
Binarized Attributed Network Embedding via
Neural Networks

Hangyu Xia1,2,3, Neng Gao1,3 *, Jia Peng1,3, Jingjie Mo1,2,3, Jiong Wang1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences
3Institute of Information Engineering, Chinese Academy of Sciences

Beijing, China
{xiahangyu, gaoneng, pengjia, mojingjie, wangjiong} @iie.ac.cn

Abstract—Traditional attributed network embedding methods
are designed to map structural and attribute information of
networks jointly into a continuous Euclidean space, while recently
a novel branch of them named binarized attributed network
embedding has emerged to learn binary codes in Hamming
space, aiming to save time and memory costs and to naturally
fit node retrieval task. However, current binarized attributed
network embedding methods are scarce and mostly ignore the
local attribute similarity between each pair of nodes. Besides,
none of them attempt to control the independency of each
dimension(bit) of the learned binary representation vectors. As
existing methods still need improving, we propose an unsuper-
vised Neural-based Binarized Attributed Network Embedding
(NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman
proximity matrix from predecessors to aggregate high-order
features for each node. Secondly, we feed the aggregated features
into an autoencoder with the attribute similarity penalizing term
and the orthogonality term to make further dimension reduction.
To solve the problem of integer optimization we adopt the
relaxation-quantization method during the process of training
neural networks. Empirically, we evaluate the performance of
NBANE through node classification and clustering tasks on three
real-world datasets and study a case on fast retrieval in academic
networks. Our method achieves better performance over state-
of-the-art baselines methods of various types.

Index Terms—Attributed Network, Network Embedding,
Weisfeiler-Lehman Proximity Matirx, Autoencoder

I. INTRODUCTION

Attributed networks are one of the most ubiquitous data
structures in real-world information systems such as social
networks, academic networks [1] and knowledge graphs [2],
consisting of a group of nodes associated with features linked
to one another. For instance, people, personal information and
their friendships can be modeled as nodes, features and links
respectively. To utilize such non-structural data in different
scenarios like data mining and machine learning, network
embedding method, also known as network representation, is
proposed to covert nodes into a latent space for down-stream
tasks. In other words, distinct nodes are mapped to different
low-dimensional vectors reflecting similarities among nodes,
on which applications such as node classification [3], node
clustering [4], link prediction [5] and node retrieval [6] can
be built.

* Corresponding author.

Fig. 1. Continuous embedding vs Discrete/Binarized embedding on attributed
networks.

For a few years, many efforts have been made to address the
problem of network embedding. Early models like DeepWalk
[7], LINE [8], node2vec [9], SDNE [10] and GraRep [11] aim
to learn network embedding vectors from structure information
purely. Meanwhile, many models are developed to extract
representations from structure and attribute information of
networks jointly. For example, TADW [6], LANE [12], NANE
[13], ANRL [14], GCN [15], GraphSAGE [16], GraphRNA
[17] and many other classical algorithms aim to generate node
embedding vectors preserving both structural relationships and
attributes. However, all algorithms mentioned above output

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

real value vectors in a continuous Euclidean space, demanding
great cost in computation and storage. Besides, a counter-
intuitive fact is that continuous value embedding vectors can
be noisy, redundant and over-fitted, which may result in bad
performance in down-stream tasks.

In more recent years, building discrete especially binarized
network embedding algorithms has been put on the agenda
by researchers. For example, Bernoulli Embedding [18], DNE
[19], BANE [20] and BinaryNE [21] find ways to map nodes
into Hamming space where vectors only take value of {1,−1}
in each dimension, as shown in Fig.1. Binarized embedding is
also called hashing embedding with some outstanding advan-
tages. (1) Firstly, vectors that only take value of 1 or -1 in each
dimension naturally take up rather smaller space for storage.
(2) Moreover, when comparing the similarity between two
nodes, it is much faster to calculate the Hamming distance with
bit-wise operations than Euclidean distance with arithmetic
operations between two corresponding binary codes. (3) Last
but not the least, as node embedding vectors can be regarded as
parameters, binary vectors produced with proper optimization
are able to alleviate the over-fitting problem and to boost
accuracy in many application scenarios like node classification
and link prediction.

However, to the best of our knowledge, existing binarized at-
tributed network embedding models are scarce and incomplete.
Taking state-of-the-art models as example, BANE ignores
local attribute similarity between two nodes when generating
their embedding vectors, not able to boot node retrieval tasks.
BinaryNE is more prone to capturing the global or high-order
structural and attribute similarity by applying random walk
techniques, not able to weigh local attribute similarity either.
Besides, none of the binarized attributed network embedding
models mentioned above attempt to control the independency
of each bit(dimension) of vectors, resulting in the redundancy
of node representations even though they are already in the
form of binary codes. In a word, current algorithms still need
improving and how to learn compact binary embedding vectors
preserving global and local information enabling both data
mining tasks and efficient node retrieval applications remains
a challenge.

To modify current binarized attributed network embed-
ding algorithms, we propose an unsupervised Neural-based
Binarized Attributed Network Embedding framework named
NBANE. Our model consists of two steps: (1) Aggregating
nodes’ attribute information from neighbors into features by
using the Weisfeiler-Lehman proximity matrix; (2) Using an
autoencoder to reduce the dimension of features while apply-
ing the constraints of local attribute similarity, the quantization
loss , the bits independency loss to train the neural network.
By taking the above elements into consideration, our model
can outperform former works with both accuracy of node
classification and scalability of node retrieval.

The contributions of this paper are listed as follows:
• To our best knowledge, our model is the first endeavor

to introduce neural network methods into binarized at-
tributed network embedding while simultaneously taking

attribute similarity and bit othorgonality into considera-
tion.

• We conduct experiments on three real-world datasets
with node classification and node clustering tasks. By
comparing the results with that of other models, the
effectiveness of NBANE is well evaluated.

• We study a case on how to conduct fast node retrieval
with nodes’ binary codes, demonstrating the ability of
saving time and memory of our model.

The remainder of the paper is organized as follows. In
Section II, more related methodologies on network embedding
and deep hashing are introduced as supplements. Preliminaries
are given in Section III. We theoretically discuss our model
in Section IV and empirically conduct experiments in Section
V,VI. At last, conclusions based on theories and experiments
are given in Section VII.

II. RELATED WORK

A. Continuous Network Embedding
Since most network embedding methods are of this cate-

gory, we mainly introduce representative ones among them.
According to whether node attributes are taken into consider-
ation, continuous network embedding algorithms fall into two
categories: structure-based network embedding and attributed
network embedding.

Structure-based network embedding methods work on plain
networks without node contents, seeking to get nodes’ rep-
resentations that reflect topological similarity with a certain
metric. DeepWalk [7] first employs the random walk and the
Skip-Gram techniques to learn node representations preserving
structural context similarity. The node2vec [9] algorithm ex-
tends DeepWalk by leveraging biased random walks. LINE [8]
models the first-order proximity and the second-order proximi-
ty with the concatenation operation, followed by GraRep [11]
capturing high-order proximity through matrix factorization.
SDNE [10] uses a deep autoencoder to learn deep nonlinear
node representations, by reconstructing node adjacent matrix
for preserving the global proximity and penalizing the rep-
resentation difference of connected nodes for preserving the
first-order proximity.

Attributed network embedding methods learn node rep-
resentations from network structure and attributes jointly.
Based on the proof of DeepWalk’s equivalence of matrix
factorization, TADW [6] incorporates text features into its
framework. LANE [12] also takes matrix factorization method
on networks with node features and sparse labels to acquire
representations. DANE [22] proposes dual autoencoders to
deal with structure and attribute information respectively while
NANE [13] uses only one autoencoder for early fusion of
multi-modal information. ANRL [14] is set as a muilti-task
neural network to learn embedding from hidden layers by
reconstructing node attributes and node context. Besides, graph
neural networks models like GCN [15], GraphSAGE [16],
GAT [23] and GraphRNA [17] conduct semi-supervised end-
to-end graph learning and offer node embeddings in the hidden
layers naturally.

B. Discrete Network Embedding

Discrete network embedding aims to learn vectors with
values restricted on a finite element set, and more typically
a branch of it that merely takes value of {1,−1} in Ham-
ming space is called binarized network embedding. Bernoulli
Network Embedding [18] generates binary codes as node
presentations by conducting Bernoulli random tests. DNE
[19] learns binary node representations to speed up node
classification with matrix factorization. NetHash [24] is the
first algorithm proposed to generate discrete node represen-
tations that encode both network structure and node content
features with MinHash techniques. BANE [20] defines the
Weisfeiler-Lehman proximity matrix and gets node embed-
dings by factorizing matrix with integer optimization, followed
by LQANR [25] acquiring low-bit representations under a
similar framework. BinaryNE [21] uses an attributed random
walk and the continuous approximation technique to learn
binary embedding vectors for nodes which can be regarded
as an extension of DeepWalk.

C. Deep Hashing Methods

In other pattern recognition domains such as image, text
and video, deep hashing methods have been widely adopted
to extract features and compact binarized codes from high-
dimensional raw data. They can be further categorized into
unsupervised type and supervised type. The unsupervised deep
hashing methods like DH [26] uses reconstruction autoencoder
to preserve information. The supervised deep hashing methods
try to utilize labels in the form of pairwise labels and triplets
labels, like DPSH [27] and DSCH [28]. Deep hashing methods
have great implications for the binarized network embedding
task.

III. PRELIMINARIES

In this section, we give the formal definitions and notations
for the problem. Furthermore, a mathematical tool named
Weisfeiler-Lehman proximity matrix is illustrated as it plays
a crucial part in the proposed model.

A. Problem Definition

Given an attributed network G = {V,E,X}, V = {vi}ni=1

denotes nodes, and E = {eij}ni,j=1 denotes undirected edges,
and X = {xi}ni=1 ∈ Rn×m denotes attribute vectors of the
nodes with m the dimension of attribute vectors. We define
an adjacency matrix A on the basis of E , where Aij = 1, if
eij ∈ E, otherwise, Aij = 0. Define Ã = A+ I by adding a
self-loop to each node in the network, where I is an identity
matrix. D̃ = diag(d̃1, ..., d̃n) is a degree matrix of Ã, with
d̃i =

∑
j ãij being the degree of node vi.

Given the attributed network G, our goal is to embed each
node vi ∈ V into a d-dimensional vector bi ∈ {+1,−1}1×din
Hamming space, where bi is the ith row of matrix B ∈ Rn×d.
The target matrix B ought to preserve the structure information
A and the attribute information X in the original network G
at the same time.

B. Weisfeiler-Lehman Proximity Matrix

The Weisfeiler-Lehman proximity matrix is a useful tool
to generate hand-crafted features for each node in a network.
It is derived from Weisfeiler-Lehman graph kernal and has
been already adopted by the former work BANE [20]. Given
a network G with its adjacency matrix A and attribute matrix
X , letting D̃ be a degree matrix of Ã and L̃ = D̃ − Ã, the
Weisfeiler-Lehman proximity matrix P is defined as P = (I−
γD̃−1L̃)kX , where γ ∈ [0, 1] is a trade-off parameter, and k
is the number of aggregation layers.

C. Notations

TABLE I
MAIN NOTATIONS AND DESCRIPTIONS

Notations Descriptions
n Total number of nodes in the network
m Dimension of node attribute
d Dimension of embedding space
γ Trade-off parameter for the Weisfeiler-Lehman proximity matrix
k Number of feature aggregation layer
G Attributed network
A Adjacent matrix for networks
E Edges for networks
X Attribute matrix for networks
P Weisfeiler-Lehman proximity matrix

Win,Wout Weights of neural networks
S Attribute cosine matrix
R Real-number embedding before quantization
B Binary embedding after quantization

IV. OUR MODEL

In this section, we give an elaborate description of our mod-
el, including the feature aggregation part and the autoencoder
part. Also, a series of loss functions for training the neural
network are explained in detail.

A. Overall Architecture

Here we give a global introduction to the unsupervised
NBANE framework, which is designed to learn binary em-
bedding vectors for nodes in an attributed network. As shown
in Fig.2, the framework is composed of two parts: the feature
aggregation step and the feature transformation step. First we
manually compute the Weisfeiler-Lehman proximity matrix
with each row as the feature of the corresponding node, fusing
both structure and attribute information. Second, we utilize an
autoencoder to get embedding outcomes from its hidden layer.
The following subsections depict every step of the algorithm.

B. Feature Aggregation with Weisfeiler-Lehman Proximity
Matrix

Extracting nodes features preserving structural and content
information is the basis of attributed network embedding.
There are many existing methods for structure-attribute fus-
ing. We inherit the Weisfeiler-Lehman proximity matrix from
BANE model to achieve such a goal. Given a network G with

Fig. 2. Overall architecture of NBANE

its adjacent matrix A along with D̃, L̃, γ, k and attribute
matrix X , we first compute the coefficient matrix

C = (I − γD̃−1L̃)k (1)

Then Weisfeiler-Lehman proximity matrix is computed by

P = CX = (I − γD̃−1L̃)kX ∈ Rn×m (2)

As P = [p1; p2; ...pn], we take each row pi of P as the
aggregated feature of the corresponding vertex vi. Note that
the feature aggregation process is actually equivalent to linear
combination of the original features X = [x1;x2; ...xn] with
coefficient matrix C = (I − γD̃−1L̃)k = {cij}n×n . Then for
each node vi in the attributed network, we have the expression
of its features

pi =

n∑
j=1

cijxj (3)

i = 1, 2, ...n

From Fig.3 we can see that the hyper parameter k denotes
the number of layers of neighboring nodes joining the informa-
tion aggregation. On the other hand, γ ∈ [0, 1] makes a trade-
off between structure and attribute information. The larger γ
is, the more information on structure is taken into account,
and vice versa.

C. Autoencoder with Pair-Wise Attribute Similarity Restriction

By computing the Weisfeiler-Lehman proximity matrix, we
encode structure and attribute information of each node vi into
the aggregated feature pi. However, the aggregated features are
still high in dimension and sparse, unable to be used as node
representations. We hope that the target binarized embedding
vectors for nodes have the following properties.

Fig. 3. Spatial explanation for feature aggregation.

• 1.Binarized embedding vectors should be low dimension-
al and dense.

• 2.Binarized embedding vectors should preserve structure
and attribute information consistent with the aggregated
features computed with the Weisfeiler-Lehman proximity
matrix.

• 3.Binarized embedding vectors of two nodes with similar
attribute should be close in Hamming space.

Therefore, we present an autoencoder consisting of an input
layer, a hidden layer and an output layer with penalizing
constraints to meet the above requests. The forward prop-
agation consists of the encoding and the decoding process.
At the encoding step, the aggregated feature pi is input into
the autoencoder to compute the hidden layer vectors as the
binarized embedding result B = {bi}ni=1 ∈ {1,−1}n×d, and
to reconstruct the output layer as follows

bi = tanh(Win · pi)
p̂i =Wout · bi

(4)

where Win and Wout are weight matrices of the neural
network. Note that no bias involves the computation and the
output layer does not need activation functions.

The output of the autoencoder is denoted as P̂ , namely
the reconstruction layer of input data P . In order to preserve
structure and attribute information in the hidden layer, we set
reconstruction to guide the training of the neural network. The
loss function is denoted with the Frobenius norm || · ||F as:

Lrecon = ||(P − P̂)�M ||2F (5)

where M is the offset coefficient vector. Mij = 1 when
Pij = 0 while Mij = β > 1 when Pij 6= 0, and � means
the Hadamard product. The offset coefficient vector is used to
alleviate data sparsity of P .

In addition, we enhance the attribute similarity between each
pair of nodes by adding a pair-wise penalizing term

Lattr =

n∑
i,j=1

sij ||bi − bj ||H

bi, bj ∈ {1,−1}1×d

(6)

where || · ||H denotes the Hamming distance between two
binary codes and sij = cos(xi, xj) is the cosine similarity
between attributes of two nodes vi and vj .

To make embedding vectors compact and bit-independent as
well as to alleviate over-fitting problem, we go a step further to
control the orthogonality of weights matrix Win by appending
term ||WinW

T
in − I||2F . The orthogonality loss is

Lortho = ||WinW
T
in − I||2F (7)

D. Relaxation-Quantization Method
The optimization of loss function (6) and the final joint loss

function is an NP-hard problem. In order to make the problem
optimizable by the gradient descendent method, we adopt the
relaxation-quantization method [27]. The idea is to relax the
value of bi from {1,−1} to real number ri for optimization
process and use the sign function sgn(·) to get the final
binary codes, named relaxation step and quantization step
respectively. Because the Hamming distance is proportional
to the Euclidean distance, we replace || · ||H with || · ||2. A
quantization loss function is needed to make the real-number
value close to its quantized result through iteration, defined as

Lquant =

n∑
i=1

||ri − bi||22 =

n∑
i=1

||ri − sgn(ri)||22 (8)

where sgn(·) is the sign function with the threshold zero.
After taking all loss functions into consideration and apply-

ing relaxation-quantization method, we rewrite the joint loss
function for the NBANE model as:

L = α1Lrecon + α2Lattr + α3Lortho + α4Lquant

= α1||(P − P̂)�M ||2F + α2

n∑
i,j=1

sij ||ri − rj ||22

+α3(||WinW
T
in − I||2F) + α4

n∑
i=1

||ri − sgn(ri)||22

(9)

where α1, α2, α3, α4 are hyper-parameters to adjust the
weights of each part. Finally we compute bi = sgn(ri) to
get the final binary embedding result for node vi.

We apply the RMSProp optimizer to minimize the loss
function in Eq.(9). Algorithm.1 shows the entire process.

Algorithm 1 NBANE model
Input:

The network G with its adjacent matrix A and attribute
matrix X

Output:
Binary network embedding B

1: Compute the Weisfeiler-Lehman proximity matrix P with
Eq.(2) and the attribute cosine similarity matrix S;

2: Feed each row pi of P into the autoencoder;
3: repeat
4: Apply Eq.(4) to generate the hidden layer R and the

reconstruct matrix P̂ ;
5: Minimize Eq.(9) by RMSProp to update weights of the

neural network;
6: until convergence
7: Acquire the hidden layer R;
8: Get the binary embedding B by computing B = sgn(R);
9: return B

E. Relation with BANE model

Theoretically, our model can be regarded as a neural-form
extension of BANE [20], which proposes and factorizes the
Weisfeiler-Lehman proximity matrix P into a binary matrix
B ∈ {1,−1}d and an auxiliary matrix Z with P = BZ.
Defining Z−1 as the pseudo inverse matrix of Z , we can
see that the embedding result of BANE is an approximate
linear transform outcome of B = PZ−1, equivalent to
minimizing ||P − BZ||F . However, NBANE steps further to
minimize w1||P−BZ||F +w2||STBS||F to enhance attribute
similarities between each pair of nodes. In other words, BANE
is a special case of NBANE when w2 = 0. Thus NBANE can
cover the BANE model and improve efficiencies of various
tasks.

V. EXPERIMENTAL CONFIGURATION

In this section, we introduce the datasets, experiment
schemes and baselines that validate the effectiveness of the
proposed algorithm.

A. Datasets

Three real-world attributed networks are selected for exper-
iments:

• Cora. The Cora network is an academic network com-
posed of 2,708 machine learning publications and their
citation relationships. Theses publications are categorized
into 7 groups. Each publication is represented by a 1,433-
dimensional binary vector, with each dimension denoting
the presence/absence of the corresponding word.

• Hamilton and Stanford. They are two social networks a-
mong dataset Facebook100 collected by Adam D’Angelo
of Facebook. Each node contains 7 attributes: studen-
t/faculty status flag, gender, major, second major/minor,
dorm/house, year, and high school, which is described
by a 139-dimensional and 235-dimensional feature vector
respectively, and student/faculty status flag is selected as
label. Two datasets include 2,314 nodes, 96,394 edges
and 11,621 nodes, 568,330 edges separately.

The statistics of three datasets are presented in Table II.

TABLE II
THE STATISTICS OF THE THREE DATASETS

Dataset Node Edge Attribute
Cora 2078 5429 1433

Hamilton 2314 96394 139
Stanford 11621 568330 235

B. Evaluation Scheme

• Node classification. Node classification task aims to
utilize a portion of network embedding vectors and their
labels to train an SVM. Then it is used to predict the
label of the rest of nodes .

• Node clustering. To test if the embedding result has
spatial distribution characters, embedding vectors are put
into a clustering algorithm to be grouped.

• Node retrieval. Given a query node, we use its binary
embedding vector to compute similarities with other
nodes and return the closest results. Besides, time and
memory for retrieval are compared to demonstrate the
efficiency of our model.

C. Baseline Methods
We compare our binarized attributed embedding model with

the following baselines. Some of them are state-of-the-art
models.

• node2vec [9]. As an extension of the classical DeepWalk
model, node2vec assigns parameters p and q to make a
trade-off between local and global information.

• SDNE [10]. SDNE is an autoencoder embedding frame-
work with a first-order structure penalizing term to cap-
ture global and local structure similarities of nodes.

• TADW [6]. It is a matrix-factorization-based method to
encode both structure and content information of nodes
into their embedding vectors.

• LANE [12](unsupervised version). It fuses structural,
attribute and label information together to preserve node
similarity. Here we only use its unsupervised version.

• ANRL [14]. A state-of-the-art attributed network embed-
ding framework that adopts an attributed random walk
and recurrent neural network to learn embedding for
nodes and graphs by concatenating hidden layers.

• BANE [20]. In essence BANE is a linear transformation
to the Weisfeiler-Lehman proximity matrix of an attribut-
ed network. It iteratively optimizes variables to get binary
embedding vectors for nodes.

Note that the selected baselines are of three types: (1) Un-
supervised plain network embedding methods like node2vec
and SDNE; (2) Unsupervised continuous attributed network
embedding methods like TADW, LANE and ANRL; (3) Un-
supervised binarized attributed network embedding methods
like BANE. Other algorithms mentioned before like GCN,
GraphSAGE and GraphRNA are excluded because they re-
quire labels to conduct semi-supervised learning.

VI. EXPERIMENTAL RESULTS

TABLE III
NODE CLASSIFICATION RESULT MICRO F1-SCORE(%)

Dataset Train size 10% 30% 50% 70% 90%

Cora

node2vec 74.67 80.31 83.10 83.79 86.57
SDNE 36.96 52.03 56.81 60.12 64.58
TADW 78.33 83.09 86.43 86.12 88.56
LANE 70.15 80.50 82.73 84.55 87.16
ANRL 71.03 73.18 75.81 75.84 79.41
BANE 80.34 85.55 87.74 87.26 90.03

NBANE 82.06 85.73 87.99 88.41 91.81

Hamilton

node2vec 89.05 89.84 90.86 92.03 91.90
SDNE 82.77 87.01 88.31 89.41 91.03
TADW 89.07 91.85 92.84 95.02 95.17
LANE 79.64 79.98 84.89 92.89 95.34
ANRL 80.92 89.40 91.53 93.12 94.31
BANE 88.72 91.41 92.32 92.81 92.76

NBANE 94.67 95.26 95.56 96.29 97.16

Stanford

node2vec 74.69 79.91 81.43 81.78 83.23
SDNE 63.47 63.37 63.50 63.68 63.70
TADW 76.87 80.72 82.00 82.97 84.42
LANE 63.47 63.55 63.70 63.93 63.75
ANRL 80.23 80.65 81.72 81.79 82.77
BANE 81.58 82.37 82.62 83.48 84.75

NBANE 82.41 83.20 83.51 84.15 85.59

A. Node Classification Result

For the node classification task, we regard the learned
node representations as samples and divide them into training
set and testing set. We range the train size from 10% to
90% by taking 20% as a step and use an rbf-SVM to make
classification. For fairness, we set the embedding dimension
to 256 for all methods and conduct classification task under
the same division of training and testing of data. We repeat
the process for 5 times and report the average micro F1-score.
Table.III shows the outcome of node classification.

The results can be summarized as follows. First, as a neural-
based model with attribute similarity and weights orthog-
onality constraints, NBANE performs better than baselines
under most settings. Second, the results show that binary
representations do not necessarily lead to accuracy loss but
may avoid the trap of over-fitting, a fact that has been proved
by BANE and further validated by our NBANE.

B. Node Clustering Result

For the node clustering experiment, we utilize the K-
Means++ algorithm and evaluate the clustering result with
ARI(Adjusted Rand Index) and NMI(Normalized Mutual In-
formation). We set the number of clusters same as the group

(a) Cora (b) Hamilton (c) Stanford

Fig. 4. Node clustering result on three datasets

TABLE IV
TOP-5 QUERY RESULTS ON CORA

Query: Back propagation is sensitive to initial conditions Runtimes Memory
TADW 79.63 ms 5.54M
1. Neural network implementation in SAS software.

√
O(d) arithmetic operation

2. Hyperplane ”spin” dynamics, network plasticity and back-propagation learning.
√

3. Learning visual schemas in neural networks for object recognition and scene analysis.
√

4. Generative learning structures for generalized connectionist networks.
√

5. Neural networks and statistical models.
√

NBANE 4.27 ms 23.73KB
1. Neural network implementation in SAS software.

√
O(τd) bit operation

2. Hyperplane ”spin” dynamics, network plasticity and back-propagation learning.
√

3. Learning visual schemas in neural networks for object recognition and scene analysis.
√

4. Visualizing high-dimensional structure with the incremental grid growing neural network.
√

5. Introduction to the theory of neural computation.
√

(a) γ (b) k (c) d

Fig. 5. Parameter sensitivity analysis

number and calculate the indexes 5 times to reduce occasion-
ality. The average results are displayed in Fig.4. Obviously we
can see that NBANE stands the best among almost all models.

C. Case Study: Fast Node Retrieval with Binary Codes

In this case study, we retrieve 5 most similar papers for
a query based on binarized embedding vectors of Cora. The
retrieval result is shown in Table.IV where

√
marks papers

with the same type of the query paper. Both models are
compared under the same environment. Obviously our model
saves much more time and storage than TADW [6]. The reason
can be explained by computational complexity. When using
continuous d-dimensional vectors to compute similarities with
Euclidean norm, we need arithmetic operations with O(d) time
complexity. However, getting Hamming distances between

each pair of nodes only requires bit operations with O(τd)
time complexity along with a coefficient τ ∈ (0, 1). Since bit
operations are much more faster than arithmetic operations,
NBANE saves much more time than traditional embedding
methods.

D. Parameter Sensitivity

In this part we select three crucial hyper-parameters γ, k and
d to explore how they influence the classification accuracies.
We fix the training ratio as 50% and alter these three hyper-
parameters respectively to observe how classification accuracy
changes accordingly. Fig.5 shows the results.

VII. CONCLUSION AND FUTURE WORK

In this paper we study the problem of binarized attributed
network embedding with neural networks and propose N-
BANE model. On the basis of predecessors, we borrow the
Weisfier-Lehman proximity matrix to jointly encode struc-
ture and attribute information into features. Based on the
aggregated features, we set up an autoencoder model along
with the attribute similarity constraint, the bit independency
constraint to obtain binary node representations. We also
utilize the relaxation-quantization method to overcome the
difficulty of integer optimization. Empirical results validate the
effectiveness of our model. In the future, we will consider to
design a cross-modal binarized attributed network embedding
framework to learn binary representations not only for nodes
but also for attributes and labels, which guarantees retrieval
tasks among all kinds of information sources.

ACKNOWLEDGEMENT

This work is supported by the National Key Research and
Development Program of China.

REFERENCES

[1] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating the
construction of internet portals with machine learning,” Inf. Retr., vol. 3,
no. 2, pp. 127–163, 2000.

[2] J. Mo, N. Gao, Y. Zhou, Y. Pei, and J. Wang, “Translation-based
attributed network embedding,” in IEEE 30th International Conference
on Tools with Artificial Intelligence, ICTAI 2018, 5-7 November 2018,
Volos, Greece, pp. 892–899, 2018.

[3] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social Network Data Analytics, pp. 115–148, 2011.

[4] E. Stattner and M. Collard, “Clustering of links and clustering of nodes:
Fusion of knowledge in social networks,” in Advances in Knowledge
Discovery and Management - Volume 6 [Best of EGC 2014, Rennes,
France / Best of EGC 2015, Luxembourg], pp. 255–276, 2015.

[5] D. Liben-Nowell and J. M. Kleinberg, “The link prediction problem for
social networks,” in Proceedings of the 2003 ACM CIKM International
Conference on Information and Knowledge Management, New Orleans,
Louisiana, USA, November 2-8, 2003, pp. 556–559, 2003.

[6] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 2111–2117,
2015.

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning
of social representations,” in The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014, pp. 701–710, 2014.

[8] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web, WWW 2015, Florence,
Italy, May 18-22, 2015, pp. 1067–1077, 2015.

[9] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pp. 855–864, 2016.

[10] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, pp. 1225–1234, 2016.

[11] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International Conference on Information and Knowledge Management,
CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015, pp. 891–
900, 2015.

[12] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, WSDM 2017, Cambridge, United
Kingdom, February 6-10, 2017, pp. 731–739, 2017.

[13] J. Mo, N. Gao, Y. Zhou, Y. Pei, and J. Wang, “NANE: attributed network
embedding with local and global information,” in Web Information
Systems Engineering - WISE 2018 - 19th International Conference,
Dubai, United Arab Emirates, November 12-15, 2018, Proceedings, Part
I, pp. 247–261, 2018.

[14] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and
C. Wang, “ANRL: attributed network representation learning via deep
neural networks,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, pp. 3155–3161, 2018.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[16] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 1024–
1034, 2017.

[17] X. Huang, Q. Song, Y. Li, and X. Hu, “Graph recurrent networks with
attributed random walks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pp. 732–740, 2019.

[18] V. Misra and S. Bhatia, “Bernoulli embeddings for graphs,” in Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3812–3819, 2018.

[19] X. Shen, S. Pan, W. Liu, Y. Ong, and Q. Sun, “Discrete network
embedding,” in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pp. 3549–3555, 2018.

[20] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang, “Binarized
attributed network embedding,” in IEEE International Conference on
Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pp. 1476–
1481, 2018.

[21] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Search efficient binary network
embedding,” CoRR, vol. abs/1901.04097, 2019.

[22] H. Gao and H. Huang, “Deep attributed network embedding,” in
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pp. 3364–3370, 2018.

[23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings, 2018.

[24] W. Wu, B. Li, L. Chen, and C. Zhang, “Efficient attributed network
embedding via recursive randomized hashing.,” in IJCAI, vol. 18,
pp. 2861–2867, 2018.

[25] H. Yang, S. Pan, L. Chen, C. Zhou, and P. Zhang, “Low-bit quantization
for attributed network representation learning,” in Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pp. 4047–4053, 2019.

[26] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015, pp. 2475–2483, 2015.

[27] W. Li, S. Wang, and W. Kang, “Feature learning based deep supervised
hashing with pairwise labels,” in Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pp. 1711–1717, 2016.

[28] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification,” IEEE Trans. Image Processing, vol. 24,
no. 12, pp. 4766–4779, 2015.

