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Abstract—Reinforcement learning is a popular machine learn-
ing paradigm which can find near optimal solutions to complex
problems. Most often, these procedures involve function approx-
imation using neural networks with gradient based updates to
optimise weights for the problem being considered. While this
common approach generally works well, there are other update
mechanisms which are largely unexplored in reinforcement
learning. One such mechanism is Extreme Learning Machines.
These were initially proposed to drastically improve the training
speed of neural networks and have since seen many applications.
Here we attempt to apply extreme learning machines to a
reinforcement learning problem in the same manner as gradient
based updates. This new algorithm is called Extreme Q-Learning
Machine (EQLM). We compare its performance to a typical Q-
Network on the cart-pole task - a benchmark reinforcement
learning problem - and show EQLM has similar long-term
learning performance to a Q-Network.

I. INTRODUCTION

Machine learning methods have developed significantly over
many years and are now applied to increasingly practical
and real world problems. For example, these techniques can
optimise control tasks which are often carried out inefficiently
by basic controllers. The field of Reinforcement Learning (RL)
originates in part from the study of optimal control [1], where
a controller is designed to maximise, or minimise, a charac-
teristic of a dynamical system over time. It is often impossible
or impractical to derive an analytical optimal control solution
for environments with complex or unknown dynamics, which
motivates the use of more intelligent methods such as RL. In
particular, intelligent controllers must be capable of learning
quickly online to adapt to changes. The study of optimal
control and RL brought machine learning into the broader field
of engineering with applications to a wide variety of problems
[2].

The generalisation performance of RL-derived controllers
significantly improved with the incorporation of function ap-
proximators [3]. Unlike the earlier tabular methods, architec-
tures such as fuzzy logic controllers [4] or more commonly
Neural Networks (NNs) can exploit similarities in areas of

the state space to learn better policies. This comes at a cost:
NNs usually take a long time to train and in general they do
not guarantee convergence. Furthermore, nonlinear function
approximators can be unstable and cause the learning algo-
rithm to diverge [5]. Despite this, through careful selection of
hyperparameters and use of additional stability improvement
measures, as will be discussed later, such function approxi-
mators can still obtain useful solutions to control problems.
Of all the algorithms available for tuning network weights,
backpropagation is the most widely used in state-of-the-art
systems [6], [7], [8], [9]. The most common alternatives
to this approach involve evolutionary algorithms, which can
be used to evolve network weights or replace the function
approximator entirely [10]. Such algorithms tend to show
better performance but have a much higher computational cost
which can make them infeasible for certain learning problems.

Extreme Learning Machines (ELMs) are a class of neural
networks which avoid using gradient based updates [11].
For certain machine learning problems, ELM has several
advantages over other update rules - mainly that it can be con-
siderably faster than iterative methods for optimising network
weights since they are instead calculated analytically. ELM
has seen many improvements and adaptations allowing it to
be applied to a wide variety of problems involving function
approximation [12]. These include applications within the
realm of RL, such as using a table to provide training data for
an ELM network [13], approximating system dynamics using
ELM to later apply RL methods [14], or using ELM theory to
derive an analytical solution for weight updates based on the
loss function of gradient-based updates [15]. Here we aim to
use ELM in a conventional RL algorithm by only altering the
neural network update rule. The algorithm which uses ELM
in this manner is referred to here as the “Extreme Q-Learning
Machine” (EQLM).

In this paper we develop the EQLM algorithm and compare
its performance to a standard Q-network of the same complex-
ity. The type of Q-network used here is relatively primitive but
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Fig. 1. Agent-environment interaction in reinforcement learning, where the
agent observes a state and reward signal from the environment and uses this
information to select an action to take

incorporates some features to improve stability and general
learning performance to provide a reasonable comparison. A
full stability analysis of each algorithm is outwith the scope
of this paper, however we compare their performance using
standard measures of learning. EQLM uses an incremental
form of ELM which allows updates to be made online while
the RL agent is interacting with the environment. Tests are
carried out on a classical RL benchmark known as the cart-
pole problem.

II. BACKGROUND

A RL process consists of an agent which senses an envi-
ronment in a certain state and carries out actions to maximise
future reward [2]. The only feedback the agent receives from
the environment is a state signal and reward signal and it can
only affect the environment by its actions as shown schemat-
ically in Figure 1. The objective is then to maximise the total
discounted reward it receives. One method for optimising the
reward is Q-Learning, where the agent learns the action-value
function, Q of its policy and uses this to improve the policy in
an iterative process [16]. The temporal-difference (TD) error
of Q is defined as shown:

e = Q(st, at)−
(
rt+1 + γmax

a
Q(st+1, a)

)
(1)

where st, at, and rt denote state, action, and reward respec-
tively at time-step t, γ is the discount factor which determines
the affect of long term rewards on the TD error, and Q(s, a) is
the estimated action-value function. We approximate Q(s, a)
using a feed-forward NN with parameters θ and, for the stan-
dard Q-network, perform updates using the mean-squared TD
error. Approximating the value function and updating using
TD-error forms the basis for the most rudimentary Q-Learning
algorithms. This section details the additional features of the
Q-Learning algorithm which are employed in EQLM.

A. ε-Greedy Policies

To find an optimal solution, an agent must visit every state
in the environment throughout its training, which requires
the agent to explore the environment by periodically taking
random actions. This conflicts with the agent’s global goal of

taking actions deemed optimal by the current control policy
to improve the policy; thus the well known issue of balancing
exploration and exploitation. One type of policies which help
remedy this issue are known as “ε-greedy” policies [2]. In
these policies, a parameter ε dictates the probability of taking
a random action at each time-step, where 0 ≤ ε ≤ 1, and
this can be tuned to give the desired trade-off between taking
exploratory or exploitative actions. Exploration becomes less
necessary later in the training period once the agent has more
experience. Instead, the agent seeks to exploit actions consid-
ered more “optimal” following a period of more exploration.
To achieve this in practice, ε varies linearly during the training
period from εi to εf over Nε episodes. Following this, ε is
held constant at ε = εf for the remainder of training. The
exploration probability after n episodes is given by Equation
2.

ε =

{
εi − n

Nε
(εi − εf ) , if n < Nε

εf , if n ≥ Nε
(2)

B. Target Network

A crucial issue with Q-networks is that they are inherently
unstable and will tend to overestimate action-values, which
can cause the predicted action-values to diverge [17]. Several
methods to resolve this issue have been proposed, including
the use of a target network [7]. This network calculates target
action-values for updating the policy network and shares its
structure with this network. The parameters of the policy
network, θ are periodically transferred to the target network,
whose parameters are denoted θ−, which otherwise remain
constant. In practise, the target network values are updated
every C time-steps. This slightly decouples the target values
from the policy network which reduces the risk of divergence.

C. Experience Replay

The online methods of learning discussed thus far all
conventionally make updates on the most recent observed
state transition, which has several limitations [7]. For example,
states which are only visited once may contain useful update
information which is quickly lost and updating on single state
transitions results in low data efficiency of the agent’s expe-
rience. A more data efficient method of performing updates
utilises experience replay [18]. In this method, experiences
of transitions are stored in a memory, D which contains the
state sj , action taken aj , observed reward rj+1, and observed
state sj+1 for each transition. Updates are then made on
a “minbatch” of k experiences selected randomly from the
memory at every time-step. To limit the number of state
transitions stored, a maximum memory size Nmem is defined
such that a moving window of Nmem previous transitions are
stored in the agent’s memory [17].

D. Q-Network Algorithm

Figure 2 details the Q-Network algorithm which incorpo-
rates a target network and experience replay. This algorithm
gives our baseline performance to which we compare Extreme



Fig. 2. Q-Network algorithm
1: initialise network with random weights
2: for episode= 1 to Nep do
3: initialise state st ← s0

4: while state st is non-terminal do
5: select action at according to policy π
6: execute action at and observe r, st+1

7: update memory D with (st, at, rt, st+1)
8: select random minibatch of k experiences

(sj , aj , rj , sj+1) from D

9: tj =

{
rj , if sj+1 is terminal
rj + γmaxaQT (sj+1, a), otherwise

10: ej = Q(sj , aj)− (rj+1 + γmaxaQT (sj+1, a))
11: update network using the error ej for each transition

in the minibatch
12: after C time-steps set θ− ← θ
13: end while
14: end for

Q-Learning Machine (EQLM) and also provides the basis for
incorporating ELM as a novel update mechanism.

III. ELM THEORY AND DEVELOPMENT

A. Extreme Learning Machine

ELM in its most widely used form is a type of single-layer
feedforward network (SLFN). The description of ELM herein
uses the same notation as in [11]. Considering an arbitrary
set of training data (xi, ti) where xi = [xi1, xi2, . . . , xin]
and ti = [ti1, ti2, . . . , tim], a SLFN can be mathematically
modelled as follows

Ñ∑
i=1

βig (wi · xj + bi) = oj , j = 1, . . . , N (3)

where Ñ is the number of hidden nodes, βi =
[βi1, βi2, . . . , βim]

T is the output weight vector which con-
nects the ith hidden node to the output nodes, g(x) is the
activation function, wi = [wi1, wi2, ..., win]

T is the input
weight vector which connects the ith hidden node to the input
nodes, and bi is the bias of the ith hidden node. Where the
network output oj has zero error compared to the targets tj

for all N samples,
∑Ñ
j=1 ‖oj − tj‖ = 0 it can be written that

Ñ∑
i=1

βig (wi · xj + bi) = tj , j = 1, . . . , N (4)

which contains the assumption that the SLFN can approximate
the N samples with zero error. Writing this in a more compact
form gives

Hβ = T (5)

where H is the hidden layer output matrix, β is the output
weight vector matrix, and T is the target matrix. These are
defined as shown

H =

 g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ )
... · · ·

...
g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )


N×Ñ

(6)

β =

β
T
1
...
βT
Ñ


Ñ×m

(7) T =

t
T
1
...
tTN


N×m

(8)

ELM performs network updates by solving the linear system
defined in equation 5 for β

β̂ = H†T (9)

where H† here denotes the Moore-Penrose generalised inverse
of H as defined in equation 10. This is used since, in general,
H is not a square matrix and so cannot be inverted directly.

H† =
(
HHT

)†
HT (10)

The method used by ELM to update its weights has several
advantages over classical methods of updating neural net-
works. It is proven in [11] that β̂ is the smallest norm least
squares solution for β in the linear system defined by equation
5, which is not always the solution reached using classical
methods. ELM also avoids many of the issues commonly
associated with neural networks such as converging to local
minima and improper learning rate. Such problems are usually
avoided by using more sophisticated algorithms, whereas ELM
is far simpler than most conventional algorithms.

B. Regularized ELM

Despite the many benefits of ELM, several issues with
the algorithm are noted in [19]. Mainly, the algorithm still
tends to overfit and is not robust to outliers in the input data.
The authors propose a Regularized ELM which attempts to
balance the empirical risk and structural risk to give better
generalisation. This differs to the ELM algorithm which is
solely based on empirical risk minimisation.

The main feature of regularized ELM is the introduction of
a parameter γ̄ which regulates the amount of empirical and
structural risk. This parameter can be adjusted to balance the
risks and obtain the best generalisation of the network. Weights
are calculated as shown:

β =

(
I

γ̄
+ HTD2H

)†
HTT (11)

which incorporates the parameter γ̄ and a weighting matrix
D. Setting D as the identity matrix I yields an expression for
unweighted regularized ELM:

β =

(
I

γ̄
+ HTH

)†
HTT (12)

which is a simplification of equation 11. ELM is then the
case of equation 12 where γ̄ → ∞. Adding the parameter γ̄
adds some complexity to the ELM algorithm because of its



tuning, however regularized ELM still maintains most of the
advantages of ELM over conventional neural networks.

C. Incremental Extreme Learning Machine

It is desired to perform network updates sequentially on
batches of data which necessitates an incremental form of
ELM. Such an algorithm is presented in [20] whose basis
is the regularized form of ELM shown in equation 12. The
algorithm used for the purposes of EQLM is the least square
incremental extreme learning machine (LS-IELM).

For an initial set of N training samples (xi, ti) the LS-
IELM algorithm initialises the network weights as shown:

β = A†tH
TT (13)

where
At =

I

γ̄
+ HTH (14)

and H and T are given by equations 6 and 8. Suppose new
sets of training data arrive in chunks of k samples - the hidden
layer output matrix and targets for a new set of k samples are
as shown:

HIC =

 g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )
... · · ·

...
g(w1 · xN+k + b1) · · · g(wÑ · xN+k + bÑ )


k×Ñ

(15)

TIC =

t
T
N+1

...
tTN+k


k×m

(16)

To perform updates using the most recent data at time t, Kt

is defined as

Kt = I −A†tHT
IC

(
HICA

†
tH

T
IC + Ik×k

)†
HIC (17)

and the update rules for β and A are then as follows:

βt+1 = Ktβt +KtA
†
tH

T
ICTIC (18)

A†t+1 = KtA
†
t (19)

D. Extreme Q-Learning Machine

The algorithm for applying Q-learning using LS-IELM
based updates, here referred to as the Extreme Q-Learning
Machine (EQLM) is shown in Figure 3. Similar to the Q-
network algorithm in Figure 2, this uses experience replay
and a target network to improve its performance. Unlike the
Q-network, the TD-error is not calculated and instead a target
matrix, T for the minibatch of data is created which has the
predicted action-values for all actions in the given states. The
target action-value for each state, sj is then assigned to the
applicable value in tj . Matrix H is constructed using the states
in the minibatch and then the update rules are applied. The
boolean variable step0 is introduced to initialise the network
at the very first update.

Fig. 3. EQLM algorithm
1: initialise network with random weights
2: step0← True
3: for episode= 1 to Nep do
4: initialise state st ← s0

5: while state st is non-terminal do
6: if episode≤ Nh then
7: select action at according to heuristic h0(t)
8: else
9: select action at according to policy π

10: end if
11: execute action at and observe r, st+1

12: update memory D with (st, at, rt, st+1)
13: select random minibatch of k experiences

(sj , aj , rj , sj+1) from D

14: tj =

{
rj , if sj+1 is terminal
rj + γmaxaQ(sj+1, a), otherwise

15: construct matrix H
16: if step0 then
17: At = I

γ̄ + HTH

18: βt+1 = A†tH
TT

19: At+1 = At
20: step0← False
21: else
22: Kt = I −A†tHT

(
HA†tH

T + Ik×k

)†
H

23: βt+1 = Ktβt +KtA
†
tH

TT
24: A†t+1 = KtA

†
t

25: end if
26: after C time-steps set θ− ← θ
27: end while
28: end for

One further key difference in the EQLM algorithm is
the heuristic policy used in initial episodes. The return in
initial episodes has a substantial effect on the convergence of
EQLM as discussed later. This necessitates a simple heuristic
controller for the start of training which does not need to
perform very well, but can at least prevent the agent from
converging on a highly sub-optimal policy. EQLM uses a
heuristic action selection at = h0(t), which is effectively an
open loop control scheme dependant only on the time-step,
for Nh episodes. Definition of this heuristic is discussed in
the following section.

IV. EXPERIMENTS AND RESULTS

Code to reproduce results is available at
https://github.com/strath-ace/smart-ml.

A. OpenAI Gym Environments

The environment used to test the algorithms comes from the
OpenAI Gym which is a toolkit containing benchmark tests
for a variety of machine learning algorithms [21]. The gym
contains, among other environments, several classical control
problems, control tasks which use the MuJoCo physics engine



[22], and the Atari2600 games which are used in [7]. Here the
agents will be tested on the environment named “CartPole-v0”.

The cart-pole problem was originally devised in [23] where
the authors created an algorithm called “BOXES” to learn
to control the system. In this task, a pole is attached by a
hinge to a cart which rolls along a track and is controlled
by two possible actions - an applied force of fixed magnitude
in either the positive or negative x-direction along the track.
The goal is to keep the pendulum from toppling for as long
as possible, which yields a very simple reward function of
r = +1 for every time-step where the pendulum has not
toppled. In addition, the track on which the cart is situated
is finite and reaching the limits of the track also indicates
failure. The dynamics of the system used in the gym are the
same as those defined by [24]. The state-space size for this
environment is 4 and the action-space size is 2.

This problem can be considered an “episodic” task [2],
where the learning is divided into episodes which have de-
fined ending criteria. An episode terminates either when the
pendulum passes 12◦ or the cart reaches either end of the track.
In this task, a maximum number of time-steps per episode of
200 is set within the gym.

B. Heuristic Policy

As discussed previously, EQLM is susceptible to converging
on a sub-optimal policy without the use of a heuristic policy
in the initial episodes. A random policy at the start of training
will sometimes produce this sub-optimal result and so we
need to define a simple deterministic policy which does not
immediately solve the task but prevents unacceptable long-
term performance. For the cart-pole task we consider here
which has a binary action space, we define the heuristic policy
as taking alternating actions at each time-step as shown:

h0(t) = mod(t, 2) (20)

From testing, we found Nh = 5 to be a suitable number of
episodes over which to use the heuristic. The effect of this
initial heuristic policy is shown in Figure 4. This shows the
averaged rewards over the first 200 episodes of training for
both networks with and without the heuristic. While the return
in the initial episodes is still higher for EQLM in both cases, it
is clear that with the heuristic EQLM shows a more favourable
performance. This is due to occasions where, without the
heuristic, EQLM quickly converges to a sub-optimal policy,
which is mitigated by the heuristic policy. Also shown is the
average performance of the heuristic alone, which receives
a reward of 37 per episode. This indicates that although the
heuristic alone performs very poorly on the task, it is still
useful to improve the performance of both algorithms.

C. Hyperparameter Selection

The performance of a Q-learning agent can be very sensitive
to its hyperparameters. To create a useful comparison of each
agent’s performance we therefore need to tune the hyperpa-
rameters for this problem. Here we use the Python library
Hyperopt which is suitable for optimising within combined

Fig. 4. Varying performance with the use of an initial heuristic h0 with the
average performance for the heuristic alone shown

discrete- and real-valued search spaces [25]. Hyperparameters
to be optimised are: learning rate α (Q-Network only), regular-
isation parameter γ̄ (EQLM only), number of hidden nodes Ñ ,
initial exploration probability εi (with εf fixed as 0), number
of episodes to decrease exploration probability Nε, discount
factor γ, minibatch size k, and target network update steps C.

Our main objective to optimise is the final performance of
the agent, i.e. the total reward per episode, after it converges
to a solution. In addition, an agent should converge to the
optimal solution in as few episodes as possible. Both these
objectives can be combined into the single metric of area under
the learning curve as shown in Figure 5. Since hyperopt uses
a minimisation procedure, we specifically take the negative
area under the curve. One of the issues with optimising these
systems is their stochastic nature which can result in several
runs with the same hyperparameters having vastly different
performance. To account for this, each evaluation uses 8 runs
and the loss is the upper 95% confidence interval of the metric
from these runs. This gives a conservative estimate of the
worst-case performance for a set of hyperparameters.

Fig. 5. Example learning curves which show different values for the loss
function



Table I shows the best parameters obtained when tuning the
hyperparameters for this task. Most of the hyperparameters
common to each algorithm are not substantially different with
the exception of minibatch size, k which is 26 and 2 for the
Q-network and EQLM respectively. In fact, the performance
of EQLM tended to decrease for larger values of k which
was not the case for the Q-network. This could be a result
of the matrix inversion in EQLM where the behaviour of the
network is less stable if the matrix is non-square. Alternatively,
it is possible that EQLM attempting to fit to a much larger
number of predicted Q-values causes the overall performance
to decrease. The fact it needs fewer data per time-step than
a standard Q-network could also indicate that EQLM is more
efficient at extracting information on the environment’s action-
values compared to using gradient descent.

Hyperparameter Q-Network EQLM
α 0.0065 -
γ̄ - 1.827e-5
Ñ 29 25
εi 0.670 0.559
Nε 400 360
γ 0.99 0.93
k 26 2
C 70 48

TABLE I
HYPERPARAMETERS USED FOR EACH AGENT IN THE CART-POLE TASK

D. Learning Performance

With the selected hyperparameters, each agent carried out
50 runs of 600 episodes in the cart-pole environment to
compare their performance. The results of this are shown
in Figure 6 and Table II. Here we use two measures of
performance: mean reward over the final 100 episodes and
area under the learning curve (auc).

Fig. 6. Learning curves for EQLM and a standard Q-Network in the cart-pole
task. Results are averaged over all 50 runs at each episode and shaded area
indicates the 95% confidence interval

From the learning curves, we see EQLM on average
achieves a superior performance in the earliest episodes of
training followed by a steady increase in return until it

Measure Q-Network EQLM

reward mean 160.0 (147.5, 173.7) 166.9 (160.7, 173.3)
std 47.0 (35.1, 62.2) 23.1 (20.3, 26.7)

auc (∗103) mean 84.1 (81.0 87.4) 83.3 (80.4, 86.2)
std 11.7 (9.1, 14.7) 10.6 (9.3, 12.4)

TABLE II
PERFORMANCE OF EACH ALGORITHM IN THE CART-POLE TASK

plateaus. The Q-network begins with comparatively low av-
erage return but then shows a sharp increase in return before
its performance plateaus for the remainder of the episodes.
After each of the learning curves plateau at their near-optimal
performance, we see some of the most interesting differences
between the two algorithms. The average return for EQLM
remains very consistent as do the confidence intervals, how-
ever the Q-network displays some temporal variation in its
performance as training continues and the confidence intervals
tend to get larger. This shows that the long-term performance
of EQLM is more consistent than the equivalent Q-network,
which is backed up by the data in Table II. The standard
deviation of the mean reward of EQLM (23.1) is less than
half that of the Q-network (47.0) and both algorithms have
comparable mean rewards (160.0 and 166.9 for Q-network
and EQLM respectively).

To find a statistical measure of the difference in performance
of each algorithm, we use a two-tailed t-test [26]. This assumes
both algorithms’ performance belongs to the same distribution
which we reject when the p-value is less than a threshold of
0.05. When comparing the mean reward in the final episodes,
the t-test yielded values of t = −0.628, p = 0.531. Similarly
for the area under the learning curve we obtained t = −1.16,
p = 0.24. As a result, we cannot reject the hypothesis
that the performance of both algorithms follows the same
distribution. This demonstrates EQLM as being capable of
achieving similar performance to a standard Q-Network in this
task.

V. CONCLUSION

This paper proposed a new method of updating Q-networks
using techniques derived from ELM called Extreme Q-
Learning Machine (EQLM). When compared to a standard
Q-network on the benchmark cart-pole task, EQLM shows
comparable average performance which it achieves more con-
sistently than the Q-network. EQLM also shows better initial
learning performance when initialised using a basic heuristic
policy.

While EQLM shows several advantages to standard Q-
networks, it is clear that the conventional gradient descent
methods are also capable of learning quickly as they gain
more experience. Future work could look at combining the
strengths of EQLM’s initial performance and using gradient-
based methods to accelerate the learning. In this paper we
have tuned the hyperparameters of EQLM for a specific
problem, but a more rigorous parametric study is necessary
to learn more about the effect of the hyperparameters on
EQLM’s learning performance. One of the developments in



ELM which was not used here is the ELM-based multilayer
perceptron [27]. Such a network could similarly be used for
RL problems since deep networks are generally better suited
to more complex tasks [28].

The results in this paper suggest ELM methods are capable
of being used within RL with similar performance and greater
consistency than conventional gradient-descent for simple RL
problems. Additional research is needed on the application of
EQLM to higher dimensional and adaptive control problems.
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