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Abstract—In this paper, we present a deep convolutional
neural network (CNN) architecture for segmenting semantic
changes between two images. The main objective is to segment
changes at the semantic level than detecting background changes,
which are irrelevant to the application. The difficulties include
seasonal changes, lighting differences, artifacts due to alignment
and occlusion. The existing approaches fail to address all the
problems together; thus, none of them achieve state-of-the-
art performance in three publicly available change detection
datasets: VL-CMU-CD [1], TSUNAMI [2] and GSV [2]. Our
proposed approach is a simple yet effective method that can
handle even adverse challenges. In our approach, we leverage the
correlation between high-level abstract CNN features to segment
the changes. Compared with several traditional and other deep
learning-based change detection methods, our proposed method
achieves state-of-the-art performance in all three datasets.

Index Terms—Change Detection, Image Segmentation, Deep
Learning

I. INTRODUCTION

Change detection is one of the major pre-processing tech-
niques used for various computer vision tasks. Generally,
change regions (or foreground objects) are the regions of
interest in image processing tasks. Objects like vehicles,
pedestrians, etc., are of utmost importance and need to be
localized and segmented in many tasks like satellite imaging,
CCTV surveillance, etc. This technique is beneficial in such
cases and makes the task of identification and localization
more straightforward. The problem we target is the semantic
segmentation of change in the scene. We need to detect
changes at the semantic level rather than detecting all the
changes in the background. The challenges are complex,
considering the variations caused by environmental conditions
that are unchanged events. Significant challenges involved are
brightness difference, occlusion, seasonal changes, imperfect
alignment, and occlusion.

The traditional approach to this problem is to detect change
regions (or foreground objects) from the difference between
the test frame and reference frame, often called background
image, or background model ([5]-[7]). Several methods in the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I: Quantitative comparison between CDNet++ against
state-of-the-art methods for binary change segmentation in
VL-CMU-CD, GSV, and TSUNAMI dataset with f-score. The
numbers in the bracket indicate the improvement gained by the
proposed method over the individual approach.

Datasets (—)
Methods ()

CDNet [1] 0.58 (+0.36)  0.61 (+0.07) 0.77 (+0.09)
Super-pixel [3] 0.15 (+0.79)  0.26 (+0.42) 0.38 (+0.48)
ChangeNet [4]  0.80 (+0.14)  0.45 (+0.23) 0.73 (+0.13)
CDNet++ 0.94 0.68 0.86

VL-CMU-CD GSV TSUNAMI

literature follow a two-stage process. The first stage involves
developing a model for static or background pixels. In the
second stage, the developed background model is used to
detect pixels (foreground pixels) that deviate from the estimate.
The success of such methods relies on the accuracy of the
estimated background model. They need to be updated for new
and challenging scenes. These approaches require to observe
many reference frames to build a robust background model.
However, in our problem, the changes have to be segmented
provided a single reference frame.

Recently, Convolutional Neural Networks (CNN) are used
to learn problem-dependent features that outperform tradi-
tional methods in change detection. Lim et al. [8] proposed
a method to intelligently fuse multiscale CNN features with
feature pooling, to learn class-specific foreground extractor.
Alcantarilla et al. [1] proposed a new CNN based change
detection method called CDnet. For training CDnet, the au-
thors curated a new urban change detection dataset called
as VL-CMU-CD. The VL-CMU-CD dataset consists of 1362
registered image pairs with 11 object classes, captured at
different time instances over a year. It contains challenging
changes like structural, construction, and natural seasonal
changes. Sakurada et al. [2] use a combination of superpixel
segmentation and pre-trained deep neural network weights to
detect changes. Also, they have created a new dataset called
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Fig. 1: Qualitative comparison for binary segmentation with SuperPixel ([3]), ChangeNet ([4]) and proposed method for images
from VL-CMU-CD dataset [1]. Our proposed method, CDNet++, can accurately segment the semantic changes between test
and reference image. The test and reference images: have seasonal differences (first row), are captured during a different time
of the day (second and third row) and alignment and/or warping artifacts (notice the distortions in the walking path of the
first-row example). Irrespective of these challenges, our proposed method detects the changes with better boundary precision.
Notice that, compared with the existing methods, Our method can precisely segment even the small changes (in the third-row

example) with accurate boundaries.

TSUNAMI and Google Street View (GSV) for benchmarking
change detection algorithms. Both TSUNAMI and GSV con-
tain 100 panoramic image pairs each, with days or months of
time gap between the pairs. These datasets cover changes on
surfaces of objects (like changes in billboard signs), structural
changes (such as changes in a building structure). Similarly,
Gubbi et al. [3] proposed a multiscale superpixel method for
change detection in drone imaging.

More recently, Varghese et al. [4] proposed ChangeNet,
a deep neural network-based approach that uses pre-trained
CNN features to detect changes. Currently, ChangeNet is state-
of-the-art in the VL-CMU-CD dataset. However, they have
shown to perform lower than [1] in GSV and TSUNAMI
dataset. As a whole, there is no single method that outperforms
in all the three datasets. Such a technique would be able to
detect both pixel level and semantic level changes irrespective
of the challenges posed in real-life conditions.

The challenges present in the VL-CMU-CD dataset is shown
with a few examples in Figure 1. As can be seen from
the examples, the dataset has a huge variety of challenges.
The existing SuperPixel [2] approach segments the seasonal
changes also as part of changes (For the first-row example,
the trees are also segmented). Comparatively, ChangeNet [4]
model performs better. However, the boundaries predicted by
ChangeNet is inaccurate. Additionally, it fails to segment small
change regions in the third-row example.

Motivated by these issues, we propose a CNN based change
segmentation model, CDNet++, that has better localization as

well as accurate boundary prediction capability. The proposed
CDNet++ architecture extracts semantic features from multiple
depths of a CNN feature extractor. Then, we use the correlation
between extracted features to segment the change regions. As
highlighted in Figure 1, our proposed method can accurately
segment changes irrespective of the size of the change regions.

In summary, our contributions are:

« We propose a CNN-based change detection method that
is robust to various environmental, alignment and warping
challenges,

o Through experimental evaluation, we show the efficacy
of the proposed method in VL-CMU-CD, GSV, and
TSUNAMI datasets.

« We show extensive ablation experiments and analysis on
various choices of model architecture and parameters.

The rest of the paper is organized as follows. The proposed

method is described in Section II. The implementation details,
evaluation protocols, and results are discussed in Section III.
Finally, we conclude the paper in Section IV.

II. PROPOSED APPROACH

Overview: Given a test (I;) and a reference image (I.), the
objective is to segment change regions between them and label
each pixel into one of the following ten classes: barrier, bin,
construction, person/bicycle, rubbish bin, signboard, traffic
cone, vehicles, other objects, and background. I; and I,
need not be captured sequentially; the images in VL-CMU-
CD, TSUNAMI, and GSV are captured at different seasons
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Fig. 2: Overview of our proposed CDNet++ model. The test image (/;) and reference image (/) are passed as input to
feature extractor to obtain high-level semantic features. Then, the correlation between individual features at five different levels
estimates the likelihood of finding a similar feature in a fixed neighborhood. Finally, a block of convolutional layers convert

the correlation map into ten class segmentation output.

altogether. Additionally, though [; and I, are pre-aligned
using global homography and/or optical flow, exact pixel-wise
matching is not guaranteed. For example, non-rigid alignment
techniques can introduce warping artifacts due to extreme
seasonal scene changes and occlusion. Hence, the challenges
involved in segmenting changes are seasonal differences (with
and without snow, tree leaves grown during the autumn season,
etc.), lightning conditions (images could have been captured
during a different time of the day), alignment, warping, and
occlusion.

In our approach, we identify seasonal and lightning changes
by comparing semantic features from deeper convolution lay-
ers. However, pixel-wise comparison at high-level semantic
features can still fail due to alignment/warping and occlu-
sion problems. Hence, to handle such issues, we propose
to compute a patch-wise correlation between feature maps.
The resultant correlation map is further processed using a
set of convolution layers to generate the final ten channel
segmentation output.

Feature extractor: The success of change segmentation re-
lies on the quality of extracted image features. In our method,
we use VGGI19 [9] model as base network architecture. We
initialize the model with ImageNet pre-trained weights and
finetune the weights for our task. We extract feature maps
at five different locations of the network. The VGG19 model
consists of five major convolutional blocks, followed by three
fully connected layers. As we require only convolutional
features, we discard FC layers of the VGG19 model. Also,
the VGG19 model has max-pool layers at the end of each
convolutional block. We extract pre-max pool features for both
input images. Hence, we obtain five feature maps ( ftlr ),
each with half-resolution as the previous feature map:

Fy={fi},Vi=(1,2,3,4,5)andj = (t,r) (1)

Feature Correlation: The extracted features contain seman-

tic information about both the test and the reference frame.
One simplistic way to segment out the changes is to subtract
both features. However, that holds only for the case where
both test and reference frames are registered accurately. To
solve this problem, we make use of the correlation layer to
compute pixel similarity. As shown in Figure 2, we compute
correlation map between two feature maps of I; and I, with
same dimension. Let fF and f* denote the k' block feature
map of I; and I,.. Let the size of the feature maps be h xw X c,
where (h,w, ¢) denote height, width and number of channels.
The correlation of the two patches at location [; of ft’f and [o
of fF is defined as,
>

o€[—s,s]x[—s,s]

(ff Uy +0), fE(l2 + 0))

2
The correlation is computed between two patches of size (2s+
1,25+ 1). Ideally, one can compute correlation between every
l1 location with all possible [5 locations i.e. h * w. However,
that would require huge computations. Thus, we restrict our
correlation comparison to a fixed search area of 7' xT" centered
around l5. Hence, for every [; location at ftk, we compare a
patch of size (25+1,2s+1) of fF with T locations centered
at same [; location of f¥, resulting in a correlation map C*
of size (h x w x T?).

We compute five correlation maps, one for each of the five
feature levels. These correlation maps are in different resolu-
tions due to max-pooling operations in the feature extractor.
While, f! (and f}) has the same dimension as the inputs,
f? (and f7) dimension is downsampled by a factor of 16,
because of four max-pooling operations performed due feature
extraction. Hence, we upsample correlation maps to the same
dimension as input shape by applying transpose convolutions.
We perform four transpose convolution operations on C° to
bring it to the same shape as inputs. Similarly, for remaining
correlation maps, we apply transpose convolution till their

correlation(ly,ly) =



TABLE II: Quantitative analysis of CDNet++ results at class

dimension matches input. Three convolution layers further
level on VL-CMU-CD data set.

process the output feature maps of transpose convolution
layers (see Figure 2).

Class(—) Constr Other Person/ Rubbish Sign Traffic

Segmention prediction: The five output feature maps from  Metric(|) 22" B ction objects Bicycle bin  board cone Vehicle Overall
the previous step are aggregated by concatenating them in the p .o "0 37177 089 091 060 093 069 076 096 088
feature space. The concatenated features are further processed Recall ~ 0.87 092 078 037 067 079 083 087 088 081
by a block of four convolution layers to predict the final ten f-score 073 0.84 083 053 063 086 075 081 092 084

channel segmentation map. The model is trained in an end-
to-end setup with cross-entropy loss between the predicted
segmentation map and ground truth segmentation map.

III. EXPERIMENTS
A. Network Implementation

The baseline VGG19 network consists of sixteen convolu-
tional Layers and five Max-pool layers (with stride=2). Each
convolutional layer consists of a convolution with kernel size
= 3 with ReLU activation. For upscaling the {C%,C*,C3,C?}
correlation maps, we use {4,3,2,1} transpose convolution
layers respectively. For each transpose convolution layer, we
use kernel size = 2 and stride = 2. Further, the output
of transpose convolution layers is passed to a set of three
convolution layers with 64 filters and kernel size = 5. The
resultant feature maps are concatenated and passed through
four convolutional layers with {128,64,32,10} filters, and
kernel size = 5. The network is trained in an end-to-end fashion
with cross-entropy loss between predicted and ground truth
segmentation map. We use Adam optimizer with learning rate
of 0.0001 and 5; = 0.9 and 51 = 0.999 to optimize the loss
function. Through ablation experiments, we found that setting
s (in Equation 2) to 5 and 7" to 7 yields best result.

B. Datasets and protocols

We train and evaluate our method in three publicly available
datasets: VL-CMU-CD ([1]), GSV, and TSUNAMI ([2]). VL-
CMU-CD dataset consists of 1187 image pairs in total. We
follow the dataset split used in ChangeNet ([4]) for our
experiments as well. The dataset is split into a ratio of
70:15:15% for training, validation, and testing. Similarly, GSV
and TSUNAMI datasets consist of 100 image pairs each, out
of which 70 image pairs were used for training and 15 image
pairs each for validation and testing. We perform a quantitative
evaluation on all three datasets using five-fold cross-validation.
For training the proposed model, we computed cross-entropy
loss between ground truth and predicted output with class re-
balancing weights. We implemented our model in Tensorflow
([10]) installed on a workstation with Intel Xeon at 3.50 GHz
CPU with 32GB RAM and an NVIDIA Titan X GPU card.

CDNet [1] and SuperPixel [3] methods are developed to
segment change or no-change regions i.e. binary segmentation.
Hence, to compare these two methods, we convert our ten
class segmentation map to binary map by mapping all non-
background classes to 1 and background class to 0 (see
Figure 1). ChangeNet [4] model is trained to predict ten class
segmentation map similar to our approach. Hence, we perform
both binary and multiclass segmentation comparison against
ChangeNet model.

TABLE III: Average results of 5-fold cross validation for
binary and multi-class categories in VL-CMU-CD dataset.

Accuracy Precision Recall f-score
Binary 0.991 0.94 0.94 0.94
Multi-class ~ 0.953 0.88 0.81 0.84
C. Results

1) Evaluation metrics: We evaluate the performance of the
proposed method with state-of-the-art methods using standard
F1 evaluation metrics. Also, we evaluated proposed method on
three datasets in Table VIII using following standard metrics:
Accuracy, Precision, Recall, F1 score, mean Intersection over
Union (mlIoU), Matthew’s correlation coefficient (MCC), Sen-
sitivity, Percentage of Wrong Classifications (PWC), Speci-
ficity, False Positive Rate (FPR) and False Negative Rate
(FNR).

2) Quantitative comparison: We compare our proposed
CDNet++ method with three state-of-the-art methods: Super-
Pixel ([3]), CDNet ([1]) and ChangeNet ([4]). The results are
shown in Table I. Compared with ChangeNet in VL-CMU-CD
dataset, our proposed method offers over 14% improvement
in f-score. Our method outperforms all three comparison
methods in all of the three datasets. In the GSV dataset, our
method performs better than CDNet by 7% and better than
SuperPixel method by 42%. In TSUNAMI dataset, our method
similarly performs better than CDNet by 9% and better than
SuperPixel method by 48%. The improvement in accuracy is
attributed to the fact that the proposed model is robust enough
for image misalignment.

In Table II, we present the class-specific metrics for all ten
classes in VL-CMU-CD dataset. From the table, we observe
that our method performs better for vehicles, rubbish bin, bin,
construction, and traffic cone classes. While it underperforms
for other objects and person/bicycle category. We perform five-
fold cross-validation and report the results for both binary and
multiclass segmentation in Table II. In overall, our method
achieves 0.84 f-score, which is 0.11 more than ChangeNet
(see Table IV).

In Table V, we present the precision, recall and f-score
values for two FPR values 0.1 and 0.01 in all three datasets.
Similarly in Table VII, we present the comparison between
proposed approach and existing methods for same two FPR
values in VL-CMU-CD dataset. In Figure 6, we compare ROC
curves of proposed method against SuperPixel [3], CDNet
[1] and ChangeNet [4]. CDNet++ achieves steep curve as
compared to CDNet and SuperPixel methods. Also, CDNet++
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Fig. 3: Qualitative comparison for multi-class segmentation with CDnet, ChangeNet and proposed method for images from VL-
CMU-CD dataset. As CDNet is trained to trained for binary segmentation, we color code change region to red for visualization

purpose.

TABLE IV: Average results of 5-fold cross validation for
multi-class categories in VL-CMU-CD dataset.

Methods (—) CDNet++ CDNet++

ChangeNet [4]

Metrics () (VGG16) (VGG19)
Precision 0.77 0.87 0.88
Recall 0.71 0.84 0.81
f-score 0.73 0.86 0.84

achieves AUC (area under the ROC curve) of 99.4%.

In Table VIII, we evaluate our proposed CDNet++ model
on three different datasets using 11 standard metrics. Overall,
CDNet++ performs well for the VL-CMU-CD dataset in all

TABLE V: Quantitative analysis of our approach at FPR=0.1

and 0.01 for three different datasets.

FPR = 0.1 FPR=0.01
Precision Recall f-score | Precision Recall f-score
VL-CMU-CD 0910 0900 0.910 0.880 0975 0.925
TSUNAMI 0.782 0939 0.853 0.953 0.588  0.727
GSV 0.669  0.687 0.678 0.864 0209 0.336

metrics compared to TSUNAMI and GSV datasets. The drop
in performance in GSV and TSUNAMI datasets is because
challenges faced in them are different and also due to less

training data.
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Fig. 4: Qualitative comparison with SuperPixel ([3]), ChangeNet ([4]) and proposed method for images from TSUNAMI

dataset.

TABLE VI: Quantitative comparison between different base-
line network architectures used in our model for feature
extraction. The scores are reported for binary segmentation
in VL-CMU-CD dataset.

Feature extractor Precision  Recall  f-score
Vanilla 0.910 0.904 0.908
DenseNet-121 [11] 0.915 0916 0.916
DenseNet-161 [11] 0.923 0.924 0.924
DenseNet-201 [11] 0.922 0.924 0.923
ResNet-50 [12] 0.884 0.876 0.88

ResNet-101 [12] 0.881 0.847 0.864
ResNet-152 [12] 0.803 0.800 0.802
GoogleNet [13] 0.887 0.806 0.845
VGG-16 [9] 0.919 0.918 0.919
VGG-19 [9] 0.941 0.939 0.940

3) Qualitative comparison: We show the results generated
by SuperPixel, ChangeNet and our method for images from
GSV, TSUNAMI and VL-CMU-CD datasets in Fig. 1, 3, 4,
and 5. In Figure 3, we show few examples from VL-CMU-
CD dataset and the corresponding multi-class predictions
from CDNet, ChangeNet and our proposed model. From the
results, we observe that CDNet method wrongly predicts non-
changing regions also as change regions in second, third and
fifth row examples in Figure 3. The output of ChangeNet is
better than CDNet, however the boundaries are not accurate.

TABLE VII: The quantitative comparison of our method with
other approaches for FPR = 0.1 and FPR = 0.01 in VL-CMU-
CD dataset. The best scores are highlighed in bold and the
second best in blue color.

FPR = 0.1 ‘ FPR = 0.01

Metrics (—)

Methods (|) Precision Recall f-score | Precision Recall f-score

Super-pixel [3]  0.17 0.35 0.23 0.23 0.12  0.15
CDnet [1] 0.40 0.85 0.55 0.79 0.46 0.8
ChangeNet [4] 0.79 0.80  0.79 0.80 0.79  0.79
CDNet++ 0.91 090 091 0.88 097  0.92

Comparitively, our proposed method localizes changes well
and segments them with reasonably accurate boundaries. In
Figure 1, we show few examples for binary segmentation in
VL-CMU-CD dataset.

4) Ablation experiments: In Table VI, we present the abla-
tion experiments for different baseline network architecture
used for feature extraction. We evaluate them for binary
segmentation in the VL-CMU-CD dataset and present three
metrics in Table VI. By vanilla architecture, we refer to
simple seven convolution layers without any max-pooling and
transpose convolution layers. We experimented with some of
the famous CNN architectures like DenseNet [11], ResNet
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Fig. 5: Qualitative comparison with SuperPixel ([3]), ChangeNet ([4]) and proposed method for images from GSV dataset.

TABLE VIII: Performance metrics of CDNet++ for binary classification (change or no-change) on three different datasets.

g[;t;:; t(x)) Accuracy Precision Recall F1 mloU MCC Se(n;gg)l R PWC S;zt;s;]fi{c;ty FPR FNR
TSUNAMI 0.921 0.845 0.881 0.863 0.827 0.808 0.881 0.078 0.938 0.062 0.119
GSV 0.840 0.629 0.759 0.688 0.665 0.587 0.759 0.159 0.865 0.135 0.241
VL-CMU-CD 0.992 0.94 0.94 0.94 0.938 0.935 0.94 0.008 0.865 0.005 0.060

TABLE IX: Ablation study on number of convolution layers
and filters used after transpose convolution and after feature
concatenation. The best performing architecture is highlighted
in bold and second best in blue.

of layers and filters to use after transpose convolution. The
highest f-score is achieved by using five convolution layers
with the number of filters {256, 128, 64, 32, 16} after transpose
convolutions, followed by three convolution layers after con-
catenation with number of filters {128,64,32}. The second

# of filters after

# of filters before concatenation concatenation Precision Recall f-score highest score is achieved by using three convolution layers
128. 64. 32. 16, 8 128. 64. 32 0923 0935 0927 With 64 filters each. For our experiments, we choose the
256, 128, 64, 32, 16 128, 64, 32 0.941 0.950 0.942 second-best architecture as the difference between the second
64, 64, 64, 64, 64 128, 64, 32 0929 0.947 0.938 pegt and the best architecture is minimal (only in the third
256, 256, 256, 256, 256, 256 128, 64, 32 0915 0947 0.929 deci 1 . hile it has f

64, 64, 64, 64, 64, 64 128,64,32 0943 0937 0939 decimal point), while it has fewer parameters.

32, 32, 32, 32, 32, 32 128, 64, 32 0.928 0918 0.923

32, 32 128, 64, 32 0.940 0939 0.938

128, 128 128, 64, 32 0.886 0.899 0.896 IV. CONCLUSION

64, 64, 64 128, 64, 32 0.944 0942 0.941 .

256, 256, 256, 256, 256, 256 256,128,6432,168 0921 0916 0921  In this paper, we have presented CDNet++, a novel CNN-

based method for detecting changes from a pair of images. We
handle the changes at various semantic levels, from simple
structural change to illumination or seasonal changes, by
using low-level to high-level convolutional features extracted
at different depths in our encoder. Additionally, we make use
of the correlation layer to handle the misregistration between

[12], GoogleNet [13] and VGG [9]. We see from the table
that VGG-19 performs better than other architectures.

In Table IX, we show the ablation for a different choice



True Positive Rate

Fig.
tion.

Comparing ROC curves

I I I I
1 [ |
0.8} B
0.6 |- B
04 -
—e— Super-pixel
0.2 —=— CDNet
—a— ChangeNet
0 —+— CDNet++ |
| | | | | |
0 0.2 0.4 0.6 0.8 1

False Positive Rate

6: ROC and TPR-FPR curve for binary class segmenta-

input pairs. Hence, the burden of having a perfect pixel-to-
pixel alignment is alleviated. Through extensive evaluation
on three different datasets, we have shown that our proposed
CDNet++ method offers better accuracy over existing state-
of-the-art methods. In particular, CDNet++ offers 14% boost
in f-score at VL-CMU-CD dataset.
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