
Is Spiking Secure? A Comparative Study
on the Security Vulnerabilities of Spiking

and Deep Neural Networks
Alberto Marchisio1, Giorgio Nanfa1,2, Faiq Khalid1, Muhammad Abdullah Hanif1,

Maurizio Martina2, Muhammad Shafique1

1Technische Universität Wien, Vienna, Austria
2Politecnico di Torino, Turin, Italy

Email: {alberto.marchisio, faiq.khalid, muhammad.hanif, muhammad.shafique}@tuwien.ac.at
giorgio.nanfa@studenti.polito.it, maurizio.martina@polito.it

Abstract—Spiking Neural Networks (SNNs) claim to present
many advantages in terms of biological plausibility and energy
efficiency compared to standard Deep Neural Networks (DNNs).
Recent works have shown that DNNs are vulnerable to
adversarial attacks, i.e., small perturbations added to the input
data can lead to targeted or random misclassifications. In this
paper, we aim at investigating the key research question: “Are
SNNs secure?” Towards this, we perform a comparative study
of the security vulnerabilities in SNNs and DNNs w.r.t. the
adversarial noise. Afterwards, we propose a novel black-box
attack methodology, i.e., without the knowledge of the internal
structure of the SNN, which employs a greedy heuristic to
automatically generate imperceptible and robust adversarial
examples (i.e., attack images) for the given SNN. We perform an
in-depth evaluation for a Spiking Deep Belief Network (SDBN)
and a DNN having the same number of layers and neurons
(to obtain a fair comparison), in order to study the efficiency
of our methodology and to understand the differences between
SNNs and DNNs w.r.t. the adversarial examples. Our work opens
new avenues of research towards the robustness of the SNNs,
considering their similarities to the human brain’s functionality.

Index Terms—Machine Learning, Neural Networks, Spiking
Neural Networks, Security, Adversarial Examples, Attack,
Vulnerability, Resilience, SNN, DNN, Deep Neural Network.

I. INTRODUCTION

Spiking Neural Networks (SNNs), the third generation
neural network models [15], are rapidly emerging as another
design option compared to Deep Neural Networks (DNNs),
due to their inherent model structure and properties matching
the closest to today’s understanding of a brain’s functionality.
As a result, SNNs have the following key properties.

• Biologically Plausible: spiking neurons are very similar
to the biological ones because they use discrete spikes to
compute and transmit information. For this reason, SNNs
are also highly sensitive to the temporal characteristics of
the processed data [5][32].

• Computationally more Powerful than several other
NN Models: a lower number of neurons is required to
realize/model the same computational functionality [8].

• High Energy Efficiency: spiking neurons process the
information only when a new spike arrives. Therefore,
they have relatively lower energy consumption compared
to complex DNNs, because the spike events are sparse
in time [3][21][30]. Such a property makes the SNNs
particularly suited for deep learning-based systems where
the computations need to be performed at the edge, i.e.,
in a scenario with limited hardware resources [17].

SNNs have primarily been used for tasks like real-
data classification, biomedical applications, odor recognition,
navigation and analysis of an environment, speech and image
recognition [13][25]. Recently, the work of Fatahi et al. [4]
proposed to convert every pixel of the images into spike
trains (i.e., the sequences of spikes) according to its intensity.
Since SNNs represent a fundamental step towards the idea
of creating an architecture as similar as possible to the
current understanding of the structure of a human brain,
it is fundamental to study their security vulnerability w.r.t.
adversarial attacks. In this paper, we demonstrate that indeed,
even a small adversarial perturbation of the input images can
modify the spike propagation and increase the probability of
the SNN misprediction (i.e., the image is misclassified).

Adversarial Attacks on DNNs: In recent years, many
methods to generate adversarial attacks for DNNs and their
respective defense techniques have been proposed [7][12][16].
A minimal and imperceptible modification of the input
data can cause a classifier misprediction, which can
potentially produce a wrong output with high probability. This
scenario may lead to serious consequences in safety-critical
applications (e.g., automotive, medical, UAVs and banking)
where even a single misclassification can have catastrophic
consequences [34].

In the image recognition field, having a wide variety of
possible real-world input images [12], with diverse pixel
intensity patterns, the classifier cannot recognize if the source
of the misclassification is the attacker or other factors [26].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Given an input image x, the goal of an adversarial attack
x∗ = x+ δ is to apply a small perturbation δ such that the
predicted class C(x) is different from the target one C(x∗),
i.e., the class in which the attacker wants to classify the
example. Inputs can also be misclassified without specifying
the target class. This is the case of untargeted attacks, where
the target class is not defined a-priori by the attacker. Targeted
attacks can be more difficult to apply than the untargeted ones,
but they can be relatively more effective in several cases [33].
Another important classification of adversarial attacks is based
on the knowledge of the network under attack, as discussed
below.

• White-box attack: an attacker has the complete access and
knowledge of the architecture, the network parameters,
the training data and the existence of a possible defense.

• Black-box attack: an attacker does not know the
architecture, the network parameters, the training data and
a possible defense, but it can only access to the input and
output of the network (which is treated as a black-box),
and may be the testing dataset [24].

Our Approach towards Adversarial Attacks on SNNs:
In this paper, we aim at generating, for the first time,
imperceptible and robust adversarial examples for SNNs
under the black-box settings. Bagheri et al. [1] studied the
vulnerabilities of SNNs under white-box assumptions, while
we consider a black-box scenario, which makes the attacker
stronger under a wide range of real-world scenarios. For the
evaluation, we apply these attacks to a Spiking Deep Belief
Network (SDBN) and a DNN having the same number of
layers and neurons, to obtain a fair comparison. As per our
knowledge1, this kind of black-box attack was previously
applied only to a DNN model [14]. This method is efficient for
DNNs because it is able to generate adversarial noise which
is imperceptible to the human eye.

As shown in Figure 1, we investigate the vulnerability
of SDBNs to random noise and adversarial attacks, aiming
at identifying the similarities / differences w.r.t. DNNs. Our
experiments show that, when applying a random noise to
a given SDBN, its classification accuracy decreases, by
increasing the noise magnitude. Moreover, when applying our
attack to SDBNs, we observe that, in contrast to the case of
DNNs, the output probabilities follow a different behavior,
i.e., while the adversarial image remains imperceptible, the
misclassification is not always guaranteed.

In short, we make the following Novel Contributions:

1) We analyze the variation in the accuracy of a Spiking
Deep Belief Network (SDBN) when a random noise is
added to the input images. (Section III)

2) We evaluate the improved generalization capabilities of
the SDBN when adding a random noise to the training
images. (Section III-C)

1A previous version of this work is available in [19].

MNIST
Dataset

Random
 adversarial

attacks

Imperceptible
and robust

 adversarial
attacks

9

3

2
7

OUTPUT PROBABILITIES

784
neurons

500
neurons

500
neurons

10
neurons

SDBN

4 7 8610

5

Fig. 1: Overview of our proposed approach.

3) We develop a methodology to automatically create
imperceptible adversarial examples for SNNs.
(Section IV)

4) We apply our methodology to an SDBN (it is the first
attack of this type applied to SDBNs) and a DNN
for generating adversarial examples, and evaluate their
imperceptibility and robustness. (Section V)

Before proceeding to the technical sections, in Section II,
we briefly discuss the background and the related work,
focusing on SDBNs and adversarial attacks on DNNs.

II. BACKGROUND AND RELATED WORK

A. Spiking Deep Belief Networks

Deep Belief Networks (DBNs) [2] are multi-layer networks
that are widely used for classification problems and have
been implemented in many areas such as visual processing,
audio processing, images and text recognition [2]. DBNs are
implemented by stacking pre-trained Restricted Boltzmann
Machines (RBMs), energy-based models consisting in two
layers of neurons, one hidden and one visible, symmetrically
and fully connected, i.e., without connections between the
neurons inside the same layer (this is the main difference w.r.t.
the standard Boltzmann machines). RBMs are typically trained
with unsupervised learning, to extract the information saved in
the hidden units, and then a supervised training is performed
to train a classifier based on these features [9].

Spiking DBNs (SDBNs) improve the energy efficiency
and computation speed, as compared to DBNs. Such
a behavior has already been observed by O’Connor
et al. [23]. That work proposed a DBN model composed
of 4 RBMs of 784-500-500-10 neurons, respectively. It
has been trained offline and transformed in an event-
based domain to increase the processing efficiency and
the computational power. The RBMs are trained with
the Persistent Contrastive Divergence (CD) algorithm, an
unsupervised learning rule using Gibbs sampling, a Markov-
Chain Monte-Carlo algorithm, with optimizations for fast
weights, selectivity and sparsity [6][20][31]. Once every RBM
is trained, the information is stored in the hidden units to

use it as an input for the visible units of the following layer.
Afterwards, a supervised learning algorithm [10], based on the
features coming from the unsupervised training, is performed.
The RBMs of this model use the Siegert function [28] in their
neurons. It allows to have a good approximation of firing rate
of Leaky Integrate and Fire (LIF) neurons [5], used for CD
training. Hence, the neurons of an SDBN generate Poisson
spike trains, according to the Siegert formula.

This represents a great advantage in terms of power
consumption and speed, as compared to the classical DBNs,
which are based on a discrete-time model [23]. Since there has
been no prior work on studying the security vulnerabilities
of SNNs / SDBNs, we aim at investigating these aspects in
a black-box setting, which is important for their real-world
applications in security/safety-critical systems.

B. Adversarial Attacks for DNNs

The robustness and self-healing properties of DNNs have
been thoroughly investigated in the recent researches [27].
As demonstrated for the first time by Szegedy et al. [29],
adversarial attacks can misclassify an image by changing
its pixels with small perturbations. Kurakin et al. [12]
defined adversarial examples as a sample of input data which
has been modified very slightly in a way that is intended
to cause a machine learning classifier to misclassify it.
Luo et al. [14] proposed a method to generate attacks by
maximizing their noise tolerance and taking into account the
human perceptual system in their distance metric. A similar
attack is able to mislead even more complex DNNs, like
Capsule Networks [18], which are notoriously more robust
against adversarial attacks. This methodology has strongly
inspired our algorithm. The human eyes are more sensitive
to the modifications of the pixels in low variance areas.
Hence, to maintain the imperceptibility as much as possible,
the modification of pixels in only the high variance areas is
preferable.

Moreover, a robust attack aims at increasing its ability to
stay misclassified to the target class after the transformations
due to the physical world. For example, considering a crafted
sample, after an image compression or a resizing, its output
probabilities can change according to the types of the applied
transformations. Therefore, the attack can be ineffective if it
is not robust enough to those variations.

Motivated by the above-discussed considerations, we
propose an algorithm to automatically generate imperceptible
and robust adversarial examples for SNNs, and study their
differences w.r.t. the adversarial examples generated for DNNs
using the same technique.

III. ANALYSIS: APPLYING RANDOM NOISE TO SDBNS

A. Experimental Setup

For a case study, we consider an SDBN [23] composed
of four fully-connected layers of 784-500-500-10 neurons,

respectively. We implement this SDBN in Matlab, for
analyzing the MNIST database, a collection of 28×28 gray
scale images of handwritten digits, divided into 60,000 training
images and 10,000 test images. Each pixel intensity is encoded
as a value between 0 and 255. To maximize the spike firing,
the input data are scaled to the range [0,0.2], before converting
them into spikes. In our experiments, the pixel intensities are
represented as the probability that a spike occurs.

B. Understanding the Impact of Random Noise Addition to
Inputs on the Accuracy of an SDBN

We test the accuracy of the SDBN for different noise
magnitudes, applied to three different combinations of images:

• to all the training images only.
• to all the test images only.
• to both the training and test images.

To test the vulnerability of the SDBN, we apply two
different types of noises: normally-distributed and uniformly-
distributed random noise.

The results of our experiments are shown in Table I and
Figure 2. The initial “clean-case” accuracy, obtained without
applying noise, is 96.2%. When the noise is applied to the
test images, the accuracy of the SDBN decreases accordingly
with an increase in the noise magnitude, more evidently in the
case of the normally-distributed random noise. This behavior
is due to the fact that the standard normal distribution contains
a wider range of values, compared to the uniform distribution.
For both noise distributions, the accuracy decreases more when
the noise magnitude applied is around 0.15 (see the red-
colored values in Table I).

TABLE I: Evaluation of the SDBN accuracy applying two different
types of random noise with different values of noise magnitude. The
red and blue values are helping the reader to identify the accuracy
results that are discussed in the text. (ACC stands for Accuracy,
TR+TST stands for Training and Test Datasets)

ACC TRAIN TEST TR+TST TRAIN TEST TR+TST
δ NORMALLY UNIFORMLY

0.02 96.65 94.73 96.54 96.8 96.02 96.81
0.05 95.19 94.42 94.99 96.7 95.64 96.72
0.08 92.99 82.73 73.64 95.89 94.64 95.56
0.1 76.01 77.07 10.39 94.34 93.36 92.8

0.15 24.61 48.23 10.32 47.03 82.76 10.51
0.2 10.26 33.34 10.05 14.64 60.79 10.16
0.3 10.31 21.52 9.88 9.59 34.9 10.16
0.4 10.27 17.05 10.34 9.98 23.16 10.03

When the noise is applied to the training images, the
accuracy of the SDBN does not decrease as much as in
the previous case, as long as the noise magnitude (δ) is
lower than 0.1. On the contrary, for δ = 0.02, the accuracy
increases (see the blue-colored values in Table I) w.r.t. the
baseline (i.e., without noise). Indeed, adding noise in training
samples improves the generalization capabilities of the neural
network. Hence, its capability to correctly classify new unseen

Fig. 2: Normal and uniform random noise applied to all the pixels
of the MNIST dataset.

samples also increases. This observation, as was analyzed in
several other scenarios for Deep Neural Networks with back-
propagation training [11], is also valid for our SDBN model.
However, if the noise is equal to or greater than 0.1, the
accuracy drops significantly. This behavior means that the
SDBN is unable to learn input features due to the inserted
noise, thus it is unable to correctly classify the inputs.

When the noise is applied to both the training and test
images, we notice that the behavior observed for the case
of noise applied to only the training images is accentuated.
For low noise magnitudes (mostly in the uniform noise case),
the accuracy is similar or higher than the baseline. For noise
magnitudes greater than 0.1 (more precisely, 0.08 for the case
of normal noise applied), the accuracy decreases more sharply
than in the case of noise applied only to the training images.
Such a value of noise magnitude represents a threshold of
tolerable noise for the SDBN. Hence, when the noise is too
high, the network cannot classify well.

C. Applying Noise to a Restricted Window of Pixels
In this analysis, we add a normally distributed random noise

to a restricted window of pixels of the test images. Considering
a rectangle of 4×5 pixels, we analyze two scenarios:

• The noise is applied to 20 pixels at the top-left corner of
the image. The variation of the accuracy is represented
by the blue-colored line of Figure 3. As expected, the
accuracy remains almost constant, because the noise
affects irrelevant pixels. The resulting image, when the
noise is equal to 0.3, is shown in Figure 4b.

• The noise is applied to 20 pixels in the middle of the
image, with coordinates (x, y) = ([14 17], [10 14]).
The accuracy descreases more significantly (orange-
colored line of Figure 3), as compared to the previous
case, because some white pixels representing the
handwritten digits (and therefore the important ones for
the classification) are affected by the noise. The resulting
image, when the noise is equal to 0.3, is shown in
Figure 4c. This analysis shows that the location of
noise insertion impacts the accuracy, thereby unleashing
a potential vulnerability of SNNs that can be exploited
by the adversarial attacks.

D. Key Observations from our Analyses
From the analyses performed in the above Sections III-B

and III-C, we derive the following key observations that can be

Fig. 3: Normal random noise applied to some pixels of the MNIST
test images.

(a) (b) (c)

Fig. 4: Comparison between images with normally distributed
random noise (with magnitude 0.3) applied to the corner and to the
left center of the image. (a) Without noise. (b) Noise applied to the
top-left corner. (c) Noise applied to the center.

exploited by an adversarial example generation methodology.

• The normal noise is more powerful than the uniform
counterpart, since the accuracy decreases more sharply.

• For a low noise magnitude applied to the training images,
we notice a small accuracy improvement, due to the
improved generalization capability of SDBNs.

• When applying the noise to a restricted window of pixels,
the perturbation is more effective if the window is in
the center of the image (or generally speaking, in the
input regions belonging to the features that are key for
the correct classification), as compared to the corner. This
is due to the fact that the noise is applied to the pixels
which play an important role for accurate feature learning
and consequently for the correct classification.

IV. OUR NOVEL METHODOLOGY TO GENERATE
IMPERCEPTIBLE AND ROBUST ADVERSARIAL EXAMPLES

Similar to the case of DNNs, the scope of a good attack
on SNNs is also to generate adversarial images, which are
difficult to be detected by human eyes (i.e., imperceptible) and
resistant to physical transformations (i.e., robust). Therefore,
for better understanding, we first discuss these two aspects.

A. Imperceptibility of Adversarial Examples

Creating an imperceptible example means to add
perturbations to the pixels, while making sure that humans
do not notice them. We consider an area A=N·N of pixels x,

and we compute the standard deviation (SD) of a pixel xi,j
as in Equation (1).

SD(xi,j) =

√√√√√ N∑
k=1

N∑
l=1

(xk,l − µ)2 − (xi,j − µ)2

N ·N
(1)

Here, µ is the average value of pixels belonging to the
N·N area. If a pixel has a high standard deviation, it means
that a perturbation added to this pixel is more likely to be
hardly detected by the human eye, compared to a pixel with
a low standard deviation. The sum of all the perturbations
δ added to the pixels of the area A allows to compute the
distance (D(X∗, X)) between the adversarial example X∗ and
the original one X . Its formula is shown in Equation (2).

D(X∗, X) =

N∑
i=1

N∑
j=1

δi,j
SD(xi,j)

(2)

Such value can be used to monitor the imperceptibility.
Indeed, the distance D(X∗, X) indicates how much
perturbation is added to the pixels in the area A. Hence,
the maximum perturbation tolerated by the human eye can
be associated to a certain value of the distance, DMAX . The
value of DMAX can vary among different datasets or images,
because it depends on the resolution and the contrast between
neighboring pixels.

B. Robustness of adversarial examples

Many adversarial attack methods used to maximize
the probability of target class to ease the classifier
misclassification of the image. The main problem of these
methods is that they do not account for the relative difference
between the class probabilities, i.e., the gap, defined in
Equation (3).

Gap(X∗) = P (target class)−max{P (other classes)} (3)

Therefore, after an image transformation, a minimal
modification of the probabilities can make the attack
ineffective. To improve the robustness, it is desirable to
increase the difference between the probability of the target
class and the highest probability of the other classes, i.e., to
maximize the gap function.

C. How to Automatically Generate Attacks for SNNs?

Obtaining both the imperceptibility and robustness at
the same time is complicated. Typically, a robust attack
would require perceptible changes of the input, while an
imperceptible attack does not change the classification much.
We designed a heuristic algorithm to automatically generate
imperceptible yet robust adversarial examples for SNNs.
Our technique is also applicable to DNNs, as we will
demonstrate in the result section. Note that, leveraging the

same methodology to generate adversarial examples for both
SNNs and DNNs enables a fair comparison. Our algorithm is
based on the black-box model, i.e., the attacks are performed
on some pixels of the image, without having insights of the
network. Given the maximum allowed distance DMAX such
that human eyes cannot detect perturbations, the problem can
be expressed as in Equation (4).

argmax
X∗

Gap(X∗) | D(X∗, X) ≤ DMAX (4)

In summary, the purpose of our iterative algorithm is to
perturb a set of pixels, to maximize the gap function, thus
making the attack robust, while keeping the distance between
the samples below the desired threshold, in order to remain
imperceptible.

Based on the key observations of our analysis in
Section III-D, our iterative methodology (see Algorithm 1)
perturbs only a window of pixels of the image. We choose a
certain value N, which corresponds to an area of N·N pixels,
performing the attack on a subset M of pixels.

Algorithm 1 : Methodology for Generating Adversarial
Examples for SNNs and DNNs

Given: network (SNN or DNN), original sample X, maximum
human perceptual distance Dmax, noise magnitude δ, area of A
pixels, target class, M
while D(X∗, X) < DMAX do

-Compute Standard Deviation SD for every pixel of A
-Compute Gap(X∗), Gap−(X∗), Gap+(X∗)
if Gap(X∗)− > Gap(X∗)+ then
V ariationPriority(xi,j) =
[Gap−(X∗)−Gap(X∗)] · SD(xi,j)

else
V ariationPriority(xi,j) =
[Gap+(X∗)−Gap(X∗)] · SD(xi,j)

end if
-Sort in descending order V ariationPriority
-Select M pixels with highest V ariationPriority
if Gap(X∗)− > Gap(X∗)+ then

Subtract noise with magnitude δ from the pixel
else

Add noise with magnitude δ to the pixel
end if
-Compute D(X∗, X)
-Update the original example with the adversarial one

end while

After computing the standard deviation for the selected
N·N pixels, we compute the gap function, i.e., the difference
between the probability of the target class and the highest
probability between the other classes. Then, the algorithm
decides whether to apply a positive or a negative noise
to the pixels. Therefore, we compute two parameters for
each pixel, Gap+(X∗) and Gap−(X∗). Gap+(X∗) is the
value of the gap function computed by adding a perturbation
unit to the single pixel, while Gap−(X∗) is its counterpart,
computed subtracting a perturbation unit. According to the

X* 784
NEURONS

500
NEURONS

10
NEURONS

500
NEURONS

3 5

VARIATION
PRIORITY

PIXELS
SELECTION

D(X*,X)

D(X*,X)<DMAX

3 5

END

INPUT IMAGE

OUTPUT PROBABILITIES

OUTPUT PROBABILITIES

YES NO

NOISE

Fig. 5: Our methodology for generating adversarial examples, illustrating with the example of the considered networks.

difference between these values and the gap function, and
considering also the standard deviation, we compute the
variation priority, a function that indicates the effectiveness
of the pixel perturbation. For example, if Gap−(X∗) is
greater than Gap+(X∗), it means that, for the pixel under
consideration, subtracting the noise will be more effective
than adding it to the pixel, since the difference between
P (target class) and max[P (other classes)] will increase
more. Once computed the vector VariationPriority, its values
are sorted, and the highest M values are perturbed. Note,
according to the previous considerations, the noise is added
to, or subtracted from, the selected M pixels depending
on the highest value between Gap+(X∗) and Gap−(X∗).
The algorithm starts the next iteration by replacing the
original input image with the created adversarial one. The
iterations terminate when the distance between original and
adversarial examples overcomes the maximum perceptual
distance. Figure 5 summarizes the operational flow of our
methodology, applied to the SDBN, for generating adversarial
examples.

V. EVALUATING OUR ATTACK METHODOLOGY ON SDBNS
AND DNNS

A. Experimental Setup

Using the methodology of Section IV-C, we attack two
different networks: the same SDBN as the one analyzed in
Section III and a DNN. To achieve a fair comparison, we
design the DNN for our experiments having the same set
of parameters as the SDBN, i.e., composed of four fully-
connected layers of 784-500-500-10 neurons, respectively.
The DNN is trained with the scaled conjugate gradient
backpropagation algorithm [22], and after training, its achieved
classification accuracy on the MNIST dataset is 97.13%.

For discussion, we start with a test sample, labeled as “five”
(see Figure 6). It is classified correctly by both networks, but
with different output probabilities. We use a value of δ equal
to the 10% of the pixel intensity scale range and a DMAX

equal to 22 to compare the attacks. We distinguish two cases,
having different search window sizes:

(I) Figure 6a: N=5 and M=10. Based on the analysis in
Section III, we define the search window in a central
area of the image, as shown by the red square, which is
affected by high variation.

(II) Figure 6b: N=7 and M=10. It can be interesting to observe
the difference w.r.t. the case I: in this situation we perturb
the same amount M of pixels, selected from a search
window which contains 24 more pixels.

(a) (b)

Fig. 6: Selected area of pixels to attack

B. DNN Under Attack

The baseline DNN classifies our test sample as a “five”
with its associated probability equal to 98.79%, as shown in
the blue-colored bars of Figure 7. The selected target class is
“three” for both the cases. The classification results of their
respective adversarial images are shown in Figure 7 for both
the cases. From the results in Table II, we can observe that,
having a small search window leads to obtaining a more robust
attack, as compared to larger search windows. The generated
adversarial examples are shown in Figure 8.

C. SDBN Under Attack

Our baseline SDBN, without attack, classifies our test
sample as a “five” with a probability equal to 82.69%. The

(a) (b)

Fig. 7: Output probabilities (% format) of the DNN. (a) Attack using
the search window of case I. (b) Attack using the search window of
case II.

TABLE II: Results of our simulations for the DNN.
(Case I) After 14 iterations, the probability of the target class has
overcome the one of the initial class. Figure 8a shows the sample at
this stage (denoted as intermediate in Figure 7a). In the following
iteration, the gap between the two classes increases, thus increasing
the robustness, but also increasing the distance. The sample at this
point (denoted as final in Figure 7a) corresponds to the attack output,
since at the iteration 16 the distance falls above the threshold.
(Case II) After 11 iterations (denoted as final in Figure 7b), the
sample (in Figure 8d) is classified as a “three”. Since at the iteration
12 the distance is already higher than DMAX , Figure 8c shows
the sample at the 10th, whose output probabilities are denoted as
intermediate in Figure 7b.

CASE ITER P MAX CLASS P TARGET CLASS DISTANCE
I 0 98.79 0.89 0
I 14 44.16 55.74 20.18
I 15 36.25 63.67 21.77
II 0 98.79 0.89 0
II 10 57.53 42.01 16.29
II 11 49.45 50.32 21.19

(a) (b) (c) (d)

Fig. 8: Adversarial samples applied to the DNN. (a) 14th iteration
of case I. (b) 15th iteration of case I. (c) 10th iteration of case II.
(d) 11th iteration of case II.

complete set of initial “clean-case” output probabilities is
shown in Figure 9. We select the “three” as the target class.

The results in Table III show that, in contrast to the attack
applied to the DNN, for the case I:

• The SDBN output probabilities do not change
monotonically when increasing the iterations of
our algorithm.

• At the 20th iteration, the SDBN classifies the target class
with a probability of 31.08%, while D(X∗, X) = 7.79.

• At the other iterations, before and after iteration 20, the
output probability of classifying the image as the original

class still dominates.

Meanwhile, for the case II, we observe that:

• At the 9th iteration, the SDBN misclassifies the image.
The probability of classifying the image as a “three” is
50.60%, with a distance D(X∗, X) = 10.91. As a side
note, the probability of classifying the image as an “eight”
is 49.40%.

• At the other iterations, before and after the iteration 7,
the output probability of classifying the image as a “five”
is higher than 50%.

Fig. 9: Output probabilities of the SDBN for the original sample.

TABLE III: Results of our simulations for the SDBN.

CASE ITER P MAX CLASS P TARGET CLASS DISTANCE
I 0 82.69 7.64 0
I 20 60.29 31.08 7.79
I 21 66.21 11.80 8.15
II 0 82.69 7.64 0
II 9 0 50.60 10.91
II 10 64.94 12.03 11.76

D. Comparative Discussion between SDBN and DNN
We can observe how the DNN is vulnerable to the attacks

generated by our algorithm, while the SDBN shows a very
different response to the attack. The output probabilities of the
SDBN do not follow the expected trend, but may sporadically
lead to a misclassification if other conditions are satisfied as
well. Each pixel of the image is converted to a spike train,
thus a slight modification of the pixel intensity can have
unexpected consequences, like a wrong feature detection. The
SNN sensitivity of the targeted attack is clearly different from
the DNN sensitivity for the similar case. Such a difference of
robustness should be studied more carefully in future works.

VI. CONCLUSIONS

In this work, we studied the security vulnerabilities of
SNNs, and compared them to DNNs under our attack
methodology. However, there is still a long road for research
to follow for analyzing and building robust/secure SNNs.
Towards the conclusion of this work, we raise several new
research questions like: “What is hidden inside the SNNs that
makes them more robust to targeted attacks, as compared to
DNNs?” “Can certain specific properties of human brain’s
functionality be leveraged to build robust and self-healing
machine learning algorithms?” An extensive in-depth study of
SNNs w.r.t. different security threats is crucial before adopting
SNNs in safety-critical applications.

ACKNOWLEDGMENTS

This work has been partially supported by the Doctoral
College Resilient Embedded Systems which is run jointly by
TU Wien’s Faculty of Informatics and FH-Technikum Wien.

REFERENCES

[1] A. Bagheri, O. Simeone, and B. Rajendran. Adversarial
training for probabilistic spiking neural networks. In
SPAWC, 2018.

[2] Y. Bengio et al. Greedy layer-wise training of deep
networks. In NIPS. 2007.

[3] M. Davies et al. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–
99, 2018.

[4] M. Fatahi et al. evt mnist: A spike based version of
traditional MNIST. CoRR, abs/1604.06751, 2016.

[5] W. Gerstner and W. Kistler. Spiking Neuron Models: An
Introduction. Cambridge University Press, 2002.

[6] H. Goh, N. Thome, and M. Cord. Biasing Restricted
Boltzmann Machines to Manipulate Latent Selectivity and
Sparsity. In NIPS 2010 Workshop on Deep Learning and
Unsupervised Feature Learning, 2010.

[7] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples. In ICLR, 2015.

[8] T. Heiberg, B. Kriener, T. Tetzlaff, G. T. Einevoll, and
H. E. Plesser. Firing-rate models for neurons with a broad
repertoire of spiking behaviors. BMC Neuroscience, 14:
P317 – P317, 2013.

[9] G. Hinton and R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science (New
York, N.Y.), pages 504–7, 2006.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 2006.

[11] L. Holmstrom and P. Koistinen. Using additive noise in
back-propagation training. IEEE Transactions on Neural
Networks, 3(1):24–38, 1992.

[12] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial
examples in the physical world. In ICLR Workshop Track
Proceedings, 2017.

[13] D. Lisitsa and A. A. Zhilenkov. Prospects for the
development and application of spiking neural networks.
In EIConRus, pages 926–929, 2017.

[14] B. Luo, Y. Liu, L. Wei, and Q. Xu. Towards imperceptible
and robust adversarial example attacks against neural
networks. In AAAI, 2018.

[15] W. Maas. Networks of spiking neurons: The third
generation of neural network models. Trans. Soc. Comput.
Simul. Int., 1997.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

[17] A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras,
C. Kyrkou, T. Theocharides, and M. Shafique. Deep
learning for edge computing: Current trends, cross-layer
optimizations, and open research challenges. In 2019 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI),
pages 553–559, 2019.

[18] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif,
M. Martina, and M. Shafique. Capsattacks: Robust and
imperceptible adversarial attacks on capsule networks.
ArXiv, abs/1901.09878, 2019.

[19] A. Marchisio, G. Nanfa, F. Khalid, M. A. Hanif,
M. Martina, and M. Shafique. Snn under attack: are
spiking deep belief networks vulnerable to adversarial
examples? ArXiv, abs/1902.01147, 2019.

[20] E. R. Merino, F. M. Castrillejo, J. D. Pin, and D. B. Prats.
Weighted contrastive divergence. CoRR, abs/1801.02567,
2018.

[21] P. A. Merolla et al. A million spiking-neuron integrated
circuit with a scalable communication network and
interface. Science, 2014.

[22] M. F. Møller. A scaled conjugate gradient algorithm for
fast supervised learning. Neural Networks, 6:525–533,
1993.

[23] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and
M. Pfeiffer. Real-time classification and sensor fusion with
a spiking deep belief network. Frontiers in Neuroscience,
7:178, 2013.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami. Practical black-box attacks against
machine learning. In ASIA CCS, 2017.

[25] F. Ponulak and A. J. Kasinski. Introduction to spiking
neural networks: Information processing, learning and
applications. Acta neurobiologiae experimentalis, 71 4:
409–33, 2011.

[26] A. Shafahi et al. Are adversarial examples inevitable? In
ICLR, 2019.

[27] M. Shafique, M. Naseer, T. Theocharides, C. Kyrkou,
O. Mutlu, L. Orosa, and J. Choi. Robust machine learning
systems: Challenges,current trends, perspectives, and the
road ahead. IEEE Design Test, 37(2):30–57, 2020.

[28] A. J. F. Siegert. On the first passage time probability
problem. Phys. Rev., 81:617–623, 1951.

[29] C. Szegedy et al. Intriguing properties of neural networks.
In ICLR, 2014.

[30] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh,
T. Masquelier, and A. Maida. Deep learning in spiking
neural networks. Neural Networks, 2019.

[31] T. Tieleman and G. Hinton. Using fast weights to improve
persistent contrastive divergence. In ICML, 2009.

[32] J. Vreeken. Spiking neural networks, an introduction.
Technical report, 2003.

[33] J. Zhang and X. Jiang. Adversarial examples:
Opportunities and challenges. CoRR, abs/1809.04790,
2018.

[34] J. J. Zhang, K. Liu, F. Khalid, M. A. Hanif, S. Rehman,
T. Theocharides, A. Artussi, M. Shafique, and S. Garg.
Building robust machine learning systems: Current
progress, research challenges, and opportunities.
Proceedings of the 56th Annual Design Automation
Conference 2019, 2019.

