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Abstract— Automated parameter search has become a standard 

method in the modeling of neural systems. These studies could 

potentially take advantage of recent developments in nonlinear 

optimization, and the availability of software packages containing 

high-quality implementations of algorithms that proved useful in 

other domains. However, a systematic comparison of the available 

algorithms for problems that are typical in neuroscience has not 

been performed. 

We developed a software tool for fitting the parameters of neural 

models, which provides intuitive, uniform access to a variety of state-

of-the-art optimization algorithms implemented by four different 

Python packages. We also established a set of benchmark problems 

of different complexity that involve a variety of widely used neuronal 

models. We then used our optimization tool to systematically evaluate 

the performance of the algorithms on our set of benchmark 

problems. 

We found that several evolutionary and related algorithms 

consistently provided good solutions for all of our benchmarks. 

However, the relative performance of the different methods, both in 

terms of the quality of the final result and in terms of convergence 

speed, depended substantially on the nature of the problem. We hope 

that our software tool and benchmarking results will facilitate the 

choice and application of the best parameter-fitting methods in 

neuroscientific research. 

Keywords—neuronal modeling, Python, software, simulation, 

model fitting, parameter optimization, algorithm 

I. INTRODUCTION 

The detailed modeling of neurons is becoming an 
increasingly widespread method in neurobiological research. 
Currently available experimental data make it possible to create 
complex multicompartmental conductance-based neuron 
models. In principle, such models can approximate the behavior 

of real neurons very well. However, these models have many 
parameters and some of these parameters cannot be directly 
determined in experiments. Therefore, a common approach is to 
tune parameter values to bring the model’s behavior as close as 
possible to the experimental data. Several software solutions 
implementing various nonlinear optimization methods have 
been developed recently, which allow the determination of the 
unknown parameters of the neural models in a systematic way. 
However, only a few of these packages and algorithms have 
been evaluated on the problems that are typical in neuroscience 
[1]-[4]. Our aim in this study was (1) to create a software tool 
that provides uniform access to a large variety of different 
optimization algorithms; (2) to develop a set of benchmark 
problems for neural parameter tuning; and (3) to systematically 
evaluate and compare the various algorithms and 
implementations using our software and benchmarking suite. 

II. IMPLEMENTATION 

Our starting point was our previously developed software 
(Optimizer; https://github.com/KaliLab/optimizer), which was 
already shown to be a useful tool for neuronal optimization [4]. 
In Optimizer, model evaluations can be performed either by the 
NEURON simulator [5] (handled internally) or any external 
(black-box) simulator. All functionalities can be accessed from 
the graphical user interface; there is also a command line 
interface for batch processing. The modular, object-oriented 
structure of the program makes it possible to add new error 
functions and optimization algorithms. 

We now created an updated and enhanced version of this 
software. The new version was developed in Python 3 to support 
recent open-source Python modules, such as search algorithms, 
graphical and parallelization interfaces. The repertoire of 
algorithms was extended by several new methods that proved 
effective in other studies. For many of these search algorithms, 
parallel optimization is also supported and easily configurable. 
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A wide variety of features (including those in the eFEL package) 
[6] can be used to evaluate the error of the optimization; multiple, 
weighted features are also supported. 

Our optimization tool supports optimization algorithms 
implemented by four separate Python packages: Inspyred [7], 
Pygmo [8], BluePyOpt [9], and Scipy. [10] The following 
algorithms are currently included: 

Classical Evolutionary Algorithm (CEO) – also known as a 

genetic algorithm, which is inspired by natural evolution. The 

process of the algorithm consists of selection, crossover, and 

mutation. The best individuals are selected for reproduction in 

order to produce offspring for the next generation. [11]  

Particle Swarm Optimization (PSO) – This algorithm represents 

candidate solutions as particles moving around in the search 

space, influenced by the current best known positions for the 

individual particles and that of the entire group. [12]  

Simulated Annealing (SA) – This method is based on exploring 

the search space in random steps, where the probability of 

accepting a worse solution in each step decreases as the search 

progresses. [13] 

Differential Evolution (DE) - An evolutionary algorithm with a 

recombination approach, that involves the creation of offspring 

based on the weighted difference between two randomly 

selected individuals. [14] 

Non-dominated Sorting Genetic Algorithm (NSGA) - An 

evolutionary multi-objective algorithm, where the population is 

sorted in each step based on the ordering of the Pareto 

dominance of the individuals. [15] 

Pareto Archived Evolution Strategy (PAES) - An evolutionary 

multi-objective algorithm, using local search from a population 

and using a reference archive of previously found solutions to 

approximate the dominance ranking of current vectors. [16] 

Basinhopping (BH) – This is a generalization of the Simulated 

Annealing algorithm, which uses local optimization in each step. 

[17] 

Nelder-Mead - A simplex-based direct search method to find a 

local minimum of the cost function. [18] 

L-BFGS-B - Finds the local minimum, by using objective 

function values and its gradient, using a limited amount 

of computer memory. [19] 

Self-Adaptive Differential Evolution (SADE) – A version of 

Differential Evolution, which adjusts the mutation rate and the 

crossover rate adaptively. [20] 

Covariance Matrix Adaptation Evolutionary Strategy (CMAES) 

– An evolutionary algorithm which samples candidate solutions 

from multivariate normal distributions with adapting mean and 

covariance matrix. [21] 

Exponential Natural Evolution Strategies (XNES) – An 

evolutionary algorithm that uses the natural gradient to update 

the search distribution. [22] 

Simple Genetic Algorithm (SGA) - Classical evolutionary 

algorithm consisting of selection, crossover, and mutation.  

Bee Colony - Artificial Bee Colony Optimization (ABC) is a 

swarm-based algorithm like Particle Swarm Optimization, 

which simulates the behaviors of honeybee. [23] 

Differential Evolution 1220 - Differential Evolution that adds 

self-adaptation for the mutation variant.   

Indicator Based Evolutionary Algorithm (IBEA) - Multi-

objective Evolutionary Algorithm that computes the fitness 

value based on predefined binary indicators.  [24] 

Random Search (RAND) – This is our baseline method, which 

samples solutions from the search space based on the uniform 

probability distribution. Optimizer uses our own 

implementation of this method. [25] 

Algorithms integrated into our software from the Inspyred 
package are Classical Evolutionary Algorithm (CEO), 
ParticleSwarm Optimization (PSO), Simulated Annealing (SA), 
Differential Evolution (DE), Non-dominated Sorting Genetic 
Algorithm (NSGA), and Pareto Archived Evolution Strategy 
(PAES).  

Pygmo package algorithms are Differential Evolution (DE), 
Self-Adaptive Differential Evolution (SADE), Covariance 
Matrix Adaptation Evolutionary Strategy (CMAES), Particle 
Swarm Optimization (PSO), Exponential Evolution Strategies 
(XNES), Simple Genetic Algorithm (SGA), Bee Colony, and 
Differential Evolution 1220. 

Scipy package algorithms are Basinhopping (BH), Nelder-
Mead, and L-BFGS-B.  

BluePyOpt package algorithms are Indicator Based 
Evolutionary Algorithm (IBEA), and Non-dominated Sorting 
Genetic Algorithm (NSGA-II). 

In the current study, we evaluated a large subset of these 
algorithms, including several of the most widely used single-
objective and multi-objective methods. 

III. USE CASES 

The neuronal optimization problems that we included among 
our benchmarks differ in complexity, model type, simulation 
protocol, fitness functions, and the number of unknown 
parameters. Some of our benchmarks (Hodgkin-Huxley and 
Voltage Clamp, see below) use surrogate data as the target. In 
this case, target data are generated by a neuronal model with 
known parameters; some of these parameters are then 
considered to be unknown, and the task is to reconstruct the 
correct values. Therefore, in these test cases, a perfect solution 
with zero error is known to exist, and the corresponding 
parameters can be compared to those found by the search 
algorithms. However, in most of our benchmarks, the target data 
were recorded in physiological experiments, or were generated 



by more complex models than the one we were fitting. In these 
cases, the best-fitting parameters and the minimal possible error 
score are unknown. 

A. Hodgkin-Huxley 

This use case is based on a single-compartment model, 
which contains conductances from the original Hodgkin-Huxley 
model [26], and is implemented in NEURON. To generate the 
target voltage trace, a step current is injected into the neuron 
(amplitude = 200 pA, delay = 200 ms, duration = 500 ms, and 
the voltage trace duration is 1000 ms). The test case involves 
recovering the correct conductance densities (Na+, K+, leak – 3 
parameters). A combination of four features (spike count, spike 
amplitude, spike width, mean squared error of voltage excluding 
spikes) was used to compare each simulated trace to the original 
(target) trace (Fig. 1). 

 

 

Fig. 1. Target and best fitting traces for a Hodgkin-Huxley model. 

B. Voltage Clamp 

Another benchmark involves recovering synaptic 
parameters (weight, rise and decay time constants, delay – 4 
parameters) from simulated voltage clamp recordings during 
synaptic stimulation in a single-compartment model, using the 
mean squared error fitness function (Fig. 2). 

 

Fig. 2. Target and best fitting traces for a simulated voltage-clamp experiment. 

C. Passive, anatomically detailed neuron 

This benchmark uses a morphologically detailed passive 
model of a hippocampal CA1 pyramidal cell [27]. A short (3 ms, 
500 pA) and a long (600 ms, 10 pA) current pulse (separated by 
300 ms) were injected into the soma, and the membrane 
potential was also recorded there. The task involves fitting 3 
passive parameters (capacitance, leak conductance, axial 
resistance) to experimental data recorded using the same 
complex current clamp stimulus (Fig. 3). Traces are compared 
via the mean squared error fitness function. 

 

Fig. 3. Target and best fitting traces for a passive, anatomically detailed 

neuron. 

D. Simplified model 

This use case attempts to fit a six-compartmental 
simplification of a biophysically accurate and morphologically 
detailed hippocampal CA1 pyramidal cell model to voltage 
responses of the original full model. We injected a 200 pA step 
current stimulus into the soma. Stimulus starts at 200 ms and 
lasts for 600 ms, with 1000 ms recording duration as shown in 
Fig. 4. The fit was evaluated via a combination of features 
including mean squared error (excluding spikes), spike count, 
latency to first spike, action potential amplitude, action potential 
width, and after-hyperpolarization depth. The model contained 
9 tunable parameters.  

 

Fig. 4. Target and best fitting traces for a simplified (6-compartment) model. 



E. Extended integrate-and-fire model 

 In this benchmark, an abstract (adaptive exponential 
integrate-and-fire) spiking model was fitted to four different 
voltage traces of a real neuron (hippocampal CA3 pyramidal 
cell), with 0.30, 0.35, 0.40, and 0.45 nA current stimulation 
amplitudes (Fig. 5). Sampling frequency was 5 kHz with 1100 
ms recording duration.  The unknown optimizable parameters 
are capacitance, leak conductance, leak reversal potential, 
threshold voltage, reset voltage, refractory period, steepness of 
exponential part of the current-voltage relation, subthreshold 
adaptation conductance, spike adaptation current, adaptation 
time constant (10 parameters). Fitness functions were mean 
squared error, spike count, and latency to first spike. 

 

Fig. 5. Target and best fitting traces for an extended integrate-and-fire model. 

The four traces are displayed in a concatenated form. Note that the apparent 

difference in spike amplitude is irrelevant for the IF model. 

F. CA1 pyramidal cell 

This was the most complex test case based on an 

anatomically and biophysically detailed hippocampal CA1 

pyramidal cell model built in our research group. Multiple 

attributes determined by experiments, including the biophysics, 

ion channel distribution, and electrophysiological 

characteristics were used in designing the model. The task was 

to optimize the 16 channel density and kinetic parameters of the 

model. The stimulus amplitudes were -0.25, 0.05, 0.1, 0.15, 0.2 

0.25 nA, respectively. Somatic subthreshold and spiking 

features extracted by eFEL from the model's voltage response 

were compared to same features extracted from experimental 

measurements from several cells of the cell type. 

IV. EVALUATIONS 

We tested the algorithms on the different model optimization 
tasks described above, which differ in many characteristics. 
Every problem was evaluated with 10,000 model runs (100 
generations with a population size of 100 for evolutionary and 
related algorithms) to get a unified evaluation. We tested, 
compared and visualized the performance of the algorithms 
using several different methods. 

A. Error space 

 

Fig. 6. Generation plot of all the algorithms used to optimize the CA1 

pyramidal cell use-case. The figure shows the median over 10 consecutive runs 

of the cumulative minimum error. 

 

Fig. 7. Generation plot of all the single-objective algorithms used to optimize 

the Voltage Clamp use-case. The figure contains the minimum (solid), median 

(dash dotted) and the maximum (dashed) error scores of 10 independent 

optimization runs. The cumulative minimum error for each run up to the given 

number of generations was used for all statistics.  

The generation plot shows the fitness (error) values through 
consecutive generations of the optimization. We calculate the 
cumulative minimum error in 10 independent optimizations 
with different random seeds, and then their median to get the 
most robust statistic and the typical values (Fig. 6). This tells us 
which algorithms typically find the best solutions after a given 
number of model evaluations. The minimum and the maximum 
are also calculated to observe how good the algorithm is in the 
best case, and whether it gets stuck in some cases (Fig. 7).  

  



 

Fig. 8. Comparison of the different algorithms for the simplified model use 

case based on the area under the median curve of the generation plot. The 

algorithms are represented on the x-axis. The single-objective algorithms are 

represented by blue bars and the multi-objective ones by red bars. The plot is 

sorted from the best-performing algorithm to the worst. 

 In the case of more complex, detailed models, each model 
evaluation (simulation) can be time-consuming, and thus we are 
also interested in which algorithms can find a reasonably good 
solution in a relatively short time. This means that algorithms 
with better initial performance are better for these problems. To 
calculate the convergence speed of an algorithm, we used the 
integral of the curve representing the median of the 10 
evaluations, represented in Fig. 8. The smaller the area under the 
generation curve, the faster the algorithm found a relatively good 
solution.  

 

Fig. 9. Violin plot representing the distribution of the best error scores over 10 

independent runs of all the algorithms for the Extended integrate-and-fire 

model use case. The algorithms are represented on the x-axis, and error rates 

on the y-axes. The legend shows the color code applied to the package names, 

showing the implementing packages. The single-objective algorithms are 

colored by blue and the multi-objective ones by red. Results are sorted by the 

median score, from the best to the worst. 

 The violin plot (Fig. 9) represents the distribution of the best 
results achieved in 10 independent runs (marking the minima, 
maxima, and median values). 

B. Parameter Space 

  

Fig. 10. Convergence of Indicator Based Evolutionary Algorithm in parameter 

space for the classical Hodgkin-Huxley model use case. The three axes are the 

conductances of Na+, K+ and leak channels. 

We also investigated the convergence of optimization 
algorithms in parameter space. The Hodgkin-Huxley model has 
three parameters to optimize (conductance densities of Na, K, 
and leak channels), which we can visualize in a 3D point cloud 
plot. To observe how the algorithms progress through 
generations in parameter space, we find the parameter 
combination with the lowest error score in every generation 
(blue dots) and represent it in 3D space, along with the original 
parameter values (orange dot). The plot in Fig. 10 shows results 
from an optimization by the Indicator Based Evolutionary 
Algorithm (IBEA).  

 

Fig. 11. Minimum, maximum and median Euclidean distance in parameter 

space of 10 consecutive runs of Indicator Based Evolutionary Algorithm 

optimized on a classical Hodgkin-Huxley model.  



However, the 3D point cloud visualizes only one 

optimization of an algorithm, and visualization becomes more 

challenging in higher dimensional spaces. Therefore, we also 

calculated the Euclidean distance from the target parameter set, 

and plot the minimum, median and maximum distance value of 

10 independent runs for each generation (Fig. 11). Parameters 

are normalized (to their possible ranges) to be considered 

equally in the calculations. This measure can be represented for 

parameter spaces of arbitrarily high dimension. 

V. RANKING ALGORITHMS 

Finally, to summarize the performance of the algorithms in 
general, we wanted to determine how well they typically 
perform on these neuronal problems. Therefore, we summed 
their rankings on all the tests, and sorted the results in ascending 
order.  We considered two different versions of this ranking. In 
one version, the final error scores were based on the median of 
the best error scores achieved in 10 independent optimizations 
(as shown in the violin plot in Fig. 9). In the other version, we 
ranked the algorithms according to their convergence speed, 
calculated from the integral of the median fitness score across 
generations (see Fig. 8). Fig. 12 displays ranks summed over all 
of our benchmarks (including both single- and multi-objective 
problems) for the single-objective algorithms, while Fig. 13 
shows these aggregate scores for only the multi-objective 
problems, but including all the algorithms tested. 

 

Fig. 12. Bar plots of the single-objective algorithms ordered by the sum of the 

ranks they achieved on violin plots and integral plots of all the use-cases.  

 

Fig. 13. Bar plots of all the algorithms tested, ordered by the sum of the ranks 

they achieved on violin plots and integral plots of all the multi-objective use-

cases. The algorithms are represented on the x-axis. The single-objective 

algorithms are shown in blue and the multi-objective ones in red. 

VI. CONCLUSIONS 

Our software is an easy to use, extensible, general-purpose 

tool for fitting the parameters of neuronal models, which 

allowed us to systematically test the efficiency of a variety of 

algorithms on a set of different test cases. We found that 

although the relative performance of the algorithms depended 

on the nature of the problem, several algorithms (including 

CMAES, CEO, PSO, and IBEA) delivered consistently good 

results across our entire test suite, even for higher-dimensional, 

multi-objective problems. Therefore, we would recommend 

trying these algorithms first for novel optimization problems. 

We observed only minor differences across multiple 

implementations of the same algorithm. We hope to extend our 

test suite with new problems and algorithms, so that we can track 

new developments, and offer reliable solutions for an increasing 

variety of neural optimization problems. 
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