
A Light-weight Deep Feature based Capsule Network

Chandan Kumar Singh, Vivek Kumar Gangwar, Anima Majumder, Swagat Kumar,
Prakash Chanderlal Ambwani, Rajesh Sinha

Abstract— Capsule Network (CapsNet) has motivated re-
searchers to work on it due to its distinct capability of retaining
spatial correlations between image features. However, its appli-
cability is still limited because of its intensive computational
cost, memory usage and bandwidth requirement. This paper
proposes a computationally efficient, lightweight CapsNet which
paves its way forward for deployment in constrained edge
devices as well as in web based applications. The proposed
framework consists of Capsule layers and a deep feature
representation layer as an input for capsules. The deep feature
representation layer comprises of a series of feature blocks,
containing convolution with a 3 × 3 kernel followed by batch
normalization and convolution with a 1× 1 kernel. The deeper
or better represented input features help to improve recognition
performance even with lesser number of capsules, making
the network computationally more efficient. The efficacy of
the proposed framework is validated by performing rigorous
experimental studies on different datasets, such as CIFAR-10,
FMNIST, MNIST and SVHN which include images of object
classes as well as text characters. A comparative analysis has
also been done with the state-of-the-art technique CapsNet.
The comparison with recognition accuracy ensures that, the
proposed architecture with deep input features provides more
efficient routing between the capsules as compared to CapsNet.
The proposed lightweight network has scaled down the num-
ber of parameters up to 60% of CapsNet, which is another
significant contribution. This is achieved by collaborative effect
of deep feature generation module and parametric changes
performed in the primary capsule layer.

I. INTRODUCTION

Development of vision based algorithms for automatic
recognition of real-world objects was almost a dream for
computer vision researchers until the variants of Convolu-
tional Neural Networks (CNNs), such as LeNet [10] and
AlexNet [8] were introduced. The enormous increase in
computational efficacy with the advancement of GPU based
machines has motivated many computer vision researchers to
progress towards data driven learning techniques, which has
given birth to CNN architectures, like VGG [18], GoogLeNet
[20], ResNet [3], etc. The object recognition results using
all these algorithms have shown outstanding performances
on large-scale object datasets, like Imagenet and COCO,
and have consistently improved the performances in each
successive year along with introduction of new architectures.

However, in-spite of all these success stories, one of the
major drawbacks with these CNN based techniques, which

Chandan Kumar Singh, Vivek Kumar Gangwar, Anima Majumder, Swa-
gat Kumar, Prakash Chanderlal Ambwani and Rajesh Sinha are researchers
at TCS Innovation Labs, India.
ck.singh1@tcs.com, vivek.gangwar@tcs.com, anima.majumder@tcs.com,
swagat.kumar@tcs.com, prakash.ambwani@tcs.com, rajesh.sinha@tcs.com

was left unnoticed is that the CNNs by its nature employ in-
variance of features against their spatial position [17]. The
main reason for such behavior lies in the use of the pooling
technique. According to Geoffrey Hinton , “The pooling
operation used in convolutional neural networks is a big
mistake and the fact that it works so well is a disaster” [16].
Generally, max pooling (or any kind of pooling) is used to
down-sample the feature size to a manageable level. Besides
reducing the size of the feature vector, it also maintains
translation in-variance. By only considering the maximum
value, essentially we are only interested if a feature is present
in a certain window. However, we do not really care about
their exact locations. If we have a convolution filter, which
detects edges, here an edge gives a high response to this
filter. The max pooling operation only keeps the information
if an edge is present and throws away the rest; which
may also include the location and the spatial relationships
between certain features. Or in other words, the CNNs with
max pooling do not retain any internal representation of
the geometrical constraints present in the data. Then one
obvious question comes to our mind is that, how these
CNNs are managing to perform so well. The answer is, by
training the network with a large amount of labeled data.
For example, in order to be able to efficiently detect a cat
at any given viewpoint, we need to have a set of training
images containing different instances on that viewpoints of
the cat as the network does not encode the prior knowledge
of the geometrical relationships.

This issue was first addressed by Hinton et al.[16], where
they have introduced a deep network, called CapsNet to
overcome this limitation of CNNs. The CapsNet is shown
to provide good results for image classification, with high
recognition accuracy on MNIST dataset. Some of the other
advantages of CapsNet are that it needs lesser amount of
training data than CNNs and also provides information about
pose and related parameters to identify the entities. The
capsule network is also shown to be robust to input data
transformations and “white box” attacks [17]. However, not
much works have been done to explore the full potential of
this network. There are some important areas where more
attention need to be given. First, state-of-the art results are
achieved by using MNIST dataset, which is a low-resolution
character recognition image dataset. The network is not
yet generalized by validating it with difficult datasets, like
CIFAR10[7], SVHN[14] etc. Secondly, the training process
of the existing CAPsNet is very slow due to inner loop,
which restricts the network from using it for wider and more
complex applications.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

In this paper we propose a deep learning framework
based on CAPsNet which is more compact (scaled down
the number of parameters up to 60% of CapsNet) and yet
more efficient in terms of recognition accuracy. The basic
intuition behind this approach is that, if more comprehensive
and better represented features (deeper features) are given
as an input to a capsule, it can create better routing within
the capsule network, resulting into improved recognition
accuracy. A comprehensive and better represented feature
vector is obtained by using a 1 × 1 convolutional kernel
in the feature block. The same concept has also been used
in [20] for dimensionality reduction. To further reduce the
parameters, we use the kernel size 3 × 3 instead of 9 × 9
that was used in [16]. Another significant contribution is
made towards feature enhancement by incorporating more
number of feature blocks prior to the primary capsule layer.
The underlying concept for this approach is that, use of
deep features as input to the primary capsule layer results
in better routing even with much lesser number of capsules.
Similar assumption is also made in CNNs based architectures
[18], [20], where deeper and deeper layers are used to en-
hance the features for achieving better accuracy. The choice
of parameters and the aforesaid assumptions are validated
through rigorous experimental and ablation studies. Several
datasets including CIFAR-10[7], FMNIST[23], SVHN[14]
and MNIST[9] are used in our experiments for validating
the proficiency of the proposed framework. Our proposed
framework is coined as DeepFeat-Caps which is abbreviated
from Deep Feature based Capsule Network. The major
contributions of this work can be summarized as follows.

1) A light-weight Capsule based deep learning frame-
work, coined as DeepFeat-Caps, is proposed for both
object and character recognition. This is achieved by
incorporating a series of feature blocks, consisting of
3 × 3 convolutional kernel followed by 1 × 1 convo-
lutional kernel, applied prior to the primary capsule
layer.

2) The light-weight network is framed based on the
assumption that, if a comprehensive and a better rep-
resented feature vector is given as an input to the
primary capsule layer, it will lead to better routing
within the capsule network even with lesser number of
capsules. This assumption is validated through rigorous
experimental studies.

3) Unlike, CapsNet that uses 32 capsules having di-
mension 8, we use a combination of (20, 8) in our
proposed framework. It reduces the total number of
parameters by approximately 60% of the parameters
used in the original capsule network [16], which is a
very significant contribution in the direction of model
compression.

4) The efficacy of the proposed framework is validated
on four different datasets, that include both object
and character images. The demonstrated results show
that the proposed model is efficient to provide generic
solution for different kinds of application.

5) The performances of the proposed approach are com-
pared with the state-of-the-art CapsNet [16]. The
choice of the parameters (including the kernel size and
optimum capsule size) and the selection of a feature
block are validated though rigorous experimental stud-
ies.

Rest of this paper is organized as follows. A brief lit-
erature survey on capsule based works is presented in the
following section. Section III gives a detailed explanation
of the proposed approach. The experimental results, ablation
studies and discussions are provided in Section IV. Finally,
conclusions are drawn in Section V.

II. LITERATURE SURVEY

The capabilities in the capsule based network, as popular-
ized by [4] has drawn a large attention for its exploration
among the deep learning research communities. Soon after
the introduction of CapsNet [16], another work is published
by Hinton et al. [5], in which an Expectation-Maximization
(EM) is used for establishing the routing within the capsule
blocks. The work tries to solve the performance of capsules
while dealing with viewpoint variation and use a 4×4 matrix
in place of vectors as used in prior work[16], to capture and
learn the pose information. This work([5]) demonstrated its
superior performance with smallNORB dataset. In another
work, Xi et al. [21] explores the impact of performance by
stacking more number of capsules or convolutional layers.
[12] used modification in the capsule routing method to solve
the challenge of Visual tracking where feature experiences
drift. In [22] Multi-scale feature extraction with hierarchy
of feature is proposed, however, the work doesn’t provide
compression at parameter level. [1] introduces spectral cap-
sule network for faster conversion in comparison with EM
routing capsules. The proficiency of capsules is also explored
in GAN based architecture, where Jaiswal et al. [6] applied
GAN over CapsNet to have better character recognition
results on both MNIST and CIFAR10 datasets. A sparsified
form of the last capsule layer in CapsNet architecture is used
in [15] for unsupervised learning approach. Few more works
in the literature, that use CapsNet in different applications
are [2] for video classification,[11] for object localization,
and [13] for face verification. In another work, Singh et al.
[19] presented an architecturally similar model applied to text
recognition for industrial applications. However, the number
of parameters used in that architecture was much higher than
the proposed approach. Moreover, the approach was focused
on a specific industrial application and no experimental or
ablation studies were made for the choice of the parame-
ters used in that work. In contrast to all these aforesaid
approaches, we introduce a generic deep framework for both
object and character recognition using convolutional feature
blocks along-with a scaled down version of CapsNet. The
model is demonstrated to be performing significantly better
than the state-of-the art CapsNet, both in terms of recognition
accuracy and computational complexity when applied to
different datasets.

CONV			3X3

CONV		1X1

....

........

Input	Image

Feature	Block

Primary
Capsules

Class	
Capsules

Decoder	Block Predictions

CONV			3X3

CONV		1X1

Feature	Block

BN

BN

....
....

Dropout

Dropout

Reconstructed
Image

....

Fig. 1: An architectural overview of DeepFeat-Caps network.
It is consisting of three different sub-blocks: Feature Block,
Capsule blocks (Primary Capsules and Class Capsules) and
Decoder Block. The class capsules are used to predict the
classes (as an example: each character in MNIST dataset is
a class).

III. PROPOSED METHOD

This section provides a detailed explanation of DeepFeat-
Caps. An architecture diagram of DeepFeat-Caps is given in
the Figure1. Proposed framework consists of three different
sub-blocks: Feature Block, Capsule blocks(Primary Capsules
and Class Capsules) and Decoder Block. Each of these
blocks are explained below in this section.

A. Feature Blocks

Strength of DeepFeat-Caps lies in the feature genera-
tion module present before the primary capsules layer. The
framework is developed based on the intuition, that the
deeper and more comprehensive features are subjected to
learn better routing between the capsules during the training
process. In order to reduce the computational complexity

Fig. 2: Left : Feature Block Type III (FB3)
Right: Feature Block Type II (FB2)

of the capsule network, we introduce a convolutional layer
within the feature block having kernel size 1 × 1. Similar
concept is used in the inception network [20], mainly for
dimensionality reduction. Four different kinds of feature
blocks are used in our work, among which the proposed
feature block falls under Type-III category. All the four
different kinds of feature block used for the experimental
purposes are explained below in this section.

1) Feature Block Type I (FB1): The input feature is
obtained by passing successive layers of convolution.
The Convolution kernel size is 9. This is same as used
in the original CapsNet.

2) Feature Block Type II (FB2): The feature block,
as shown in right part of the Fig. 2 is comprised of
alternate convolutional layers with 512 filters having
kernel size 3× 3 and 256 filters with kernel size 1× 1
respectively.

3) Feature Block Type III (FB3): The FB3, as shown
in left part of the Fig. 2, is similar to type FB2, except
that it has convolution kernels 3 × 3 and 1 × 1 with
256 and 128 filters respectively.

4) Feature Block Type IV (FB4): FB4 is shown in the
Fig. 3. The stacking of the convolution layers in this
feature block is done similar to inception version 1.0,
except the max pooling branch as described in [20]. In
this feature block, parallel convolution operation with
kernel sizes 5X5, 3X3 and 1X1 is applied followed
by concatenation of these features. The concatenated
features are then applied to the next feature block.

B. Capsule Blocks

Architecturally, this block is same as that used in
CapNet[16], except some modifications in the parameters,
discussed later in this section. It consists of two sub blocks:
primary capsule layer and digit capsule layer. In this paper,
digit capsule layer of CapsNet is renamed as class capsule
for better generalization as the main purpose of the last block
is to predict a class.

Primary Capsules: This block performs convolution and
bundles input features into fixed number of capsule. In

Fig. 3: Feature Block Type IV (FB4)

this block we have made few modifications in the number
of capsule as well as in the dimension of each capsule.
In CapsNet[16], a combination of number of capsule and
dimension (32, 8) is used. Since, the primary capsule defines
the representation of initial features in the form of vectors,
which are trained to learn the geometric transformations
in the routing by agreement training process, it has been
found that deeper convolution feature helps in lowering
the number of capsules for optimum learning. The choice
of deeper features, ease the requirement of large number
of initial capsules which leads to the drastic decrease in
the total number of parameters. With deeper input feature,
the performance is retained while decreasing the primary
capsules shape from (32, 8) to (20,16) and finally to (20,8).
Moreover, these combinations have reduced the number of
parameters up to 40% from original CapsNet presented in
[16].

Class Capsules: This block is the final layer of DeepFeat-
Caps, which is kept similar to that present in CapsNet[16].
The number of capsules in this block is equal to the total
number of classes present in the network. Each capsule in
this block is responsible for the prediction of a single class
and gets activated only for those primary block capsules
which together agrees for the required class during training
by dynamic routing method. The dimension of each capsule
in this layer is kept as 16 (which is same as used in [16]).
Each capsule in this block gives an 1-D array output of length
16, i.e, a scalar outcome for each dimension.

C. Decoder block

The main objective of this block is to reconstruct an image
and use it to find the mean squared error by comparing it with
the input image. The reconstruction is done by taking input
from the class capsule block which is then passed through
3 fully connected (FC) layers. The first two layers of the
decoder block has 1024 and 512 nodes with Relu activation
function. However, the last FC layer consists of nodes equal
to the total pixels in the input image. The sigmoid activation
function is used for the last FC layer and the output is
reshaped to input image dimension.

D. Training using Dynamic routing

Each capsule is comprised of many neurons and deals with
data in vector form. The reason as why the capsule is able to

preserve spatial relationships between features is it’s ability
to forward pass information between capsules using dynamic
routing. As the output of each capsule layer is in vector
form, use of a sigmoid, softmax or other activation function
doesn’t work. Hence, a non-linear activation function called
squashing is introduced in [16]. For an input vector sj to the
capsule j, the output vector vj is given as,

vj =
‖sj‖2

(1 + ‖sj‖2)
sj
‖sj‖

(1)

where, sj denotes input vector to the capsule j in the class
block. The output vector vj decides the probability of that
special feature learned by the capsule. Considering that the
ith capsule of the primary capsule block is connected to the
jth capsule in the class capsule block, sj is given as

sj =
∑
i

cij ûj|i, ûj|i = wijui (2)

where, wij is the weight matrix that introduces geometric
transformations between capsules of the two blocks and ui is
the input vector of the ith capsule from the primary capsule
block. cij is the coupling coefficient which is determined by
the iterative dynamic routing algorithm [16].

The coupling coefficient cij is a routing softmax value
obtained from all the originating link value of this capsule i
to all the capsules in the class capsule block. The originating
link values kept on updating with each iteration during the
dynamic routing process. The total number of iterations in
the routing process is used as 2, which is less than that is used
in [16]. The information in the primary capsule passes to the
class capsule only for those features, where both contributed
to the final prediction of the class in the past, otherwise it
does not pass. This is known as routing by agreement which
has been discussed in [16].

E. Loss calculation

Two different types of losses are used during the training
process: Margin loss and reconstruction or decoder loss. Both
of these losses are described below in this section.
Margin loss:
Margin loss is given as

Lk = Tkmax(0,m
+−‖v‖)2+λ(1−Tk)max(0, ‖v‖−m−)2

(3)

where, Tk =

{
1, For class k
0, For other classes

m+ = 0.9 , m− = 0.1 , λ = 0.5 and ‖v‖ is output of the
kth capsule.
The parameter λ is used to decrease the weightage of other
classes during margin loss calculation. The total loss is
calculated by the sum of all the class capsules.

Reconstruction or Decoder Loss:
We mask out all, but the activity vector of the correct class
capsule during training process. The reconstruction loss is
mean squared error of the pixel-wise difference between

TABLE I: An ablation study for performance (both in terms of recognition accuracy and number of
parameter used) analysis of the DeepFeat-Caps when different types of feature blocks. In all these
cases the DeepFeat-Caps architecture with primary capsule block parameters having 20 capsules
and dimension of each as 16 are used.

SI Network Feature Number of Accuracy Total Parameters
No. Name Block Feature Object Dataset Character Dataset RGB Gray

Type Blocks CIFAR-10 FMNIST SVHN MNIST Image Image
1 CapsNet - 0 0.676 0.912 0.932 0.996 11,749,120 8,215,568
2 DeepFeat-Caps I 2 0.618 0.908 0.936 0.995 12,406,272 9,548,816
3 4 0.745 0.924 0.961 0.996 18,154,304 14,575,696
4 DeepFeat-Caps II 3 0.784 0.926 0.962 0.996 17,610,816 13,827,408
5 2 0.805 0.932 0.963 0.997 17,169,728 13,181,520
6 4 0.767 0.922 0.961 0.996 10,899,264 7,322,960
7 DeepFeat-Caps III 3 0.786 0.925 0.961 0.996 11,339,200 7,558,096
8 2 0.815 0.927 0.958 0.996 11,881,536 7,895,632
9 DeepFeat-Caps IV 1 0.770 0.930 0.934 0.994 16,070,464 10,853,584

TABLE II: An ablation study to demonstrate the network parameter variation with different shape
of initial capsules. The feature block type FB3 is found to be outperforming all other configurations
as shown in Table I.

SI Network Feature Number of Accuracy Total Parameters
No. Name Block Feature Object Dataset Character Dataset RGB Gray

Type Blocks CIFAR-10 FMNIST SVHN MNIST Image Image
Primarycapsule Block Parameters: No. of Capsule = 20 ; Dimension = 16

1 4 0.767 0.922 0.961 0.996 10,899,264 7,322,960
2 DeepFeat-Caps III 3 0.786 0.925 0.961 0.996 11,339,200 7,558,096
3 2 0.815 0.927 0.958 0.996 11,881,536 7,895,632

Primarycapsule Block Parameters: No. of Capsule = 20 ; Dimension = 8
4 4 0.765 0.923 0.96 0.996 7,985,824 5,023,920
5 DeepFeat-Caps III 3 0.79 0.925 0.959 0.996 8,041,760 4,977,456
6 2 0.807 0.93 0.96 0.996 8,148,896 4,982,192

Primarycapsule Block Parameters: No. of Capsule = 32 ; Dimension = 8
7 4 0.774 0.923 0.959 0.996 9,733,888 6,403,344
8 DeepFeat-Caps III 3 0.796 0.927 0.963 0.996 10,020,224 6,525,840
9 2 0.803 0.926 0.959 0.996 10,388,480 6,730,256

the reconstructed image and the input image and provides
necessary regularization during training.

In order to train the network, the loss minimization is done
using a weighted sum of margin loss and decoder loss. Lower
weightage is given to the reconstruction loss in shaping the
learning with a value of 0.392 against unit weightage to
margin loss.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section demonstrates experimental results of the
proposed deep feature based capsule framework and also
performs various ablation studies to validate the proficiency
of the DeepFeat-Caps network. Datasets of two different
categories are used in our experiments. These include, object
image datasets (FMNIST and CIFAR 10) and character
image datasets (MNIST and SVHN). These datasets have
different formats (RGB and Gray Scale) and have sufficient
variations in order to be able to generalize the proposed
architecture. The detailed description for each of these
datasets are given below:

Object image dataset
1) FMNIST dataset[23]: This dataset has gray-scale

images of size 28 X 28 pixels for 10 different
types of fashion accessories ranging from T-shirt to

Ankle-boots. This dataset has 60,000 training images
and 10,000 testing images.

2) CIFAR 10 dataset [7]: This dataset contains 10 real
world object images of animals (bird, cat, deer, dog,
frog, and horse) and vehicles (airplane, automobile,
ship, and truck). The image format is RGB with size
32 X 32 Pixels. It consists of 50,000 training and
10,000 testing images.

Character image dataset
1) MNIST dataset[9]: This is a standard dataset for

handwritten digits(0-9) and contains gray-scale image
of size 28 X 28 pixels. There are 60,000 images for
training and 10,000 images for testing in this dataset.

2) SVHN dataset[14]: SVHN is a big dataset for
digits(0-9), and consists of images taken from Google
street view. The dataset poses challenge of recognizing
digits in natural scene image. The number of training
images in this dataset is 73,257 while for testing it
has 26,032 images. The image is in RGB format as
evident for a natural scene image and has a size of 32
X 32 pixels.

TABLE III: Effect of performances in the capsule network
for variations in the sizes of kernel used in convolution layer.

Network FMNIST FMNIST SVHN SVHN
Architecture Accuracy Parameters Accuracy Parameters

CapsNet 0.912 8,215,568 0.932 11,749,120
Network 1 0.92 10,040,336 0.919 14,028,544
Network 2 0.908 9,548,816 0.936 12,406,272
Network 3 0.92 9,637,904 0.945 13,459,968

Analysis about the network parameters is done in two
categories which is RGB Image and Gray Image. RGB Image
category represents 32X32 image with 3 channels as in
SVHN and CIFAR-10 dataset. Similarly, Gray Image cat-
egory represents image of 28X28 resolution with 1 channel
as in FMNIST and MNIST dataset.

In the following section ablation study is performed for
selection of lower kernel size, feature block architecture and
optimum dimension of primary capsule layer.

A. Experimental results obtained by varying kernel size of
convolutional layers

Following variations are made in the convolution kernels
within the CapsNet as well as addition of extra convolution
layers with 3 or 9 kernel size.

1) Network 1 : Kernel size 9 in CapsNet is replaced with
kernel size 3.

2) Network 2 : 1 extra convolution of Kernel size 9 is
added in CapsNet architecture. The number of filters
used is 128.

3) Network 3 : Kernel size 3 in-place of 9, is used in
Network 2.

It can be observed from the results as shown in the Table
III, that if more convolutional layer with kernel size 3 is
stacked, then the performance is improved. However, this
also results in increase of total number of parameters. The
reason for increase in parameter is not due to the parameters
of convolution layer, rather the parameters used in the class
capsule layer due to higher dimension output(receptive field)
after a lower kernel size convolution operation. This has
motivated us to design a deeper architecture with 3X3 convo-
lution, so that receptive field is reduced before capsule block.
Hence, we come up with the DeepFeat-Caps architecture.

B. Ablation Study for Selection of Feature Blocks

The Table I gives a comparative analysis of performance
for different types of feature blocks when evaluated on the
selected datasets. Both recognition accuracy and well as
total number of parameters are considered while making a
comparative study. It can be observed from the analysis that,
the proposed deep feature framework using type-III feature
block outperforms all other frameworks, both in terms of
recognition accuracy and number of parameters used. The
observations show that best performance is obtained using
proposed deep features when the dimension of capsules in the
primary block is set to 8. It must be noted that, the number
of capsules in the primary capsule block is set to 20 for

TABLE IV: Performance comparison for optimum number of
routing. Table shows Routing results in Proposed DeepFeat-
Caps (FB Type: III, No of FB: 2, Primary Caps:20, Dimen-
sion:8).

SI Number of Dataset Performance(Accuracy)
No. Routing CIFAR10 FMNIST SVHN MNIST
1 2 0.803 0.93 0.956 0.996
2 3 0.807 0.93 0.96 0.996
3 4 0.809 0.932 0.953 0.996
4 5 0.818 0.932 0.956 0.996

the ablation study to select best feature block as depicted in
Figure I. Based on studies performed as shown in Table I and
Table II, we can conclude that, the proposed DeepFeat-Caps
network is significantly better than CapsNet, both in terms of
recognition accuracy as well as number of parameters used.
From this ablation study, the best architecture we propose
here is DeepFeat-Caps network of 2 FB3 feature blocks.
Figure 4 shows a performance comparison (in terms of
precision and recall) between the DeepFeat-Caps and Cap-
sNet for 10 different classes of images for object image
dataset and character image dataset. Again, the DeepFeat-
Caps outperforms the original CapsNet.

To compress the network, dimension of the capsules in the
primary capsule block is reduced. Table II shows this ablation
study, where performance is tabulate with change in capsule
dimension. Here, it has been shown that the parameter is
reduced for a RGB image from 11,749,120 to 8,148,896
while for gray scale image it is reduced from 8,215,568 to
4,982,192. So, DeepFeat-Caps architecture is compressed to
69% and 60% of CapsNet architecture for RGB and Gray
scale images respectively. It is to note here that in Table II,
row 5,6,7 the number of parameter is decreased with increase
in feature blocks, the reason for this is, the most number of
parameter is used in the capsule block in comparison with
feature blocks. Since, increasing feature block, the receptive
fields decreases as a result parameters in the capsule layer
decreases accordingly. Architecture with FB3, for 3 and 4
Feature Blocks parameter is low still the performance is
better with 2 Feature Block so we choose it as our proposed
network architecture.

C. Performance analysis after applying Batch Normalization

Table V shows the results obtained after using batch
normalization layer in the DeepFeat-Caps architecture of 2
FB3 blocks (which is also chosen as the best architecture
based on the analysis made in the Table II). Results clearly
show that use of a Batch Normalization layer allows the
Capsule Network to train faster and also ensures increase in
recognition accuracy.

D. Hyper-parameter tuning for DeepFeat-Caps

We have performed various hyper-parameter tuning for
the training of DeepFeat-Caps. Firstly, the performances are
checked for different routing values (2,3,4 and 5) for the
dynamic routing process. It is observed that changes in
performance are negligible for the routing number variations.

Fig. 4: A comparative analysis of the DeepFeat-Caps over the state-of-the-art CapsNet. The top row in the Figure shows
class-wise precision and recall comparison for object dataset(CIFAR-10[7], FMNIST[23]) and character dataset(MNIST[9],
SVHN[14]).

PLANE
AUTO

BIRD CAT
DEER

DOG
FROG

HORSE
SHIP

TRUCK

CLASSES

0.60

0.65

0.70

0.75

0.80

0.85

0.90

PR
EC

IS
IO

N

CIFAR10

CAPSNET
DeepFeat-Caps

PLANE
AUTO

BIRD CAT
DEER

DOG
FROG

HORSE
SHIP

TRUCK

CLASSES

0.5

0.6

0.7

0.8

0.9

RE
CA

LL

CIFAR10

CAPSNET
DeepFeat-Caps

0 1 2 3 4 5 6 7 8 9
CLASSES

0.970

0.975

0.980

0.985

0.990

0.995

1.000

PR
EC

IS
IO

N

MNIST
CAPSNET
DeepFeat-Caps

0 1 2 3 4 5 6 7 8 9
CLASSES

0.970

0.975

0.980

0.985

0.990

0.995

1.000

RE
CA

LL

MNIST
CAPSNET
DeepFeat-Caps

T-SHIRT

TROUSER

PULLO
VER

DRESS
COAT

SANDAL
SHIRT

SNEAKER BAG
BOOT

CLASSES

0.80

0.85

0.90

0.95

1.00

PR
EC

IS
IO

N

FMNIST

CAPSNET
DeepFeat-Caps

T-SHIRT

TROUSER

PULLO
VER

DRESS
COAT

SANDAL
SHIRT

SNEAKER BAG
BOOT

CLASSES

0.75

0.80

0.85

0.90

0.95

1.00

RE
CA

LL

FMNIST

CAPSNET
DeepFeat-Caps

0 1 2 3 4 5 6 7 8 9
CLASSES

0.88

0.90

0.92

0.94

0.96

0.98

PR
EC

IS
IO

N

SVHN
CAPSNET
DeepFeat-Caps

0 1 2 3 4 5 6 7 8 9
CLASSES

0.90

0.92

0.94

0.96

RE
CA

LL

SVHN
CAPSNET
DeepFeat-Caps

However, unlike [16] where 3 routing is used, similar per-
formance is achieved with routing value 2 as shown in Table
IV. We have thus set the value as 2 for our experiments.

Secondly, we have varied the weightage of the regularization
parameter(reconstruction loss) in total loss. The variations
are made within the range of 0.2 to 0.5. It has been observed,

TABLE V: Performance comparison after using Batch Normalization

SI Network SVHN MNIST CIFAR-10 FMNIST
No. Name Accuracy Epoch Accuracy Epoch Accuracy Epoch Accuracy Epoch
1 CapsNet 0.932 50 0.996 27 0.676 61 0.912 50
2 DeepFeat-Caps 0.96 31 0.996 14 0.807 39 0.93 28
3 DeepFeat-Caps With BN 0.96 30 0.996 13 0.830 30 0.928 21

that the best performance is obtained when it is set to 0.392.
To perform above experiments the hardware used is DELL
Rack Server 7920 with 192 GB RAM along with 3 NVIDIA
P6000 GPU each having 24GB Memory. Training for all the
datasets is done with a batch size of 100 images.

V. CONCLUSIONS

We propose a deep framework for capsules, named
DeepFeat-Caps, that can potentially outperform the state-of-
the-art CapsNet when validated using two different kinds
of datasets containing object images and character images.
Four different widely used datasets, such as CIFAR-10,
FMNIST, MNIST and SVHN are used for performance
evaluation purpose. The ablation studies performed on three
different types of feature blocks with different combinations
of convolutional layer, consisting of 3× 3 kernels, followed
by batch normalization and convolution with a 1× 1 kernel.
It has been demonstrated that the feature block FB3 with
256 convolutional filters having kernel size 3 × 3 and 128
convolutional filters with kernel size 1 × 1 makes the best
architecture for the capsule based recognition model. More-
over, we have also performed another ablation study, later
in this work by reducing the number of capsules and their
dimensions in the primary capsule block, only to demonstrate
that, the total number of network parameters for the proposed
DeepFeat-Capsule can be scaled downed to 60% of the
total parameters used in the state-of-the-art CapsNet, while
ensuring a significant increase in recognition accuracy.

REFERENCES

[1] M. T. Bahadori. Spectral capsule networks. 2018.
[2] K. Duarte, Y. Rawat, and M. Shah. Videocapsulenet: A simplified

network for action detection. In Advances in Neural Information
Processing Systems, pages 7621–7630, 2018.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[4] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-
encoders. In International conference on artificial neural networks,
pages 44–51. Springer, 2011.

[5] G. E. Hinton, S. Sabour, and N. Frosst. Matrix capsules with em
routing. 2018.

[6] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan. Capsulegan:
Generative adversarial capsule network. In European Conference on
Computer Vision, pages 526–535. Springer, 2018.

[7] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[9] Y. LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/, 1998.

[10] Y. LeCun et al. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, page 20, 2015.

[11] W. Liu, E. Barsoum, and J. D. Owens. Object localization and motion
transfer learning with capsules. arXiv preprint arXiv:1805.07706,
2018.

[12] D. Ma and X. Wu. Tcdcaps: Visual tracking via cascaded dense
capsules. arXiv preprint arXiv:1902.10054, 2019.

[13] J. O. Neill. Siamese capsule networks. arXiv preprint
arXiv:1805.07242, 2018.

[14] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning.
2011.

[15] D. Rawlinson, A. Ahmed, and G. Kowadlo. Sparse unsupervised
capsules generalize better. arXiv preprint arXiv:1804.06094, 2018.

[16] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between
capsules. In Advances in neural information processing systems, pages
3856–3866, 2017.

[17] S. Sabour, N. Frosst, and G. E. Hinton. Matrix capsules with em
routing. In 6th International Conference on Learning Representations,
ICLR, 2018.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[19] C. K. Singh, V. K. Gangwar, H. V. Singh, K. Narain, A. Majumder,
and S. Kumar. Deep capsule network based automatic batch code
identification pipeline for a real-life industrial application. In 2019
International Joint Conference on Neural Networks (IJCNN), pages
1–9. IEEE, 2019.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12, 2017.

[21] E. Xi, S. Bing, and Y. Jin. Capsule network performance on complex
data. arXiv preprint arXiv:1712.03480, 2017.

[22] C. Xiang, L. Zhang, Y. Tang, W. Zou, and C. Xu. Ms-capsnet: A
novel multi-scale capsule network. IEEE Signal Processing Letters,
25(12):1850–1854, 2018.

[23] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

