, At

l×l〈pa〉, . . . , At
l×l〈w〉}

where l is the size of the ordered nodes list of the subgraph.
The algorithm 3 continues until the above empty lists are filled
by fetching the required information of node list from the
lookup table.

In each last snapshot of the adjacency matrix of the
weighted graph, we assign zero to the positive target link to
hide the information of link existence. In Figure 5, the bottom
figure illustrates how we construct the adjacency matrices. We
fill only the upper triangle of the matrix to avoid duplicate
values. At the last snapshot, we indicate with a red box where
the value is always zero.

D. Modeling with CNN and LSTM

DLP-LES uses CNN and LSTM to model the link prediction
framework. As described in the previous section, we have a
sequence of adjacency matrices for a subgraph of a targeted
link for the prediction from the last snapshot of a given
dynamic network. The input data of DLP-LES is a sequence of
adjacency matrices which is constructed as a form of Θ×Θ×h,
where Θ is the number of nodes of the subgraph and h is
the number of heuristic features used in our model. In DLP-
LES, we treat each adjacency matrix as an image. We have the
sequence of adjacency matrices in tk, tk−1, . . . , tt as shown in
Figure 5 bottom one. A sequence of images are really a video.
So we can treat our model as a video classification problem,

Algorithm 3 Feature Matrix Construction
Input: Nodes ordered List OΘ, Lookup Table 〈R〉
Output: Feature Matrices 〈F〉 = Fk〈cn, jc, aa, pa, ra, w〉,
Fk−1〈cn, jc, aa, pa, ra, w〉, . . . Ft〈cn, jc, aa, pa, ra, w〉

1: l← |OΘ|
2: Ak

l×l[ ], Ak−1
l×l [ ] . . . At

l×l[ ] = {}
3: for i ∈ OΘ do
4: for j − i ∈ OΘ do

5:

Ak
l×l[ ] = Fk〈cn, jc, aa, pa, ra, w〉

Ak−1
l×l [ ] = Fk−1〈cn, jc, . . . , w〉

. . .
At

l×l[ ] = Ft〈cn, jc, aa, pa, ra, w〉

 = F 〈i, j〉

6: end for
7: end for
8: return 〈F〉

where positive and negative links are two different classes.
The positive links represent the link existence, (vi, vj) ∈ Et
while the negative links represent the absence of links between
any two nodes, (vi, vj) /∈ Et. To train the classifier, we build
a dataset using last snapshot of the dynamic network with all
existing links for the positive link class and the same number
of non-existing links by using downsampling technique.

CNN is well known for image classification. We leverage
this character to learn and extract features from each image, in
our case each adjacency matrix. We first feed the input data to
convolutional layers to extract the features and then pass those
sequences to a separate LSTM to learn the long-range temporal
dependencies from input sequences. In the CNN model, we
use Rectified Linear Units (ReLu) as the activation function,
which is computed using f(x) = max(0, x), where, x is the
input data. In the LSTM model and the output layer, we use
sigmoid activation function, σ(x) = 1

1+e(−x) . In DLP-LES, we
assign the binary cross-entropy for loss function to measure
the performance of a classification model. It can be written
as −(y.log(p) + (1 − y).log(p)), where y is the label, p is
predicted probability.

VI. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our model, we perform
experiments with five real-world dynamic social networks.

A. Datasets

We use five benchmark real world dynamic networks to
test our model: Enron corpus [29] is an email communication
network from the senior management of Enron for 6 months
with 151 nodes and 50571 edges. Each node represents an
employee and link represents email sent among employees.
Radoslaw [30] is also an email communication network
of a mid-sized manufacturing company from 2010-01-01 to
2010-09-30 with 167 nodes and 82900 edges. Contact [31]
represents data from wireless devices carried by people with
274 nodes and 28200 edges. Every node specifies people, and
a link appeared when they contacted with a timestamp which
recorded every 20 seconds for 4 days. College Messages [32]



Table I COMPARISON OF AUC WITH STANDARD BASELINE METHODS FOR DYNAMIC NETWORK LINK PREDICTION.

Dataset CN JC AA PA node2vec LINE DeepWalk SDNE DLP-LES

Enron 0.8106 0.8751 0.8970 0.8442 0.7596 0.5042 0.7190 0.9437 0.9769

Radoslaw 0.8417 0.8307 0.9028 0.8753 0.7417 0.6153 0.7342 0.8709 0.9330

Contact 0.8457 0.9141 0.9142 0.9027 0.8741 0.7360 0.8451 0.9376 0.9913

CollegeMessages 0.5742 0.5774 0.5843 0.5901 0.7049 0.4905 0.7506 0.7806 0.9852

EU-core 0.9227 0.9302 0.9341 0.7553 0.8602 0.6587 0.8201 0.9574 0.9729

contain private messages sent on an online social network at
the University of California, Irvine with 1899 nodes and 59835
edges. The edge has the timestamp t, the time any two people
contacted each others. EU-Core [33] is an email information
from a large European research institution with 986 nodes
and 332334 links. The node represents the members from 4
different departments and the links are the communications
among them.
B. Performance Evaluation

We evaluate the effectiveness of DLP-LES model by com-
paring it with simple heuristic methods: CN, JC, AA, PA and
network embedding methods: DeepWalk, node2vec, LINE and
SDNE.

1) DeepWalk [13]: Random walks is used to learn latent
representations, and considers vertices from second or-
der proximity.

2) node2vec [12]: It learned by mapping of nodes to a
low-dimensional space of features to maximizes the
probability of preserving network proximity of nodes.

3) LINE [14]: It is suitable for any type of networks,
including large scale networks. It used edge-sampling
method to learn both the local and global network
structures.

4) SDNE [34]: It is a semi-supervised deep model, and
used both the first-order and second-order proximities
together in an autoencoder based deep model.

For the implementation of the network embedding methods,
we use the original source code by the author for node2vec1,
LINE2, DeepWalk3 and SDNE4.

Evaluation Metric: Area Under the Curve (AUC) [35] is
the standard evaluation metric in both static and dynamic link
prediction problem. AUC estimates the probability that the
predictor gives a higher score to a randomly chosen positive
link than a randomly chosen negative link. The larger the AUC
is, the better the model performs. The AUC can be defined as,

AUC =
n′ + 0.5n”

n
(12)

where n specifies the number of Independence comparisons,
n′ specifies the number of times that the positive link gets a

1https://github.com/aditya-grover/node2vec
2https://github.com/tangjianpku/LINE
3https://github.com/phanein/deepwalk
4https://github.com/xiaohan2012/sdne-keras

higher probability score than the negative link, and n” specifies
the number of times when they are equal.

C. Experimental Procedure

We use Python3 to implement the DLP-LES model. The
data processing is conducted on IBM cluster with the specifi-
cation of POWER8 52 processor 256 GB of RAM. We trained
and tested our model in an Nvidia GTX 1050Ti, 4 GB GPU
with 768 CUDA cores.

In DLP-LES, the CNN model contains 32 filters of size
5 × 5 in the convolution layer. Afterwards, it is sent to the
average pooling with the size 3 × 3. The output is flattened
before feeding into the LSTM model. The LSTM layer uses
128 internal cells. We train our neural network for 100 epochs
with Adam optimizer algorithm. We assign 80% as training
set, 10% as validation set, and 10% as testing set.

D. Results

The performance of the experimental setup for DLP-LES
using CNN-LSTM is represented in Table I. The results
are measured based on AUC in various benchmark dynamic
datasets. DLP-LES outperforms all the standard state-of-the-
art methods and most common heuristic methods. It also
achieves above 97% of AUC in all tested dynamic networks
except Radoslaw. However, DLP-LES reaches 93% of AUC in
Radoslaw, which is higher than other compared methods. In
College message, DLP-LES is remarkably outperformed than
all baseline methods while others reach up to 78%.

The computational complexity of DLP-LES model can be
expressed based on several factors. As we already explained
in the above section, we first evaluate the heuristic values
of each links in the given networks and stored as a lookup
table. The complexity of subgraph extraction process is O(kn),
where k is the average hop number for the subgraph and
n is the number of links. The complexity of feature matrix
construction is O(sn), because our feature matrix algorithm
collects required information from the lookup table, which is
O(1), where s = Θ is the number of nodes in the subgraph.

VII. CONCLUSIONS

In this paper, we propose a novel framework DLP-LES,
which is for link prediction problem in dynamic social net-
works based on effective subgraphs. This model uses the
heuristic features of common neighbor based subgraph and



learns the evolving pattern throughout the considered time to
predict future links. In this work, we introduce an encoding
method for labeling subgraph consistently. To reduce the
complexity, we construct a lookup table with all required
information of links to use frequently through our proposed
hash function. We also propose an algorithm for feature matrix
construction, which is thereafter feed into CNN to extract
the features and send to LSTM to learn long-term temporal
feature of dynamic network. Since it analyzes the subgraph
of a target link, this model has the advantage in applying
for large-scale networks. We evaluate the performance of
our model against the state-of-the-art methods and the basic
heuristic method. DLP-LES achieves significantly high im-
provement than compared methods. Further, DLP-LES opens
a new research direction in temporal network compression and
expanding community detection in dynamic networks.
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