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Abstract—Deep learning has recently made a breakthrough
in the speech enhancement process. Some architectures are
based on a time domain representation, while others operate
in the frequency domain; however, the study and comparison of
different networks working in time and frequency is not reported
in the literature. In this paper, this comparison between time
and frequency domain learning for five Deep Neural Network
(DNN) based speech enhancement architectures is presented.
The comparison covers the evaluation of the output speech
using four objective evaluation metrics: PESQ, STOI, LSD, and
SSNR increase. Furthermore, the complexity of the five networks
was investigated by comparing the number of parameters and
processing time for each architecture. Finally some of the factors
that affect learning in time and frequency were discussed. The
primary results of this paper show that fully connected based
architectures generate speech with low overall perception when
learning in the time domain. On the other hand, convolutional
based designs give acceptable performance in both frequency and
time domains. However, time domain implementations show an
inferior generalization ability. Frequency domain based learning
was proved to be better than time domain when the complex
spectrogram is used in the training process. Additionally, feature
extraction is also proved to be very effective in DNN based
supervised speech enhancement, whether it is performed at the
beginning, or implicitly by bottleneck layer features. Finally, it
was concluded that the choice of the working domain is mainly
restricted by the type and design of the architecture used.

Index Terms—Deep Learning, Speech Enhancement, Time
Domain, Frequency Domain

I. INTRODUCTION

Speech enhancement is one of the most challenging tasks in
the signal processing field. It is the process of removing noise
from speech, in order to increase quality and intelligibility.

This research is co-sponsored by Intelligent Voice Ltd.

There are many applications for speech enhancement, for
example, it is an essential process in hearing aids, mobile
communication systems, Automatic Speech Recognition, head
phones, and VoIP communication [1].

Researchers have been developing speech enhancement
techniques for decades, which predict clean speech based on
statistical assumptions about the relationship between speech
and noise [2]. Recently, a new era of speech enhancement
has emerged with the introduction of deep learning based
techniques [3]. These techniques learn the mapping function
that maps noisy speech to clean speech, without any statistical
assumption, by training a DNN. This network is fed by a huge
amount of data for pairs of clean and noisy speech, and then
adjusts its parameters during the supervised learning process
so as to generate the best prediction for the target clean speech
[4], [5].

When training a speech enhancement neural network, the
speech signal can be fed to the network in the time domain,
or a transformation to the frequency domain can be applied
first. Many research in the literature advocates the frequency
domain approach [6]–[10] because speech signals are of a
highly non-stationary nature and its components vary in both
time and frequency. Consequently, a transformation to the
frequency domain using a technique such as Short Time
Fourier Transform (STFT) will result in a better representation
of the speech signal [11], as information such as the harmonics
and how the frequency amplitude varies in time can be known,
and this leads to better network training. However, there are
approaches that operate in the time domain [12]–[16], as it
is believed that deep learning as a data driven approach has
the ability to learn features during training. Accordingly, it is
better to feed the DNN with the time domain signal and leave
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it to learn on its own the most important features, because
some useful information may be lost after transferring to the
frequency domain.

In this paper, a comparison will be carried out between
five different DNN based speech enhancement best performing
architectures operating in time and frequency, so as to work
out how the behaviour of each network changes with respect
to the used domain, and then determine for each architecture,
whether it is suitable to learn in time, or frequency, or both
domains. The factors that affect implementations in time and
frequency will be also investigated.

The rest of this paper is organized as follows. In Section
II, a literature review is presented to show how our work will
contribute to the literature. A brief review of different DNN
based speech enhancement architectures and the design of the
implemented networks will be presented in Section III. The
experiments carried out and their setup are given in Section
IV. The results and discussion are shown in Section V. Finally,
Section VI provides the conclusion.

II. LITERATURE REVIEW

For DNN based speech enhancement in the frequency
domain, the feature extraction process is based on generating
the spectrogram of the signal, which carries information about
the frequencies present in the signal and its relative amplitudes.
The Discrete Fourier Transform (DFT) is one of the commonly
used techniques, in which the signal is broken down into its
sinusoidal harmonics, that when added up generate the original
signal. In order to consider the changes of these frequency
contents over time, the STFT is used [11]. In STFT the
signal is first divided into frames or chunks, and then the
Fourier transform is applied for each frame. These frames
are generated by multiplying the signal by a function called
a window function, and in order to reduce artifacts at the
boundaries, these frames are usually overlapped.

There are many types of windowing functions; a rectangular
window is the simplest function, which is a unity function.
However, as it ends abruptly, this sharp edge will lead to the
appearance of frequencies that are not in the original signal,
which causes the spectrum to be smeared; a problem known
as spectral leakage [17]. Instead, there are another two popular
windowing functions, called Hanning and Hamming windows,
with a better frequency response that can be used to overcome
this problem, as they ensure that the ends of the signal are
close to zero [18].

On the other hand, the representation of the speech in the
time domain carries information about the voltage change over
time as the pressure of the sound waves is converted into
electrical signals by microphones. As a result, the relationship
between neighbouring features in time defines the frequency
information of the signal [19]. A framing to the time domain
signal, using any window function described earlier, is usually
performed on the speech signal before being fed to the
network, so as to fix the length of the input features.

Representation of the speech signal in either time or fre-
quency domain has its advantages and disadvantages. Al-

though working in the frequency domain gives the network
directly important information about the input signal which
leads to lower network parameters, it adds more computation
as the audio signal is originally represented in time. The STFT
operation is done at the beginning, and the inverse operation is
done at the end, so it increases the computational cost and the
time taken to process and output the audio [13]. Furthermore,
the transformation process affects the amplitude of the signal
so compensation to this loss should be done by scaling the
amplitude of output signal, which may affect the quality of
the output speech. Moreover, when operating in the frequency
domain it is most common to deal only with the amplitude
of the speech signal, assuming that the phase is insensitive
to noise [20] so the phase of the noisy speech is extracted
to be added to the estimated signal when reconstructing the
audio. However, this assumption does not always hold, as
some studies show the importance of phase in improving the
performance [21], [22]. Many techniques have been proposed
to retrieve the clean phase, or are based on the use of the
complex spectrograms in order to solve this issue [23]–[25],
but finally all these result in more computations done to the
signal.

On the other hand, working in time results in fewer compu-
tations, as the framing of the input signal is the only required
operation, and some researchers even work with the waveform
without the framing process. Moreover, the phase information
is estimated during the training that leads to better prediction
of the clean signal, and also no scaling is needed for the
output signal. However, working in the time domain results
in a much higher number of network parameters due to the
large frame size used, which is proved to be better than smaller
frames [12], [26]. This larger number of parameters increases
the size of the model, and restricts its applicability in some
real time implementations as the model may not fit into the
hardware [27]. Additionally, although deep learning is a data
driven approach, feature based learning has been proved to
positively affect the learning process [28]. Based on this fact,
the network performance is expected to be affected when the
input does not carry much information, and more effort may be
needed to design a more complex network suitable to extract
this information in the training process.

According to our knowledge, the comparison between dif-
ferent DNN based speech enhancement architectures working
in the time and frequency domains has not been addressed yet.
How the different networks’ performance is affected by the
operating domain, and what is the best performing architecture
in each domain are questions still needed to be answered. This
comprehensive comparison is the subject of this paper.

III. SPEECH ENHANCEMENT ARCHITECTURES

In this section, details of the five implemented architectures,
shown in Fig. 1, are given. The design of these architectures
is based on implementations found in the literature; however,
some modifications in the setup were applied so as to perform
a fair comparison between their operation in time and fre-
quency. Moreover, the 1D convolutions only are used in both



Fig. 1: The Five Implemented Deep Neural Network Architectures

time and frequency implementations, because they have been
proven to be more efficient in audio processing, and results in
a low computational cost which makes the network suitable
for real time applications [29], [30].

A Multi Layer Perceptron (MLP) is the basic and sim-
plest speech deep learning enhancement architecture. In this
architecture, all the nodes of the hidden layers are fully
connected to each other; however, this architecture has a huge
computational cost. Many speech enhancement networks are
based on the MLP architecture [6], [7], [31], and almost all of
them operate in the frequency domain, as the fully connected
layer cannot represent high and low frequencies at the same
time resulting in the failure of the layer to reconstruct the
speech signal in time [13]. However, a study managed to
output the speech signal in the time domain by training an
MLP in frequency and performing the conversion process back
to the time domain during the training procedure [32].

The MLP architecture used, based on [6], consists of 3 hid-
den fully connected layers of 2,048 units and Rectified Linear
Unit (ReLU) activations, followed by batch normalization to
improve the performance and training stability, and a dropout
layer of 20% rate to avoid overfitting to the training data. The
final output layer is a linear activation function to predict the
target.

The Convolutional Neural Network (CNN) is another archi-
tecture used to solve the high computational cost and complex-
ity problems of the MLP by using the convolution operation
in both forward and backward propagation steps, so as to
reduce the network parameters based on two ideas: parameter
sharing and sparsity of connections. Parameter sharing means
that a feature takes advantage of other features in a certain
part of the input, and uses it in another part, while sparsity
of connections means that the output value in each layer does
not depend on all the inputs of the previous layer [4]. The
final prediction layer of a CNN is usually a fully connected
layer. The CNN is also proven to be better at dealing with the
speech enhancement problem than an MLP [10], [33], [34].

The CNN architecture used, based on [10], [33], consists
of 3 convolutional layers and two fully connected layers. We

used a 1D convolution, instead of 2D, as it is more suitable for
audio representation, and each convolution layer is followed
by PReLU activation functions, instead of ReLU. The number
of convolution layer filters are set to 64, and we used kernels
of size 20. The first fully connected layer consists of 512 units
with ReLU activation, and the final prediction fully connected
layer is of the linear activation type.

In an attempt to further decrease the computations of CNNs,
another version of CNN was proposed, known as the Fully
Convolutional Neural Network (FCNN), in which the fully
connected layers are replaced with convolutional layers so as
to have a network with all convolutional layers. Some FCNN
based speech enhancement networks are found to operate in
the frequency domain [9], [35], while others are time domain
based implementations [13], [14]. The FCNN architecture used
here is based on [13]; however, 6 1D convolutional layers
with Parametric Rectifiel Linear Unit (PReLU) activations are
used, instead of 2D convolution with ReLU activation, and a
final convolution layer with linear activation for predicting the
output. The filter size used is 64, and the kernel size is 20,
and they are constant across all layers.

The Autoencoder is another architecture that aims to output
a similar representation as the input using two separate net-
works: the encoder and the decoder. The encoder compresses
the input by removing any unimportant information so as to
finally give a compact form of the input data, and then the
decoder reconstructs the input [4]. Denoising autoencoders
are used in speech enhancement based on the idea that the
noise is considered as unimportant information when trying
to represent clean speech, so it is reduced significantly during
the compression process [36]. There are two types of denoising
autoencoders: the deep denoising autoencoder (DDAE) and the
convolutional denoising autoencoder (CDAE). Some speech
enhancement architectures are based on DDAE [8], [37], and
most known architectures are operating in the frequency do-
main, while recently CDAE is used in both time and frequency
[12], [38], and it is proven to be a very promising speech
enhancement architecture.

The DDAE architecture used, based on [8], consists of



encoder and decoder networks; each has 2 fully connected
layers of 2,048, and 500 hidden units. Each of these fully
connected layers is followed by a ReLU activation, and batch
normalization layer. Another 2 dropout layers of 10% rate
were added after the first layer of the encoder and the last
layer of the decoder. The bottleneck middle layer has 180
units. The final output layer is of linear activation.

The CDAE architecture used, based on [12], [15], is another
FCNN; however, it is based on autoencoder. It has 9 convo-
lution layers in each of the encoder and decoder networks,
followed by PReLU activation. Strided convolution was used
with stride size of 2 in the encoder layers, while up sampling
of size 2 was used in the decoder. Each three successive layers
are of the same filter and kernel size. The filter size increases
across hidden layers; 64, 128, and 256 filter sizes were used,
while the kernel size decreases; 7, 5, and 3 kernel sizes
were used. Dropout of rate 20% was used after every three
layers. The activation function of the final convolution layer
is Tanh. Skip connections are applied between the encoder
and the decoder, retaining important information as processing
proceeds deeper into the network.

IV. EXPERIMENTAL SETUP

Speech and noise datasets were collected for the training
and testing procedures. The clean speech corpus used in the
experiments is the Voice Bank corpus [39]. A random selection
of 4,730 audio files was carried out to make ∼ 5 hours of clean
speech for training purposes. Another 450 clean speech audio
files of about 30 minutes duration were randomly selected for
testing purposes.

A diversity of noise environments were randomly mixed
to the clean speech files. A total of 105 noise environments
were used in the training process, 90 from the 100 Noise
Environment dataset [40] and 15 from NOISEX-92 corpus
[41]. For testing purposes, 9 seen different crowd noise and 1
Additive White Gaussian Noise (AWGN) are used, and another
10 unseen noise environments taken from the rest of 100 Noise
Environment dataset that were not used in the training process.
The selected noise environments for testing purposes are a
mix of human generated noise, such as the crying sound,
yawning sound, and human crowd sounds, and other non-
human generated noise, such as AWGN, phone dialing, shower
noise, tooth brushing, and wood creaks.

All the audio files are down-sampled to 8kHz as this range
has the most important speech features, and the noise audios
were truncated or repeated to be of the same length as the
clean speech audio. The training was done at 0 dB SNR, so
amplitude scaling was carried out for clean speech and noise
audios to be of the same intensity level, while testing was done
using 6 different SNRs, -5 to 20 with a step of 5, and also the
average and standard deviation of these values were calculated.
Due to the fact that these experiments were done in both time
and frequency domain, two different preprocessing techniques
were performed to the audio files before being fed to the
DNN, which are framing and STFT, respectively. For time
domain training, the audio files were divided into frames of

size 2,048 and 50% overlap using a Hamming window, while
for the frequency domain training, a frame size of 256 with
50% overlap was used, and an extra step was then performed
by applying the FFT to these frames using an FFT of size 256
to get a good resolution in both time and frequency.

The training target is the speech time frame in the case of
the time domain training as here the DNNs are left to learn
the features themselves, while the spectral magnitude was used
for the frequency domain training. As a result, the noisy phase
was used in reconstructing the audio files from the frequency
domain, on the assumption that the phase is not highly affected
by noise. Minimum Mean Square Error (MMSE) is the loss
function used during the training process as the default choice,
because our goal here is to improve all the evaluation metrics,
not a specific one [42]. Adam optimizer was used; learning
rate= 0.001, β1=0.1, β2=0.999. A 10% validation set was used
in the training process. A batch size of 128 was used, and the
training is based on 50 epochs as all the implemented DNNs
saturated after 30 epochs. These implementations were done
using the Keras library with Tensorflow backend.

V. RESULTS AND DISCUSSION

A. Objective Evaluation

The output speech was evaluated using the well known
objective evaluation metrics: Perceptual Evaluation of Speech
Quality (PESQ) [43], Short Time Objective Intelligibility
(STOI) [44], Log Spectral Distortion (LSD), and Segmental
Signal to Noise Ratio increase (∆SSNR). These results are
given in Table I to IV, and summarized in Table V. PESQ and
STOI results are also shown in Fig. 2.

The results show that the MLP and DDAE based architec-
tures give very bad performance in the time domain, and the
network seems to be unable to learn the mapping function. The
CNN works better in the frequency domain as well; however,
it also gives acceptable performance in the time domain. The
FCNN gives better performance in the frequency domain with
respect to all metrics, except for speech intelligibility which
is much better in the time domain. This means that some
metrics may be better in certain domains, hence choosing
between time and frequency is also based on which metric
is of the highest importance in the application where speech
enhancement is applied. CDAE is the only architecture that
works better in the time domain with respect to all the metrics,
except speech distortion. The reason for that is the different
nature of this architecture, as it is trying to give a similar
representation of the input, regardless of its domain, after
removing the noise in the bottleneck layer, and it seems to be
able to better represent the clean speech in the time domain
rather than the frequency domain. It is also clear that working
in the frequency domain, for all architectures, results in lower
speech distortion.

The results also prove that although deep learning is a data
driven approach, feature extraction is a very important stage
and results in significant improvement in the performance, and
that is why the frequency domain representation outperforms
the time domain approach in most architectures. Regarding the



CDAE architecture, in which the time domain implementation
is better, the reason for that is the bottleneck representation,
which is a feature extraction step on its own. Although the
CDAE network is fed by the time domain speech signal,
nonlinear transformation to another compact form of the input
is done in the bottleneck layer, which means feature extraction
is also done, but implicitly inside the network. As a result, this
gives the network the ability to represent the clean speech in
the time domain.

Regarding the overall performance of the five networks,
convolutional based implementations (CNN, FCNN, and
CDAE) outperform the basic fully connected layers architec-
tures (MLP and DDAE). The CDAE architecture is a very
promising architecture for speech enhancement in both time
and frequency domains.

Fig. 2: PESQ and STOI Results for the Five DNNs

B. Networks’ Complexity Comparison

Table VI shows the comparison between the used param-
eters in each implementation and the processing time. These
results are based on running the algorithm on an NVIDIA
Quadro M3000M GPU with clock 1050 MHz and 160 GB/s
memory bandwidth. It is clear that the number of parameters
in all the time domain implementations is much higher which
leads to increased model size, as discussed in Section 2.
Except for CDAE, as zero padding is performed to the input
frequency feature so as to keep the input size of 2,048,
so the network is able to decrease the input through the
8 layers of the encoder. Convolutional based architectures
also have a lower number of parameters than fully connected
architectures. This is because of the sparse connections of
CNNs, and more specifically due to the use of 1D convolution
in both time and frequency implementations, which leads to
a decreased number of parameters. The processing time is
calculated based on processing 224 speech audio files of about
15 minutes duration. The operation was done 6 times, then the
average time was taken so as to consider any error caused by
processing freezing. All frequency domain implementations

TABLE I: Speech Quality Evaluation (PESQ score)

SNR Noisy MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

20 2.92 2.41 2.12 3.09 2.53 3.01 2.81 2.82 1.84 2.93 3.12
15 2.62 2.34 2.12 2.90 2.44 2.84 2.67 2.72 1.82 2.81 2.97
10 2.32 2.25 2.11 2.68 2.30 2.63 2.51 2.58 1.75 2.68 2.82
5 2.04 2.16 2.08 2.46 2.13 2.44 2.34 2.41 1.63 2.52 2.67
0 1.81 2.02 1.72 2.21 1.89 2.22 2.13 2.19 1.47 2.32 2.49
-5 1.60 1.70 1.55 1.87 1.59 1.88 1.78 1.83 1.32 2.01 2.24

AVG 2.219 2.147 1.949 2.537 2.146 2.503 2.374 2.424 1.639 2.543 2.716
SD 0.498 0.258 0.250 0.449 0.355 0.416 0.378 0.368 0.207 0.339 0.322

TABLE II: Speech Intelligibility Evaluation (STOI Score)

SNR Noisy MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

20 0.91 0.82 0.52 0.88 0.86 0.88 0.94 0.85 0.67 0.89 0.93
15 0.88 0.81 0.52 0.86 0.84 0.86 0.92 0.83 0.67 0.87 0.92
10 0.83 0.79 0.52 0.83 0.79 0.84 0.90 0.81 0.67 0.85 0.90
5 0.78 0.77 0.52 0.79 0.75 0.80 0.86 0.79 0.62 0.82 0.87
0 0.71 0.73 0.52 0.74 0.71 0.76 0.81 0.75 0.52 0.78 0.84
-5 0.64 0.65 0.48 0.67 0.64 0.69 0.73 0.68 0.47 0.72 0.77

AVG 0.790 0.760 0.512 0.795 0.765 0.805 0.861 0.785 0.604 0.820 0.872
SD 0.101 0.063 0.017 0.078 0.084 0.072 0.079 0.062 0.088 0.064 0.059

TABLE III: Log Spectral Distortion Results (LSD)

SNR Noisy MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

20 1.36 1.05 1.74 1.09 2.01 1.13 1.49 1.23 2.39 1.37 1.87
15 1.62 1.12 1.74 1.18 2.03 1.23 1.53 1.28 2.43 1.41 1.89
10 1.92 1.18 1.76 1.30 2.06 1.35 1.58 1.32 2.51 1.44 1.91
5 2.21 1.22 1.80 1.44 2.12 1.47 1.63 1.40 2.64 1.51 1.94
0 2.46 1.32 1.88 1.64 2.25 1.63 1.73 1.54 2.83 1.62 1.96
-5 2.62 1.68 2.01 1.98 2.45 1.93 1.94 1.85 2.99 1.82 1.99

AVG 2.032 1.261 1.823 1.438 2.155 1.456 1.650 1.437 2.631 1.529 1.926
SD 0.489 0.225 0.105 0.330 0.170 0.292 0.166 0.230 0.237 0.168 0.046

TABLE IV: Segmental Signal to Noise Ratio Increase

SNR MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

20 6.44 0.59 6.98 3.67 7.13 6.41 6.73 1.98 7.07 6.82
15 7.12 0.79 7.60 3.04 7.72 6.93 7.44 2.10 7.77 8.53
10 7.56 0.73 7.92 2.53 7.98 7.97 7.85 2.36 8.23 8.91
5 7.77 1.62 7.94 2.32 7.97 7.62 7.86 3.33 8.33 8.82
0 7.65 1.41 7.46 2.50 7.63 6.81 7.63 3.75 7.98 8.25
-5 7.03 1.52 6.43 2.51 6.83 6.24 7.02 3.07 7.51 7.94

AVG 7.262 1.110 7.388 2.762 7.542 6.994 7.422 2.764 7.814 8.212
SD 0.502 0.457 0.586 0.507 0.468 0.677 0.459 0.721 0.473 0.771

TABLE V: Average of The Results

Metric MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

PESQ 2.147 1.949 2.537 2.146 2.503 2.374 2.424 1.639 2.543 2.716
STOI 0.760 0.512 0.795 0.765 0.805 0.861 0.785 0.604 0.820 0.872
LSD 1.261 1.823 1.438 2.155 1.456 1.650 1.437 2.631 1.529 1.926

∆SSNR 7.262 1.110 7.388 2.762 7.542 6.994 7.422 2.764 7.814 8.212

TABLE VI: Comparing Different Networks’ Parameters

Metric MLP CNN FCNN DDAE CDAE
Freq. Time Freq. Time Freq. Time Freq. Time Freq. Time

P(106) 8 16 0.2 0.4 0.4 0.6 2 3 3 3
T(s) 21.5 11.1 14.1 12.8 24 23.4 15.5 14.6 34.5 24

Layers 15 10 12 21 49



take a longer time to process because of the transformation
operation. The number of layers is also shown in the table.
The CDAE architecture is the deepest architecture, 49 layers,
so this is another possibility why this architecture outperforms
in the time domain. Very deep neural networks are proved to be
better at extracting more advanced features through the layers
[45], especially in the case of convolutional based architectures
[46]. It is also clear that the depth of the architecture increases
the processing time.

C. Factors Affecting Time domain Learning

More experiments were done to show the effect of three
factors on the performance of the fully connected architectures
in the time domain, in an attempt to enhance the performance.
The outcome of these experiments is represented in Table VII,
and shown in Fig. 3. These results are based on testing the
network on seen and unseen data at the same 6 SNRs used
before, then the average was calculated.

1) Frame Size: The effect of using smaller frame size was
investigated by training the MLP and DDAE architectures
using frames of size 256 instead of 2,048. Using a small frame
size leads to better performance for the MLP. However, speech
intelligibility was negatively affected for the DDAE network
due to the compression process, which may result in inaccurate
speech reconstruction with small input frame size, especially
for an architecture without skip connections which helps in
retaining the information as the processing proceeds deeper
from the encoder to the decoder network.

2) Architecture Depth: In order to show the effect of the
depth of the network on the performance in the time domain,
two more layers were added for the MLP architecture for the
network to have 5 layers instead of 3. Two more layers were
also added to each of the encoder and decoder networks for
the DDAE architecture in order to have 4 layers in each of
them. The number of hidden units were decreased through
the encoder layers, 2,049, 1,024, 500, 250, and 150 units
were used; and increased in reverse order through the decoder
layers. The results show that increasing the depth of the
architecture has a positive impact on the overall network
performance in the time domain, especially for DDAE. In
should be also mentioned here that adding skip connections to
the DDAE may lead to further enhancement [47], because of
their ability to prevent information loss in deep architectures.

3) Dataset Size: In order to show if increasing the dataset
size could enhance the network learning in the time domain
or not, the dataset size was doubled by training the MLP and
DDAE architectures using 10 hours of speech instead of 5
hours. For the MLP network, the output speech intelligibility
score increased. However, the speech quality was negatively
affected, and this may be because the network starts to overfit
to the training data, so the ability to remove noise from unseen
data decreased, leading to worse speech quality. Regarding the
DDAE network, increasing the dataset size results in a better
performance as this gives the network a better chance to learn
speech features, and decreasing the number of hidden units
through the encoder network prevents this architecture from

TABLE VII: Factors Affecting Time Domain Learning

Metric MLP DDAE
Frame Size Depth Dataset size Frame Size Depth Dataset size

PESQ 1.956 2.026 1.831 2.040 2.262 1.871
STOI 0.557 0.565 0.556 0.560 0.622 0.614

overfitting. However, when continuing to increase the dataset
size without changing the network design leads to the same
overfitting problem experienced by the MLP.

Fig. 3 shows the PESQ and STOI scores when considering
the above three factors. The original output scores based
on the first experiment is also shown in the same figure
for comparison. Although some of these factors result in an
improvement in the performance, the output speech is still of
relatively low overall quality. Consequently, there is a need
for a remarkable change in the design, or the addition of
techniques that will help in audio reconstruction, for these
architectures to be able to learn in the time domain.

Fig. 3: The Factors Affecting Time Domain based Learning

D. Factors Affecting Frequency domain Learning

1) Training Targets: The previously conducted experiments
were based on spectrogram mapping as a training target for
frequency domain based implementations. In this part, the use
of a masking target was investigated to show how this will
affect the network performance. The Ideal Ratio Mask (IRM)
[48] was used in this evaluation. It is clear from the results
in Table VIII that the use of IRM results in an improved
performance for all architectures. As a result, using masking
targets will result in further performance enhancement in the
case of frequency domain learning.

2) Phase Consideration: A drawback when operating in the
frequency domain is to use the noisy phase when reconstruct-
ing the clean speech audio. Recently, complex spectrograms
are used in order to solve this issue, where the network is
learning both the magnitude and phase during the learning
process. In order to show how the performance will be affected
when the learning is based on complex spectrogram, the
architectures were re-implemented using complex spectrogram
as the training target. The real and imaginary parts of the
spectrogram were stacked together and fed to the DNNs. The
obtained results are shown with the results of the IRM in
Table VIII. Using complex spectrogram leads to much better
speech intelligibility and quality than MLP, CNN, and DDAE
implementations in the time domain. However, the overall
performance in the frequency domain is negatively affected
as it is more challenging for the network to enhance both
the magnitude and the angle in the training process. The



performance of FCNN and CDAE is shown to be better in the
case of time domain than when using complex spectrogram.
As a conclusion, the use of complex spectrograms can act as
a compromise solution for architectures that fail to operate
in the time domain, and when the use of the noisy phase
in clean speech reconstruction causes a significant negative
effect on the performance of frequency domain systems. It
should be also mentioned that the use of Complex Ideal Ratio
Mask [49] was reported to outperform IRM with respect to
speech intelligibility, so cIRM can be also used to solve
the noisy phase issue. Furthermore, precise choice of the
input features or combining many features may also result
in further improvement in the performance. Although this is
not addressed in this work, but it is proved to have a positive
impact [50], [51].

E. Generalization Ability

In order to show the effect of the choice of the working
domain on the network generalization ability, the two networks
(FCNN and CDAE) that generated good performance in both
the time and frequency domain were re-evaluated using a
different English speech dataset from the one used in the
training process. The LibriSpeech corpus [52] was used in this
evaluation. In order to make a fair comparison between these
results and the results obtained in Subsection A. As before,
30 minutes duration of speech were randomly selected from
the LibriSpeech corpus, and the same noise environments at
the same SNR levels were used in the testing process. These
results are presented in Table IX.

The results show a significant degradation in the perfor-
mance for the time domain based implementation, especially
in the speech intelligibility score; as the FCNN architec-
ture outputs unintelligible speech. On the other hand, the
frequency domain implementations show good generalization
ability. Despite using validation set in the training regime, and
dropout layers in the CDAE architecture, which result in good
generalization ability to mismatched noise and unseen speech
from the same training dataset, the time domain networks still
do not generalise well to unseen Librispeech dataset. It can be
concluded from these results that time domain based learning
fails to generalize to mismatched conditions, and that although
a regularization dropout technique is added, such as in the case
of the CDAE architecture, generalization is still an issue that
must be considered for time domain based implementations.
On the other hand, these results give an advantage to frequency
domain based learning, as even if regularization techniques are
not applied to the FCNN network, it managed to maintain a
good performance for different, unseen data.

VI. CONCLUSION

In this paper, an investigation has been carried out on the
frequency and time domain approaches for deep learning based
speech enhancement, by comparing five different architectures.
The results show that fully connected based architectures,
MLP and DDAE, experience a significant degradation in the
performance when the learning process is performed in the

TABLE VIII: Factors Affecting Frequency Domain Learning

Metric MLP CNN FCNN DDAE CDAE
IRM cSpec IRM cSpec IRM cSpec IRM cSpec IRM cSpec

PESQ 2.388 2.149 2.564 2.536 2.637 2.510 2.430 2.105 2.667 2.393
STOI 0.801 0.680 0.808 0.792 0.819 0.794 0.814 0.675 0.834 0.776

TABLE IX: Generalization Ability Evaluation

Metric FCNN CDAE
Freq. Time Freq. Time

PESQ 2.334 1.957 2.352 2.067
STOI 0.847 0.590 0.859 0.708

time domain. On the other hand, convolution based architec-
tures, CNN, FCNN, and CDAE, give an acceptable perfor-
mance in both frequency and time domains. Additionally, the
CDAE architecture outperforms the other networks, regardless
of the working domain.

Working in the time domain results in more intelligible
speech for FCNN and CDAE designs, while working in
the frequency domain gives better speech quality for all the
architectures, except the CDAE, which outperforms in the
time domain. However, considering the network generalization
ability, the time domain implementations failed to generalize
even when a regularization technique is applied. Conversely,
the frequency domain implementations show a good gener-
alization ability even for implemented architectures with no
regularization technique.

Although changing the depth, frame size, and dataset size
was shown to improve the overall performance of fully con-
nected architectures learning in the time domain, a careful
design and extra techniques are needed for this type of DNN
when operating in the time domain, in order to generate speech
with acceptable quality and intelligibility.

Most of the architectures perform better in the frequency
domain. The implementations in the frequency domain also
show great improvement when masking training targets are
used. Furthermore, the use of a complex spectrogram is a good
approach for enhancing both the magnitude and the phase,
when the use of noisy speech in the reconstruction process
negatively affects the performance. It can be concluded here
also that although deep learning is a data driven approach,
feature extraction has a great positive impact on the network
performance.

Finally, it can be noticed that the choice of the working
domain depends on the design of the architecture and the
complex relationship between speech quality, intelligibility,
and distortion, because for certain designs not all the eval-
uation metrics are better in a specific domain. However, when
choosing to train DNNs in the time domain for the speech
enhancement task, the generalization issue should be taken
into consideration.
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