

A unified framework for the application and

evaluation of different methods

for neural parameter optimization

Máté Mohácsi

Institute of Experimental

Medicine

Faculty of Information

Technology and Bionics,

Pázmány Péter Catholic

University

 Budapest, Hungary

mohacsi.mate@koki.mta.hu

Márk Patrik Török

Institute of Experimental

Medicine

Faculty of Information

Technology and Bionics,

Pázmány Péter Catholic

University

 Budapest, Hungary

torok.mark.patrik@gmail.com

Sára Sáray

Institute of Experimental

Medicine

Faculty of Information

Technology and Bionics,

Pázmány Péter Catholic

University

Budapest, Hungary

saray.sara@koki.mta.hu

Szabolcs Káli

Institute of Experimental

Medicine

Budapest, Hungary

kali@koki.hu

Abstract— Automated parameter search has become a standard

method in the modeling of neural systems. These studies could

potentially take advantage of recent developments in nonlinear

optimization, and the availability of software packages containing

high-quality implementations of algorithms that proved useful in

other domains. However, a systematic comparison of the available

algorithms for problems that are typical in neuroscience has not

been performed.

We developed a software tool for fitting the parameters of neural

models, which provides intuitive, uniform access to a variety of state-

of-the-art optimization algorithms implemented by four different

Python packages. We also established a set of benchmark problems

of different complexity that involve a variety of widely used neuronal

models. We then used our optimization tool to systematically evaluate

the performance of the algorithms on our set of benchmark

problems.

We found that several evolutionary and related algorithms

consistently provided good solutions for all of our benchmarks.

However, the relative performance of the different methods, both in

terms of the quality of the final result and in terms of convergence

speed, depended substantially on the nature of the problem. We hope

that our software tool and benchmarking results will facilitate the

choice and application of the best parameter-fitting methods in

neuroscientific research.

Keywords—neuronal modeling, Python, software, simulation,

model fitting, parameter optimization, algorithm

I. INTRODUCTION

The detailed modeling of neurons is becoming an
increasingly widespread method in neurobiological research.
Currently available experimental data make it possible to create
complex multicompartmental conductance-based neuron
models. In principle, such models can approximate the behavior

of real neurons very well. However, these models have many
parameters and some of these parameters cannot be directly
determined in experiments. Therefore, a common approach is to
tune parameter values to bring the model’s behavior as close as
possible to the experimental data. Several software solutions
implementing various nonlinear optimization methods have
been developed recently, which allow the determination of the
unknown parameters of the neural models in a systematic way.
However, only a few of these packages and algorithms have
been evaluated on the problems that are typical in neuroscience
[1]-[4]. Our aim in this study was (1) to create a software tool
that provides uniform access to a large variety of different
optimization algorithms; (2) to develop a set of benchmark
problems for neural parameter tuning; and (3) to systematically
evaluate and compare the various algorithms and
implementations using our software and benchmarking suite.

II. IMPLEMENTATION

Our starting point was our previously developed software
(Optimizer; https://github.com/KaliLab/optimizer), which was
already shown to be a useful tool for neuronal optimization [4].
In Optimizer, model evaluations can be performed either by the
NEURON simulator [5] (handled internally) or any external
(black-box) simulator. All functionalities can be accessed from
the graphical user interface; there is also a command line
interface for batch processing. The modular, object-oriented
structure of the program makes it possible to add new error
functions and optimization algorithms.

We now created an updated and enhanced version of this
software. The new version was developed in Python 3 to support
recent open-source Python modules, such as search algorithms,
graphical and parallelization interfaces. The repertoire of
algorithms was extended by several new methods that proved
effective in other studies. For many of these search algorithms,
parallel optimization is also supported and easily configurable.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

A wide variety of features (including those in the eFEL package)
[6] can be used to evaluate the error of the optimization; multiple,
weighted features are also supported.

Our optimization tool supports optimization algorithms
implemented by four separate Python packages: Inspyred [7],
Pygmo [8], BluePyOpt [9], and Scipy. [10] The following
algorithms are currently included:

Classical Evolutionary Algorithm (CEO) – also known as a

genetic algorithm, which is inspired by natural evolution. The

process of the algorithm consists of selection, crossover, and

mutation. The best individuals are selected for reproduction in

order to produce offspring for the next generation. [11]

Particle Swarm Optimization (PSO) – This algorithm represents

candidate solutions as particles moving around in the search

space, influenced by the current best known positions for the

individual particles and that of the entire group. [12]

Simulated Annealing (SA) – This method is based on exploring

the search space in random steps, where the probability of

accepting a worse solution in each step decreases as the search

progresses. [13]

Differential Evolution (DE) - An evolutionary algorithm with a

recombination approach, that involves the creation of offspring

based on the weighted difference between two randomly

selected individuals. [14]

Non-dominated Sorting Genetic Algorithm (NSGA) - An

evolutionary multi-objective algorithm, where the population is

sorted in each step based on the ordering of the Pareto

dominance of the individuals. [15]

Pareto Archived Evolution Strategy (PAES) - An evolutionary

multi-objective algorithm, using local search from a population

and using a reference archive of previously found solutions to

approximate the dominance ranking of current vectors. [16]

Basinhopping (BH) – This is a generalization of the Simulated

Annealing algorithm, which uses local optimization in each step.

[17]

Nelder-Mead - A simplex-based direct search method to find a

local minimum of the cost function. [18]

L-BFGS-B - Finds the local minimum, by using objective

function values and its gradient, using a limited amount

of computer memory. [19]

Self-Adaptive Differential Evolution (SADE) – A version of

Differential Evolution, which adjusts the mutation rate and the

crossover rate adaptively. [20]

Covariance Matrix Adaptation Evolutionary Strategy (CMAES)

– An evolutionary algorithm which samples candidate solutions

from multivariate normal distributions with adapting mean and

covariance matrix. [21]

Exponential Natural Evolution Strategies (XNES) – An

evolutionary algorithm that uses the natural gradient to update

the search distribution. [22]

Simple Genetic Algorithm (SGA) - Classical evolutionary

algorithm consisting of selection, crossover, and mutation.

Bee Colony - Artificial Bee Colony Optimization (ABC) is a

swarm-based algorithm like Particle Swarm Optimization,

which simulates the behaviors of honeybee. [23]

Differential Evolution 1220 - Differential Evolution that adds

self-adaptation for the mutation variant.

Indicator Based Evolutionary Algorithm (IBEA) - Multi-

objective Evolutionary Algorithm that computes the fitness

value based on predefined binary indicators. [24]

Random Search (RAND) – This is our baseline method, which

samples solutions from the search space based on the uniform

probability distribution. Optimizer uses our own

implementation of this method. [25]

Algorithms integrated into our software from the Inspyred
package are Classical Evolutionary Algorithm (CEO),
ParticleSwarm Optimization (PSO), Simulated Annealing (SA),
Differential Evolution (DE), Non-dominated Sorting Genetic
Algorithm (NSGA), and Pareto Archived Evolution Strategy
(PAES).

Pygmo package algorithms are Differential Evolution (DE),
Self-Adaptive Differential Evolution (SADE), Covariance
Matrix Adaptation Evolutionary Strategy (CMAES), Particle
Swarm Optimization (PSO), Exponential Evolution Strategies
(XNES), Simple Genetic Algorithm (SGA), Bee Colony, and
Differential Evolution 1220.

Scipy package algorithms are Basinhopping (BH), Nelder-
Mead, and L-BFGS-B.

BluePyOpt package algorithms are Indicator Based
Evolutionary Algorithm (IBEA), and Non-dominated Sorting
Genetic Algorithm (NSGA-II).

In the current study, we evaluated a large subset of these
algorithms, including several of the most widely used single-
objective and multi-objective methods.

III. USE CASES

The neuronal optimization problems that we included among
our benchmarks differ in complexity, model type, simulation
protocol, fitness functions, and the number of unknown
parameters. Some of our benchmarks (Hodgkin-Huxley and
Voltage Clamp, see below) use surrogate data as the target. In
this case, target data are generated by a neuronal model with
known parameters; some of these parameters are then
considered to be unknown, and the task is to reconstruct the
correct values. Therefore, in these test cases, a perfect solution
with zero error is known to exist, and the corresponding
parameters can be compared to those found by the search
algorithms. However, in most of our benchmarks, the target data
were recorded in physiological experiments, or were generated

by more complex models than the one we were fitting. In these
cases, the best-fitting parameters and the minimal possible error
score are unknown.

A. Hodgkin-Huxley

This use case is based on a single-compartment model,
which contains conductances from the original Hodgkin-Huxley
model [26], and is implemented in NEURON. To generate the
target voltage trace, a step current is injected into the neuron
(amplitude = 200 pA, delay = 200 ms, duration = 500 ms, and
the voltage trace duration is 1000 ms). The test case involves
recovering the correct conductance densities (Na+, K+, leak – 3
parameters). A combination of four features (spike count, spike
amplitude, spike width, mean squared error of voltage excluding
spikes) was used to compare each simulated trace to the original
(target) trace (Fig. 1).

Fig. 1. Target and best fitting traces for a Hodgkin-Huxley model.

B. Voltage Clamp

Another benchmark involves recovering synaptic
parameters (weight, rise and decay time constants, delay – 4
parameters) from simulated voltage clamp recordings during
synaptic stimulation in a single-compartment model, using the
mean squared error fitness function (Fig. 2).

Fig. 2. Target and best fitting traces for a simulated voltage-clamp experiment.

C. Passive, anatomically detailed neuron

This benchmark uses a morphologically detailed passive
model of a hippocampal CA1 pyramidal cell [27]. A short (3 ms,
500 pA) and a long (600 ms, 10 pA) current pulse (separated by
300 ms) were injected into the soma, and the membrane
potential was also recorded there. The task involves fitting 3
passive parameters (capacitance, leak conductance, axial
resistance) to experimental data recorded using the same
complex current clamp stimulus (Fig. 3). Traces are compared
via the mean squared error fitness function.

Fig. 3. Target and best fitting traces for a passive, anatomically detailed

neuron.

D. Simplified model

This use case attempts to fit a six-compartmental
simplification of a biophysically accurate and morphologically
detailed hippocampal CA1 pyramidal cell model to voltage
responses of the original full model. We injected a 200 pA step
current stimulus into the soma. Stimulus starts at 200 ms and
lasts for 600 ms, with 1000 ms recording duration as shown in
Fig. 4. The fit was evaluated via a combination of features
including mean squared error (excluding spikes), spike count,
latency to first spike, action potential amplitude, action potential
width, and after-hyperpolarization depth. The model contained
9 tunable parameters.

Fig. 4. Target and best fitting traces for a simplified (6-compartment) model.

E. Extended integrate-and-fire model

 In this benchmark, an abstract (adaptive exponential
integrate-and-fire) spiking model was fitted to four different
voltage traces of a real neuron (hippocampal CA3 pyramidal
cell), with 0.30, 0.35, 0.40, and 0.45 nA current stimulation
amplitudes (Fig. 5). Sampling frequency was 5 kHz with 1100
ms recording duration. The unknown optimizable parameters
are capacitance, leak conductance, leak reversal potential,
threshold voltage, reset voltage, refractory period, steepness of
exponential part of the current-voltage relation, subthreshold
adaptation conductance, spike adaptation current, adaptation
time constant (10 parameters). Fitness functions were mean
squared error, spike count, and latency to first spike.

Fig. 5. Target and best fitting traces for an extended integrate-and-fire model.

The four traces are displayed in a concatenated form. Note that the apparent

difference in spike amplitude is irrelevant for the IF model.

F. CA1 pyramidal cell

This was the most complex test case based on an

anatomically and biophysically detailed hippocampal CA1

pyramidal cell model built in our research group. Multiple

attributes determined by experiments, including the biophysics,

ion channel distribution, and electrophysiological

characteristics were used in designing the model. The task was

to optimize the 16 channel density and kinetic parameters of the

model. The stimulus amplitudes were -0.25, 0.05, 0.1, 0.15, 0.2

0.25 nA, respectively. Somatic subthreshold and spiking

features extracted by eFEL from the model's voltage response

were compared to same features extracted from experimental

measurements from several cells of the cell type.

IV. EVALUATIONS

We tested the algorithms on the different model optimization
tasks described above, which differ in many characteristics.
Every problem was evaluated with 10,000 model runs (100
generations with a population size of 100 for evolutionary and
related algorithms) to get a unified evaluation. We tested,
compared and visualized the performance of the algorithms
using several different methods.

A. Error space

Fig. 6. Generation plot of all the algorithms used to optimize the CA1

pyramidal cell use-case. The figure shows the median over 10 consecutive runs

of the cumulative minimum error.

Fig. 7. Generation plot of all the single-objective algorithms used to optimize

the Voltage Clamp use-case. The figure contains the minimum (solid), median

(dash dotted) and the maximum (dashed) error scores of 10 independent

optimization runs. The cumulative minimum error for each run up to the given

number of generations was used for all statistics.

The generation plot shows the fitness (error) values through
consecutive generations of the optimization. We calculate the
cumulative minimum error in 10 independent optimizations
with different random seeds, and then their median to get the
most robust statistic and the typical values (Fig. 6). This tells us
which algorithms typically find the best solutions after a given
number of model evaluations. The minimum and the maximum
are also calculated to observe how good the algorithm is in the
best case, and whether it gets stuck in some cases (Fig. 7).

Fig. 8. Comparison of the different algorithms for the simplified model use

case based on the area under the median curve of the generation plot. The

algorithms are represented on the x-axis. The single-objective algorithms are

represented by blue bars and the multi-objective ones by red bars. The plot is

sorted from the best-performing algorithm to the worst.

 In the case of more complex, detailed models, each model
evaluation (simulation) can be time-consuming, and thus we are
also interested in which algorithms can find a reasonably good
solution in a relatively short time. This means that algorithms
with better initial performance are better for these problems. To
calculate the convergence speed of an algorithm, we used the
integral of the curve representing the median of the 10
evaluations, represented in Fig. 8. The smaller the area under the
generation curve, the faster the algorithm found a relatively good
solution.

Fig. 9. Violin plot representing the distribution of the best error scores over 10

independent runs of all the algorithms for the Extended integrate-and-fire

model use case. The algorithms are represented on the x-axis, and error rates

on the y-axes. The legend shows the color code applied to the package names,

showing the implementing packages. The single-objective algorithms are

colored by blue and the multi-objective ones by red. Results are sorted by the

median score, from the best to the worst.

 The violin plot (Fig. 9) represents the distribution of the best
results achieved in 10 independent runs (marking the minima,
maxima, and median values).

B. Parameter Space

Fig. 10. Convergence of Indicator Based Evolutionary Algorithm in parameter

space for the classical Hodgkin-Huxley model use case. The three axes are the

conductances of Na+, K+ and leak channels.

We also investigated the convergence of optimization
algorithms in parameter space. The Hodgkin-Huxley model has
three parameters to optimize (conductance densities of Na, K,
and leak channels), which we can visualize in a 3D point cloud
plot. To observe how the algorithms progress through
generations in parameter space, we find the parameter
combination with the lowest error score in every generation
(blue dots) and represent it in 3D space, along with the original
parameter values (orange dot). The plot in Fig. 10 shows results
from an optimization by the Indicator Based Evolutionary
Algorithm (IBEA).

Fig. 11. Minimum, maximum and median Euclidean distance in parameter

space of 10 consecutive runs of Indicator Based Evolutionary Algorithm

optimized on a classical Hodgkin-Huxley model.

However, the 3D point cloud visualizes only one

optimization of an algorithm, and visualization becomes more

challenging in higher dimensional spaces. Therefore, we also

calculated the Euclidean distance from the target parameter set,

and plot the minimum, median and maximum distance value of

10 independent runs for each generation (Fig. 11). Parameters

are normalized (to their possible ranges) to be considered

equally in the calculations. This measure can be represented for

parameter spaces of arbitrarily high dimension.

V. RANKING ALGORITHMS

Finally, to summarize the performance of the algorithms in
general, we wanted to determine how well they typically
perform on these neuronal problems. Therefore, we summed
their rankings on all the tests, and sorted the results in ascending
order. We considered two different versions of this ranking. In
one version, the final error scores were based on the median of
the best error scores achieved in 10 independent optimizations
(as shown in the violin plot in Fig. 9). In the other version, we
ranked the algorithms according to their convergence speed,
calculated from the integral of the median fitness score across
generations (see Fig. 8). Fig. 12 displays ranks summed over all
of our benchmarks (including both single- and multi-objective
problems) for the single-objective algorithms, while Fig. 13
shows these aggregate scores for only the multi-objective
problems, but including all the algorithms tested.

Fig. 12. Bar plots of the single-objective algorithms ordered by the sum of the

ranks they achieved on violin plots and integral plots of all the use-cases.

Fig. 13. Bar plots of all the algorithms tested, ordered by the sum of the ranks

they achieved on violin plots and integral plots of all the multi-objective use-

cases. The algorithms are represented on the x-axis. The single-objective

algorithms are shown in blue and the multi-objective ones in red.

VI. CONCLUSIONS

Our software is an easy to use, extensible, general-purpose

tool for fitting the parameters of neuronal models, which

allowed us to systematically test the efficiency of a variety of

algorithms on a set of different test cases. We found that

although the relative performance of the algorithms depended

on the nature of the problem, several algorithms (including

CMAES, CEO, PSO, and IBEA) delivered consistently good

results across our entire test suite, even for higher-dimensional,

multi-objective problems. Therefore, we would recommend

trying these algorithms first for novel optimization problems.

We observed only minor differences across multiple

implementations of the same algorithm. We hope to extend our

test suite with new problems and algorithms, so that we can track

new developments, and offer reliable solutions for an increasing

variety of neural optimization problems.

ACKNOWLEDGEMENT

We received funding from the European Union’s Horizon
2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements No. 720270 and No.
785907 (Human Brain Project SGA1 and SGA2), from the
Széchenyi 2020 Program of the Human Resource Development
Operational Program, and from the Program of Integrated
Territorial Investments in Central-Hungary (EFOP-3.6.2-16-
2017-00013 and 3.6.3-VEKOP- 16-2017- 00002).

REFERENCES

[1] Vanier, M.C., Bower, J.M. A Comparative Survey of Automated
Parameter-Search Methods for Compartmental Neural Models. J Comput
Neurosci 7, 149–171 (1999). https://doi.org/10.1023/A:1008972005316

[2] Druckmann, S., Berger, T.K., Hill, S. et al. Evaluating automated
parameter constraining procedures of neuron models by experimental and
surrogate data. Biol Cybern 99, 371 (2008).
https://doi.org/10.1007/s00422-008-0269-2

[3] Van Geit, W., Achard, P., and De Schutter, E. (2007). Neurofitter: a
parameter tuning package for a wide range of electrophysiological neuron
models. Front. Neuroinform. 1:1. doi: 10.3389/neuro.11.001.2007

[4] Friedrich P, Vella M, Gulyás AI, Freund TF and Káli S (2014) A flexible,
interactive software tool for fitting the parameters of neuronal models.
Front. Neuroinform. 8:63. doi: 10.3389/fninf.2014.00063

[5] N. T. Carnevale and M. L. Hines, The NEURON Book, 1st ed. New York,
NY, USA: Cambridge University Press, 2009

[6] W. van Geit, R. Moor, R. Ranjan, C. Roessert, and L. Riquelme,
“Electrophys Feature Extraction Library.” 2020. [Online]. Available:
https://github.com/BlueBrain/eFEL

[7] Francesco Biscani et al. 10.5281/zenodo.3364433

[8] Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB,
Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging
open source software and cloud infrastructure to optimise model
parameters in neuroscience. Front. Neuroinform. 10:17. doi:
10.3389/fninf.2016.00017

[9] Garrett, A. „Inspired Intelligence Initiative, inspyred: Bio-inspired
Algorithms in Python,” 2012. [Online]. Available:
http://pythonhosted.org/inspyred/.

[10] Pauli Virtanen et al. (2019) SciPy 1.0–Fundamental Algorithms for
Scientific Computing in Python. preprint arXiv:1907.10121

[11] D. Vasiljevic, Classical and Evolutionary Algorithms in the Optimization
of Optical Systems (Springer Science & Business Media, 2012).

[12] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings
of ICNN'95 - International Conference on Neural Networks, Perth, WA,
Australia, 1995, pp. 1942-1948 vol.4.doi: 10.1109/ICNN.1995.488968

[13] Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. (1983). Optimization
by simulated annealing. Science 220, 671–680. doi:
10.1126/science.220.4598.671

[14] Price, K. (1996), Differential Evolution: A Fast and Simple Numerical
Optimizer, NAFIPS’96, pp. 524–527.

[15] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002.
doi: 10.1109/4235.996017

[16] Knowles, Joshua & Corne, David. (1999). The Pareto Archived Evolution
Strategy: A New Baseline Algorithm for Pareto Multiobjective
Optimisation. Proceedings of the 1999 Congress on Evolutionary
Computation, CEC 1999. 1. 10.1109/CEC.1999.781913.

[17] Wales, David & Doye, Jonathan. (1998). Global Optimization by Basin-
Hopping and the Lowest Energy Structures of Lennard-Jones Clusters
Containing up to 110 Atoms. The Journal of Physical Chemistry A. 101.
10.1021/jp970984n.

[18] Nelder, J. A., and Mead, R. (1965). A simplex method for function
minimization. Comput. J. 7, 308–313. doi: 10.1093/comjnl/7.4.308

[19] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). "A Limited Memory
Algorithm for Bound Constrained Optimization". SIAM J. Sci.
Comput. 16 (5): 1190–1208. doi:10.1137/0916069.

[20] A. K. Qin and P. N. Suganthan, "Self-adaptive differential evolution
algorithm for numerical optimization," 2005 IEEE Congress on
Evolutionary Computation, Edinburgh, Scotland, 2005, pp. 1785-1791
Vol. 2.
doi: 10.1109/CEC.2005.1554904

[21] Hansen and Ostermeier, 2001. Completely Derandomized Self-
Adaptation in Evolution Strategies. Evolutionary Computation

[22] T Glasmachers, T Schaul, S Yi, D Wierstra (2010) Exponential Natural
Evolution Strategies

[23] Karaboğa, Derviş (2005). "An Idea Based on Honey Bee Swarm For
Numerical Optimization"

[24] Zitzler, Eckart & Künzli, Simon. (2004). Indicator-Based Selection in
Multiobjective Search. Conference on Parallel Problem Solving from
Nature (PPSN VIII). 832-842. 10.1007/978-3-540-30217-9_84.

[25] Rastrigin, L.A. (1963). "The convergence of the random search method
in the extremal control of a many parameter system". Automation and
Remote Control. 24 (10): 1337–1342.

[26] Hodgkin AL, Huxley AF (August 1952). "A quantitative description of
membrane current and its application to conduction and excitation in
nerve". The Journal of Physiology. 117 (4): 500–
44. doi:10.1113/jphysiol.1952.sp004764. PMC 1392413. PMID 129912
37.

[27] Káli, S., and Freund, T. F.Distinct properties of two major excitatory
inputs to hippocampal pyramidal cells: a computational study. Eur. J.
Neurosci. 22, 2027–2048. (2005) doi: 10.1111/j.1460-9568.2005.04406.x

